Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.343
Filtrar
1.
Cell Metab ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959897

RESUMO

A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.

2.
Phytomedicine ; 132: 155815, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38878525

RESUMO

BACKGROUND: Mangosteens, a naturally occurring xanthones, found abundantly in mangosteen fruits. The anti-skin aging potential of γ-mangosteen (GM) remains unexplored; therefore, we investigated the UVB-induced anti-skin aging of GM via activation of autophagy. HYPOTHESIS: We hypothesized that GM exerts antioxidant and anti-aging capabilities both in vitro and in vivo through activation of autophagy as well as control of KEAP1/NRF2 signaling and MAPKs/AP-1/NF-κB-mediated MMPs pathways. METHODS: The anti-skin aging effects of GM were studied using HDF cells and a mice model. Various assays, such as DPPH, ABTS, CUPRAC, FRAP, and ROS generation, assessed antioxidant activities. Kits measured antioxidant enzymes, SA-ß-gal staining, collagen, MDA content, si-RNA experiments, and promoter assays. Western blotting evaluated protein levels of c-Jun, c-Fos, p-IκBα/ß, p-NF-κB, MAPK, MMPs, collagenase, elastin, KEAP1, NRF2, HO-1, and autophagy-related proteins. RESULTS: GM exhibited strong antioxidant, collagenase and elastase enzyme inhibition activity surpassing α- and ß-mangosteen. GM competitively inhibited elastase with a Ki value of 29.04 µM. GM orchestrated the KEAP1-NRF2 pathway, enhancing HO-1 expression, and suppressed UVB-induced ROS in HDF cells. NRF2 knockdown compromised GM's antioxidant efficacy, leading to uncontrolled ROS post-UVB. GM bolstered endogenous antioxidants, curbing lipid peroxidation in UVB-exposed HDF cells and BALB/c mice. GM effectively halted UVB-induced cell senescence, and reduced MMP-1/-9, while elevated TIMP-1 levels, augmented COL1A1, ELN, and HAS-2 expression in vitro and in vivo. Additionally, it suppressed UVB-induced MAPKs, AP-1, NF-κB phosphorylation. Pharmacological inhibitors synergistically enhanced GM's anti-skin aging potential. Moreover, GM inhibited UVB-induced mTOR activation, upregulated LC3-II, Atg5, Beclin 1, and reduced p62 in both UVB induced HDF cells and BALB/c mice, while blocking of autophagy successfully halt the GM effects against the UVB-induced increase of cell senescence, degradation of collagen through upregulation of MMP-1, underscoring GM's substantial anti-skin aging impact via autophagy induction in vitro and in vivo. CONCLUSION: Together, GM has potent antioxidant and anti-skin aging ingredients that can be used to formulate skin care products for both the nutraceutical and cosmeceutical industries.

3.
Front Immunol ; 15: 1347018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887289

RESUMO

Purpose: Inflammation is involved in the pathogenesis of diabetes, however the impact of diabetes on organ-specific autoimmune diseases remains unexplored. Experimental autoimmune uveoretinitis (EAU) is a widely accepted animal model of human endogenous uveitis. In this study, we investigated the effects of diabetic conditions on the development of EAU using a mouse diabetes model. Methods: EAU was induced in wild-type C57BL/6 (WT) mice and Ins2Akita (Akita) mice with spontaneous diabetes by immunization with IRBP peptide. Clinical and histopathological examinations, and analysis of T cell activation state were conducted. In addition, alternations in the composition of immune cell types and gene expression profiles of relevant immune functions were identified using single-cell RNA sequencing. Results: The development of EAU was significantly attenuated in immunized Akita (Akita-EAU) mice compared with immunized WT (WT-EAU) mice, although T cells were fully activated in Akita-EAU mice, and the differentiation into Th17 cells and regulatory T (Treg) cells was promoted. However, Th1 cell differentiation was inhibited in Akita-EAU mice, and single-cell analysis indicated that gene expression associated AP-1 signaling pathway (JUN, FOS, and FOSB) was downregulated not only in Th1 cells but also in Th17, and Treg cells in Akita-EAU mice at the onset of EAU. Conclusions: In diabetic mice, EAU was significantly attenuated. This was related to selective inhibition of Th1 cell differentiation and downregulated AP-1 signaling pathway in both Th1 and Th17 cells.


Assuntos
Doenças Autoimunes , Diferenciação Celular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Th1 , Células Th17 , Fator de Transcrição AP-1 , Uveíte , Animais , Uveíte/imunologia , Células Th17/imunologia , Células Th1/imunologia , Camundongos , Fator de Transcrição AP-1/metabolismo , Diferenciação Celular/imunologia , Doenças Autoimunes/imunologia , Diabetes Mellitus Experimental/imunologia , Modelos Animais de Doenças , Feminino
4.
Mol Genet Metab ; 142(3): 108511, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878498

RESUMO

The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.


Assuntos
Íntrons , RNA Mensageiro , Humanos , Masculino , Íntrons/genética , RNA Mensageiro/genética , ATPases Vacuolares Próton-Translocadoras/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Mutação , Sequenciamento Completo do Genoma , Sequenciamento do Exoma , Análise de Sequência de RNA , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Criança , Splicing de RNA/genética , Pré-Escolar
5.
Cell Stem Cell ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878775

RESUMO

Understanding prostate response to castration and androgen receptor signaling inhibitors (ARSI) is critical to improving long-term prostate cancer (PCa) patient survival. Here, we use a multi-omics approach on 229,794 single cells to create a mouse single-cell reference atlas for interpreting mouse prostate biology and castration response. Our reference atlas refines single-cell annotations and provides a chromatin context, which, when coupled with mouse lineage tracing, demonstrates that castration-resistant luminal cells are distinct from the pre-existent urethra-proximal stem/progenitor cells. Molecular pathway analysis and therapeutic studies further implicate AP1 (JUN/FOS), WNT/ß-catenin, FOXQ1, NF-κB, and JAK/STAT pathways as major drivers of castration-resistant luminal populations with relevance to human PCa. Our datasets, which can be explored through an interactive portal (https://visportal.roswellpark.org/data/tang/), can aid in developing combination treatments with ARSI for advanced PCa patients.

6.
Neuro Oncol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864832

RESUMO

BACKGROUND: Super-enhancers (SEs) typically govern the expression of critical oncogenes and play a fundamental role in the initiation and progression of cancer. Focusing on genes that are abnormally regulated by SE in cancer may be a new strategy for understanding pathogenesis. In the context of this investigation, we have identified a previously unreported SE-driven gene IRF2BP2 in neuroblastoma (NB). METHODS: The expression and prognostic value of IRF2BP2 were detected in public databases and clinical samples. The effect of IRF2BP2 on NB cell growth and apoptosis was evaluated through in vivo and in vitro functional loss experiments. The molecular mechanism of IRF2BP2 was investigated by the study of chromatin regulatory regions and transcriptome sequencing. RESULTS: The sustained high expression of IRF2BP2 results from the activation of a novel SE established by NB master transcription factors MYCN, MEIS2 and HAND2, and they form a new complex that regulates the gene network associated with the proliferation of NB cell populations. We also observed a significant enrichment of the AP-1 family at the binding sites of IRF2BP2. Remarkably, within NB cells, AP-1 plays a pivotal role in shaping the chromatin accessibility landscape, thereby exposing the binding site for IRF2BP2. This orchestrated action enables AP-1 and IRF2BP2 to collaboratively stimulate the expression of the NB susceptibility gene ALK, thereby upholding the highly proliferative phenotype characteristic of NB. CONCLUSION: Our findings indicate that SE-driven IRF2BP2 can bind to AP-1 to maintain the survival of tumor cells via regulating chromatin accessibility of NB susceptibility gene ALK.

7.
Sci China Life Sci ; 67(7): 1468-1478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703348

RESUMO

Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.


Assuntos
Aflatoxina B1 , Galinhas , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP2A6 , Fígado , Regiões Promotoras Genéticas , Fator de Transcrição Sp1 , Fator de Transcrição AP-1 , Animais , Aflatoxina B1/metabolismo , Galinhas/metabolismo , Fígado/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2A6/genética , Ativação Transcricional
8.
J Clin Transl Hepatol ; 12(5): 457-468, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38779518

RESUMO

Background and Aims: Hepatitis B virus (HBV) reactivation is commonly observed in individuals with chronic HBV infection undergoing antineoplastic drug therapy. Paclitaxel (PTX) treatment has been identified as a potential trigger for HBV reactivation. This study aimed to uncover the mechanisms of PTX-induced HBV reactivation in vitro and in vivo, which may inform new strategies for HBV antiviral treatment. Methods: The impact of PTX on HBV replication was assessed through various methods including enzyme-linked immunosorbent assay, dual-luciferase reporter assay, quantitative real-time PCR, chromatin immunoprecipitation, and immunohistochemical staining. Transcriptome sequencing and 16S rRNA sequencing were employed to assess alterations in the transcriptome and microbial diversity in PTX-treated HBV transgenic mice. Results: PTX enhanced the levels of HBV 3.5-kb mRNA, HBV DNA, HBeAg, and HBsAg both in vitro and in vivo. PTX also promoted the activity of the HBV core promoter and transcription factor AP-1. Inhibition of AP-1 gene expression markedly suppressed PTX-induced HBV reactivation. Transcriptome sequencing revealed that PTX activated the immune-related signaling networks such as IL-17, NF-κB, and MAPK signaling pathways, with the pivotal common key molecule being AP-1. The 16S rRNA sequencing revealed that PTX induced dysbiosis of gut microbiota. Conclusions: PTX-induced HBV reactivation was likely a synergistic outcome of immune suppression and direct stimulation of HBV replication through the enhancement of HBV core promoter activity mediated by the transcription factor AP-1. These findings propose a novel molecular mechanism, underscoring the critical role of AP-1 in PTX-induced HBV reactivation.

9.
Dev Cell ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38815584

RESUMO

The early mechanisms of spontaneous tumor initiation that precede malignancy are largely unknown. We show that reduced aPKC levels correlate with stem cell loss and the induction of revival and metaplastic programs in serrated- and conventional-initiated premalignant lesions, which is perpetuated in colorectal cancers (CRCs). Acute inactivation of PKCλ/ι in vivo and in mouse organoids is sufficient to stimulate JNK in non-transformed intestinal epithelial cells (IECs), which promotes cell death and the rapid loss of the intestinal stem cells (ISCs), including those that are LGR5+. This is followed by the accumulation of revival stem cells (RSCs) at the bottom of the crypt and fetal-metaplastic cells (FMCs) at the top, creating two spatiotemporally distinct cell populations that depend on JNK-induced AP-1 and YAP. These cell lineage changes are maintained during cancer initiation and progression and determine the aggressive phenotype of human CRC, irrespective of their serrated or conventional origin.

10.
Chemosphere ; 359: 142299, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761826

RESUMO

Sulfur mustard (SM, dichlorodiethyl sulfide) is a potent erosive chemical poison that can cause pulmonary lung, skin and eye disease complications in humans. Currently, there is no designated remedy for SM, and its operation's toxicological process remains unidentified. This work employed zebrafish as a model organism to investigate the toxic manifestations and mechanisms of exposure to SM, aiming to offer novel insights for preventing and treating this condition. The results showed that SM caused a decrease in the survival rate of the zebrafish larvae (LC50 = 2.47 mg/L), a reduction in the hatching rate, an increase in the pericardial area, and small head syndrome. However, T-5224 (a selective inhibitor of c-Fos/activator protein) attenuated the reduction in mortality (LC50 = 2.79 mg/L), the reduction in hatching rate, and the worsening of morphological changes. We discovered that SM causes cartilage developmental disorders in zebrafish larvae. The reverse transcription-quantitative polymerase chain reaction found that SM increased the expression of inflammation-related genes (IL-1ß, IL-6, and TNF-α) and significantly increased cartilage development-related gene expression (fosab, mmp9, and atf3). However, the expression of sox9a, sox9b, and Col2a1a was reduced. The protein level detection also found an increase in c-fos protein expression and a significant decrease in COL2A1 expression. However, T-5224,also and mitigated the changes in gene expression, and protein levels caused by SM exposure. The results of this study indicate that SM-induced cartilage development disorders are closely related to the c-Fos/AP-1 pathway in zebrafish.


Assuntos
Condrogênese , Larva , Gás de Mostarda , Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Peixe-Zebra , Animais , Gás de Mostarda/toxicidade , Larva/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Condrogênese/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
11.
Pathol Res Pract ; 258: 155334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718468

RESUMO

Placental transmogrification of the lung (PTL) is a rare pulmonary condition characterized by the presence of immature placental villous structures. The etiology and molecular mechanisms underlying this disease remain largely unknown. This functional study aimed to identify the molecular signatures in the pathogenesis of PTL via comprehensive transcriptome analysis. Comparative transcriptomic assessment of PTL tissue and stromal cells showed differential expression of 257 genes in PTL tissue and 189 genes in stromal cells. Notably, several transcription factors and regulators, including FOSB, FOS, JUN, and ATF3, were upregulated in PTL tissue. Additionally, genes associated with the extracellular matrix and connective tissue, such as COL1A1, MMP2, and SPARC, were significantly altered, indicating possible fibrotic changes. Gene set enrichment analysis highlighted the role of vascular development and extracellular matrix organization, and the Activator Protein-1 (AP-1) transcription factor was significantly activated in PTL tissue. Furthermore, the analysis highlighted an overlap of 25 genes between PTL tissue and stromal cells, underscoring the importance of shared molecular pathways in the pathogenesis of PTL. Among the shared genes, JUND, COL4A2, COL6A2, IGFBP5, and IGFBP7 were consistently upregulated, highlighting the possible involvement of AP-1-mediated signaling and fibrotic changes in the pathogenesis of PTL. The present findings pave the way for further research into the molecular mechanisms underlying PTL and offer novel insights for therapeutic interventions. Given the rarity of PTL, these molecular findings represent a significant step forward in our understanding this enigmatic disease.


Assuntos
Perfilação da Expressão Gênica , Fator de Transcrição AP-1 , Humanos , Feminino , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Gravidez , Transcriptoma , Pulmão/patologia , Pulmão/metabolismo , Fibrose/patologia , Fibrose/genética , Placenta/patologia , Placenta/metabolismo , Pneumopatias/genética , Pneumopatias/patologia , Pneumopatias/metabolismo
12.
Mol Cancer ; 23(1): 114, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811984

RESUMO

BACKGROUND: Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. METHODS: We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. RESULTS: Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1ß production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1ß and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1ß, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. CONCLUSIONS: Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.


Assuntos
Progressão da Doença , PTEN Fosfo-Hidrolase , Neoplasias da Próstata , Microambiente Tumoral , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Animais , Camundongos , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Microambiente Tumoral/imunologia , Fenótipo Secretor Associado à Senescência , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Senescência Celular/genética , Modelos Animais de Doenças
13.
Med ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38663404

RESUMO

BACKGROUND: Crohn's disease complicated by perianal fistulae is more prevalent and severe in patients of African ancestry. METHODS: We profiled single cells from diverse patients with Crohn's disease with perianal fistula from colorectal mucosa and fistulous tracts. Immunofluorescence was performed to validate predicted cell-cell interactions. Unstimulated monocytes were chronically cultured in diverse cohorts. A subset was analyzed by single-nucleus RNA + ATAC sequencing. FINDINGS: Fistulous tract cells from complete proctectomies demonstrated enrichment of myeloid cells compared to paired rectal tissues. Ligand-receptor analysis highlights myeloid-stromal cross-talk and cellular senescence, with cellular co-localization validated by immunofluorescence. Chitinase-3 like-protein-1 (CHI3L1) is a top upregulated gene in stromal cells from fistulae expressing both destructive and fibrotic gene signatures. Monocyte cultures from patients of African ancestry and controls demonstrated differences in CHI3L1 and oncostatin M (OSM) expression upon differentiation compared to individuals of European ancestry. Activating protein-1 footprints are present in ATAC-seq peaks in stress response genes, including CHI3L1 and OSM; genome-wide chromatin accessibility including JUN footprints was observed, consistent with reported mechanisms of inflammatory memory. Regulon analyses confirm known cell-specific transcription factor regulation and implicate novel ones in fibroblast subsets. All pseudo-bulked clusters demonstrate enrichment of genetic loci, establishing multicellular contributions. In the most significant African American Crohn's genetic locus, upstream of prostaglandin E receptor 4, lymphoid-predominant ATAC-seq peaks were observed, with predicted RORC footprints. CONCLUSIONS: Population differences in myeloid-stromal cross-talk implicate fibrotic and destructive fibroblasts, senescence, epigenetic memory, and cell-specific enhancers in perianal fistula pathogenesis. The transcriptomic and epigenetic data provided here may guide optimization of promising mesenchymal stem cell therapies for perianal fistula. FUNDING: This work was supported by grants U01DK062422, U24DK062429, and R01DK123758.

14.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38586055

RESUMO

Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand regulation of gene expression in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). We detected a total of 3005 differentially accessible chromatin regions (DARs) between sexes using bulk ATAC-seq. DARs in female hDRG mapped mainly to the X chromosome. In males, DARs were found in autosomal genes. We also found differential transcription factor binding motifs within DARs. EGR1/3 and SP1/4 were abundant in females, and JUN, FOS and other AP-1 family members in males. With the aim of dissecting the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. Consistent with our bulk ATAC-seq data, most of the DARs in female hDRG were located in X chromosome genes. Neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+-signaling-related genes in males. Sex differences in open chromatin transcription factor binding sites in neuron-proximal barcodes were consistent with the bulk data, having EGR1 transcription factor activity in females and AP-1 family members in males. Accordingly, we showed higher expression of EGR1 in female hDRG compared to male with in-situ hybridization. Our findings point to epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.

15.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38671854

RESUMO

Colorectal cancer (CRC) stands as a major cause of cancer-related mortality globally, accounting for approximately 881,000 deaths each year. Traditional approaches such as chemotherapy and surgery have been the primary treatment modalities, yet the outcomes for patients with metastatic CRC are often unsatisfactory. Recent research has focused on targeting the pathways involved in oxidative stress, inflammation, and metastasis to enhance the survival of CRC patients. Within this context, sulforaphane (SFN), a notable phytochemical found predominantly in cruciferous vegetables, has been recognized as a potential anticancer agent. However, the specific mechanisms through which SFN may exert its chemopreventive effects in CRC remain unclear. This study explores the impact of SFN on IL-1ß-induced IL-6 activation and MAPK and AP-1 signaling in HT-29 cells. Our findings reveal that SFN treatment not only diminishes IL-1ß-stimulated IL-6 expression but also reduces oxidative stress by curtailing reactive oxygen species (ROS) production. Furthermore, it hinders the proliferation and invasiveness of HT-29 cells through the modulation of MAPK/AP-1 and STAT3 signaling pathways. These results indicate that SFN mitigates IL-1ß-induced IL-6 expression in CRC cells by attenuating ROS production and disrupting MAPK/AP-1 signaling. This suggests that SFN holds significant potential as a chemotherapeutic agent for both treating and preventing CRC.

16.
Front Synaptic Neurosci ; 16: 1322771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633293

RESUMO

From fly to man, the Wingless (Wg)/Wnt signaling molecule is essential for both the stability and plasticity of the nervous system. The Drosophila neuromuscular junction (NMJ) has proven to be a useful system for deciphering the role of Wg in directing activity-dependent synaptic plasticity (ADSP), which, in the motoneuron, has been shown to be dependent on both the canonical and the noncanonical calcium Wg pathways. Here we show that the noncanonical planar cell polarity (PCP) pathway is an essential component of the Wg signaling system controlling plasticity at the motoneuron synapse. We present evidence that disturbing the PCP pathway leads to a perturbation in ADSP. We first show that a PCP-specific allele of disheveled (dsh) affects the de novo synaptic structures produced during ADSP. We then show that the Rho GTPases downstream of Dsh in the PCP pathway are also involved in regulating the morphological changes that take place after repeated stimulation. Finally, we show that Jun kinase is essential for this phenomenon, whereas we found no indication of the involvement of the transcription factor complex AP1 (Jun/Fos). This work shows the involvement of the neuronal PCP signaling pathway in supporting ADSP. Because we find that AP1 mutants can perform ADSP adequately, we hypothesize that, upon Wg activation, the Rho GTPases and Jun kinase are involved locally at the synapse, in instructing cytoskeletal dynamics responsible for the appearance of the morphological changes occurring during ADSP.

17.
Am J Med Genet A ; : e63639, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682877

RESUMO

Pettigrew syndrome (PGS), an X-linked intellectual disability (XLID), is caused by mutations in the AP1S2 gene. Herein, we described a Thai family with six patients who had severe-to-profound intellectual impairment, limited verbal communication, and varying degrees of limb spasticity. One patient had a unilateral cataract. We demonstrated facial evolution over time, namely coarse facies, long faces, and thick lip vermilions. We identified a novel AP1S2 variant, c.1-2A>G. The mRNA analysis revealed that the variant resulted in splicing defects with leaky splicing, yielding two distinct aberrant transcripts, one of which likely resulting in the mutant protein lacking the first 44 amino acids whereas the other possibly leading to no production of the protein. By performing a literature review, we found 51 patients and 11 AP1S2 pathogenic alleles described and that all the variants were loss-of-function alleles. The severity of ID in Pettigrew syndrome is mostly severe-to-profound (54.8%), followed by moderate (26.2%) and mild. Progressive spasticity was noted in multiple patients. In summary, leaky splicing found in the present family was likely related to the intrafamilial clinical variability. Our data also support the previous notion of variable expression and neuroprogressive nature of the disorder.

18.
Clin Genet ; 106(1): 109-113, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38665048

RESUMO

Usmani-Riazuddin syndrome (USRISR, MIM# 619548; USRISD, MIM#619467) is a very rare genetic condition. recently associated with deleterious variants in AP1G1 (MIM* 603533). It is characterized by multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, muscular tone disorders, seizures, limb defects, and unspecified facial gestalt. In this report, we describe this syndrome for the second time, in association to a novel AP1G1 variant identified in a toddler with multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, arrhythmias, hearing loss, skin changes, and limb defects. Next generation sequencing (NGS) analysis through clinical exome disclosed AP1G1: c.1969C>G (p.Leu657Val), de novo, likely pathogenic variant, according to ACMG classification criteria. Proband's facial features resembled the spectrum of chromatinopathies. Clinical pictures were analyzed and a clinical overlap was supported by DeepGestalt analysis (www.face2gene.com). The system identified 6 chromatin disorders out of 30 possible diagnoses. The remaining 24 included 9 miscellaneous cryptic chromosomal abnormalities (excluded due to normal microarray study). To the best of our knowledge, this is the first description of likely distinctive facial features in a patient with Usmani-Riazuddin syndrome. Further multicentric analyses are needed for a better definition of this aspect.


Assuntos
Deficiência Intelectual , Fenótipo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Pré-Escolar , Feminino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia
19.
Proc Natl Acad Sci U S A ; 121(18): e2404188121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657045

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.


Assuntos
Carcinoma Hepatocelular , Antígeno 2 Relacionado a Fos , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas c-jun , Proteínas Proto-Oncogênicas c-myc , Fator de Transcrição AP-1 , Animais , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Antígeno 2 Relacionado a Fos/metabolismo , Antígeno 2 Relacionado a Fos/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Hepatócitos/metabolismo , Multimerização Proteica , Regulação Neoplásica da Expressão Gênica , Camundongos Transgênicos
20.
J Cell Biochem ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38440920

RESUMO

Obesity is defined as an abnormal accumulation of adipose tissue in the body and is a major global health problem due to increased morbidity and mortality. Adipose tissue is made up of adipocytes, which are fat-storing cells, and the differentiation of these fat cells is known as adipogenesis. Several transcription factors (TFs) such as CEBPß, CEBPα, PPARγ, GATA, and KLF have been reported to play a key role in adipogenesis. In this study, we report one more TF AP-1, which is found to be involved in adipogenesis. Human mesenchymal stem cells  were differentiated into adipocytes, and the expression pattern of different subunits of AP-1 was examined during adipogenesis. It was observed that C-FOS was predominantly expressed at an early stage (Day 2), whereas FRA2 expression peaked at later stages (Days 6 and 8) of adipogenesis. Chromatin immunoprecipitation-sequencing analysis revealed that C-FOS binds mainly to the promoters of WNT1, miR-30a, and ANAPC7 and regulates their expression during mitotic clonal expansion. In contrast, FRA2 binds to the promoters of CIDEA, NOTCH1, ARAF, and MYLK, regulating their expression and lipid metabolism. Data obtained clearly indicate that the differential expression of C-FOS and FRA2 is crucial for different stages of adipogenesis. This also raises the possibility of considering AP-1 as a therapeutic target for treating obesity and related disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...