Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Immun Ageing ; 21(1): 45, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961477

RESUMO

BACKGROUND: The function of polymorphonuclear neutrophils (PMNs) decreases with age, which results in infectious and inflammatory complications in older individuals. The underlying causes are not fully understood. ATP release and autocrine stimulation of purinergic receptors help PMNs combat microbial invaders. Excessive extracellular ATP interferes with these mechanisms and promotes inflammatory PMN responses. Here, we studied whether dysregulated purinergic signaling in PMNs contributes to their dysfunction in older individuals. RESULTS: Bacterial infection of C57BL/6 mice resulted in exaggerated PMN activation that was significantly greater in old mice (64 weeks) than in young animals (10 weeks). In contrast to young animals, old mice were unable to prevent the systemic spread of bacteria, resulting in lethal sepsis and significantly greater mortality in old mice than in their younger counterparts. We found that the ATP levels in the plasma of mice increased with age and that, along with the extracellular accumulation of ATP, the PMNs of old mice became increasingly primed. Stimulation of the formyl peptide receptors of those primed PMNs triggered inflammatory responses that were significantly more pronounced in old mice than in young animals. However, bacterial phagocytosis and killing by PMNs of old mice were significantly lower than that of young mice. These age-dependent PMN dysfunctions correlated with a decrease in the enzymatic activity of plasma ATPases that convert extracellular ATP to adenosine. ATPases depend on divalent metal ions, including Ca2+, Mg2+, and Zn2+, and we found that depletion of these ions blocked the hydrolysis of ATP and the formation of adenosine in human blood, resulting in ATP accumulation and dysregulation of PMN functions equivalent to those observed in response to aging. CONCLUSIONS: Our findings suggest that impaired hydrolysis of plasma ATP dysregulates PMN function in older individuals. We conclude that strategies aimed at restoring plasma ATPase activity may offer novel therapeutic opportunities to reduce immune dysfunction, inflammation, and infectious complications in older patients.

2.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928112

RESUMO

The Davydov model was conjectured to describe how an amide I excitation created during ATP hydrolysis in myosin might be significant in providing energy to drive myosin's chemomechanical cycle. The free energy surfaces of the myosin relay helix peptide dissolved in 2,2,2-trifluoroethanol (TFE), determined by metadynamics simulations, demonstrate local minima differing in free energy by only ~2 kT, corresponding to broken and stabilized hydrogen bonds, respectively. Experimental pump-probe and 2D infrared spectroscopy were performed on the peptide dissolved in TFE. The relative heights of two peaks seen in the pump-probe data and the corresponding relative volumes of diagonal peaks seen in the 2D-IR spectra at time delays between 0.5 ps and 1 ps differ noticeably from what is seen at earlier or later time delays or in the linear spectrum, indicating that a vibrational excitation may influence the conformational state of this helix. Thus, it is possible that the presence of an amide I excitation may be a direct factor in the conformational state taken on by the myosin relay helix following ATP hydrolysis in myosin.


Assuntos
Simulação de Dinâmica Molecular , Miosinas , Miosinas/química , Miosinas/metabolismo , Espectrofotometria Infravermelho/métodos , Peptídeos/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Ligação de Hidrogênio , Hidrólise , Conformação Proteica em alfa-Hélice
3.
Biophys Chem ; 309: 107232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593533

RESUMO

ATP-hydrolysis-associated conformational change of the ß-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1ß-subunit monomer (ß) was analyzed by solid-state NMR. The adenosine conformation of ATP-ß was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pß conformations of ATP-ß are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-ß than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-ß conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-ß would be a model of the most closed ß-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Domínio Catalítico , Conformação Proteica
5.
J Mol Biol ; 436(2): 168373, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992890

RESUMO

The G-quadruplex (G4) is a distinct geometric and electrophysical structure compared to classical double-stranded DNA, and its stability can impede essential cellular processes such as replication, transcription, and translation. This study focuses on the BsPif1 helicase, revealing its ability to bind independently to both single-stranded DNA (ssDNA) and G4 structures. The unfolding activity of BsPif1 on G4 relies on the presence of a single tail chain, and the covalent continuity between the single tail chain and the G4's main chain is necessary for efficient G4 unwinding. This suggests that ATP hydrolysis-driven ssDNA translocation exerts a pull force on G4 unwinding. Molecular dynamics simulations identified a specific region within BsPif1 that contains five crucial amino acid sites responsible for G4 binding and unwinding. A "molecular wire stripper" model is proposed to explain BsPif1's mechanism of G4 unwinding. These findings provide a new theoretical foundation for further exploration of the G4 development mechanism in Pif1 family helicases.


Assuntos
Trifosfato de Adenosina , DNA Helicases , DNA de Cadeia Simples , Quadruplex G , Trifosfato de Adenosina/química , DNA de Cadeia Simples/química , Hidrólise , Simulação de Dinâmica Molecular , DNA Helicases/química
6.
Molecules ; 28(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005208

RESUMO

The integration of phosphorus chemistry with the mechanism of ATP synthesis/hydrolysis requires dynamical information during ATP turnover and catalysis. Oxygen exchange reactions occurring at ß-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. They have been shown to provide valuable time-resolved information on enzyme catalysis during ATP synthesis and ATP hydrolysis. The present work conducts new experiments on oxygen exchange catalyzed by submitochondrial particles designed to (i) measure the relative rates of Pi-ATP, Pi-HOH, and ATP-HOH isotope exchanges; (ii) probe the effect of ADP removal on the extent of inhibition of the exchanges, and (iii) test their uncoupler sensitivity/resistance. The objectives have been realized based on new experiments on submitochondrial particles, which show that both the Pi-HOH and ATP-HOH exchanges occur at a considerably higher rate relative to the Pi-ATP exchange, an observation that cannot be explained by previous mechanisms. A unifying explanation of the kinetic data that rationalizes these observations is given. The experimental results in (ii) show that ADP removal does not inhibit the intermediate Pi-HOH exchange when ATP and submitochondrial particles are incubated, and that the nucleotide requirement of the intermediate Pi-HOH exchange is adequately met by ATP, but not by ADP. These results contradicts the central postulate in Boyer's binding change mechanism of reversible catalysis at a F1 catalytic site with Keq~1 that predicts an absolute requirement of ADP for the occurrence of the Pi-HOH exchange. The prominent intermediate Pi-HOH exchange occurring under hydrolytic conditions is shown to be best explained by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis, which postulates an essentially irreversible cleavage of ATP by mitochondria/particles, independent from a reversible formation of ATP from ADP and Pi. The explanation within the torsional mechanism is also shown to rationalize the relative insensitivity of the intermediate Pi-HOH exchange to uncouplers observed in the experiments in (iii) compared to the Pi-ATP and ATP-HOH exchanges. This is shown to lead to new concepts and perspectives based on ligand displacement/substitution and ligand permutation for the elucidation of the oxygen exchange reactions within the framework of fundamental phosphorus chemistry. Fast mechanisms that realize the rotation/twist, tilt, permutation and switch of ligands, as well as inversion at the γ-phosphorus synchronously and simultaneously and in a concerted manner, have been proposed, and their stereochemical consequences have been analyzed. These considerations take us beyond the binding change mechanism of ATP synthesis/hydrolysis in bioenergetics.


Assuntos
Fosforilação Oxidativa , Fósforo , Hidrólise , Ligantes , Trifosfato de Adenosina/metabolismo , Cinética , Oxigênio
8.
Biosens Bioelectron ; 241: 115691, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738803

RESUMO

For discriminating diverse analytes and monitoring a specific chemical reaction, the emerging multi-channel "chemical nose/tongue" is challenging multi-material "chemical nose/tongue". The former contributes greatly to integrating different transduction principles from a single sensing material, avoiding the need for complex design, high cost, and tedious operation involved with the latter. Therefore, this high-order sensing puts a particular emphasis on the effects of encapsulation. Herein, the plasmonic gold nanoparticles (Au NPs) are encapsulated as a core into the fluorescent guanine monophosphate-Tb3+ infinite coordination polymer nanoparticles (GMP-Tb ICPs) to obtain a core-shell nanocomposite named Au NPs@GMP-Tb ICPs. Hence, a dual-channel "chemical tongue" based on Au NPs@GMP-Tb ICPs is present to realize high-order sensing of adenosine triphosphate (ATP)-related physiological phosphates and the monitoring of ATP hydrolysis. Considering the affinity of Tb3+ towards P-O bonds, four inorganic phosphates and three nucleotide phosphates with different phosphate group numbers and steric hindrance effect directly regulate two stimulus responses (fluorescence intensity and UV-vis absorbance) of Au NPs@GMP-Tb ICPs. Robust statistical methods, such as linear discriminant analysis and hierarchical cluster analysis, are used to recognize each phosphate by the developed sensor array either in the aqueous solution or in complex media such as serum, together with efficiently monitored ATP hydrolysis at different intervals. These findings and blind test clarify that the designed "chemical tongue" guarantees interference resistance and strengthens analytical capacity, together with offering valuable insight into "lab-on-a-nanoparticle" development for monitoring specific chemical reactions.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Trifosfato de Adenosina/análise , Ouro/química , Hidrólise , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Fosfatos
9.
Biochem Mol Biol Educ ; 51(5): 476-485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37278404

RESUMO

Common wisdom holds that ATP hydrolysis is spontaneous because of the weakness of its phosphoanhydride bonds, electrostatic repulsion within the polyanionic ATP4- molecule, and resonance stabilization of the inorganic phosphate and ADP products. By examining the pH-dependence of the hydrolysis Gibbs free energy, we show that in fact, above pH 7, ATP hydrolysis is spontaneous due mainly to the low concentration of the H+ that is released as product. Hence, ATP is essentially just an electrophilic target whose attack by H2 O causes the acidity of the water nucleophile to increase dramatically; the spontaneity of the resulting acid ionization supplies much of the released Gibbs free energy. We also find that fermentation lowers pH not due to its organic acid products (e.g., lactic, acetic, formic, or succinic acids), but again, due to the H+ product of ATP hydrolysis.


Assuntos
Trifosfato de Adenosina , Prótons , Hidrólise , Concentração de Íons de Hidrogênio , Fosfatos/química , Termodinâmica
10.
FASEB J ; 37(7): e23030, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302010

RESUMO

Almost half of the people who die from sudden cardiac arrest have no detectable heart disease. Among children and young adults, the cause of approximately one-third of deaths from sudden cardiac arrest remains unexplained after thorough examination. Sudden cardiac arrest and related sudden cardiac death are attributed to dysfunctional cardiac ion-channels. The present perspective paper proposes a pathophysiological mechanism by which phosphate toxicity from cellular accumulation of dysregulated inorganic phosphate interferes with normal calcium handling in the heart, leading to sudden cardiac arrest. During cardiac muscle relaxation following contraction, SERCA2a pumps actively transport calcium ions into the sarcoplasmic reticulum, powered by ATP hydrolysis that produces ADP and inorganic phosphate end products. Reviewed evidence supports the proposal that end-product inhibition of SERCA2a occurs as increasing levels of inorganic phosphate drive up phosphate toxicity and bring cardiac function to a sudden and unexpected halt. The paper concludes that end-product inhibition from ATP hydrolysis is the mediating factor in the association of sudden cardiac arrest with phosphate toxicity. However, current technology lacks the ability to directly measure this pathophysiological mechanism in active myocardium, and further research is needed to confirm phosphate toxicity as a risk factor in individuals with sudden cardiac arrest. Moreover, phosphate toxicity may be reduced through modification of dietary phosphate intake, with potential for employing low-phosphate dietary interventions to reduce the risk of sudden cardiac arrest.


Assuntos
Cálcio , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Criança , Humanos , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Morte Súbita Cardíaca/etiologia , Trifosfato de Adenosina
11.
J Gen Virol ; 104(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37326617

RESUMO

Geminivirus-betasatellite disease complexes are an epidemic threat to the majority of economically important crops across the world. Plant virus satellites including betasatellites are maintained by their associated helper virus. Geminivirus-betasatellites influence viral pathogenesis by substantially increasing or decreasing their helper virus accumulation. In the present study, we attempted to understand the mechanistic details of the geminivirus-betasatellite interaction. Here, we used tomato leaf curl Gujarat virus (ToLCGV) and tomato leaf curl Patna betasatellite (ToLCPaB) as a model system. This study reveals that ToLCGV can efficiently trans-replicate ToLCPaB in Nicotiana benthamiana plants, but ToLCPaB greatly reduced the accumulation of its helper virus DNA. For the first time, we have identified that the ToLCPaB-encoded ßC1 protein is able to interact with ToLCGV-encoded replication initiator protein (Rep). In addition, we demonstrate that the C-terminal region of ßC1 interacts with the C-terminus of Rep (RepC) protein. Our previous study had established that ßC1 proteins encoded by diverse betasatellites possess a novel ATP hydrolysis activity and the conserved lysine/arginine residues at positions 49 and 91 are necessary for this function. Here, we show that mutating lysine at positions 49 to alanine of ßC1 (ßC1K49A) protein did not affect its ability to interact with RepC protein. Biochemical studies performed with ATP hydrolysis activity-deficient K49A mutated ßC1 (ßC1K49A) and RepC proteins revealed that Rep-ßC1 interaction interferes with the ATP hydrolysis activity of Rep protein. Further, we demonstrate that ßC1 protein is able to interact with D227A and D289A mutated RepC proteins but not with D262A, K272A or D286A mutated RepC proteins, suggesting that the ßC1-interacting region of Rep protein encompasses its Walker-B and B' motifs. The results of docking studies supported that the ßC1-interacting region of Rep protein encompasses its motifs associated with ATP binding and ATP hydrolysis activities. Docking studies also provided evidence that the Rep-ßC1 interaction interferes with the ATP binding activity of Rep protein. Together, our findings suggest that ßC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of helper virus Rep protein.


Assuntos
Begomovirus , Geminiviridae , Geminiviridae/genética , Vírus Auxiliares , Lisina/metabolismo , Hidrólise , Proteínas Virais/genética , Proteínas Virais/metabolismo , Begomovirus/genética , Trifosfato de Adenosina/metabolismo , Doenças das Plantas , Nicotiana
12.
Microbiol Res ; 274: 127437, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327604

RESUMO

The bacteriophage phiBP contains a newly discovered putative replisome organizer, a helicase loader, and a beta clamp, which together may serve to replicate its DNA. Bioinformatics analysis of the phiBP replisome organizer sequence showed that it belongs to a recently identified family of putative initiator proteins. We prepared and isolated a wild type-like recombinant protein, gpRO-HC, and a mutant protein gpRO-HCK8A, containing a lysine to alanine substitution at position 8. gpRO-HC had low ATPase activity regardless of the presence of DNA, while the ATPase activity of the mutant was significantly higher. gpRO-HC bound to both single- and double-stranded DNA substrates. Different methods showed that gpRO-HC forms higher oligomers containing about 12 subunits. This work provides the first information about another group of phage initiator proteins, which trigger DNA replication in phages infecting low GC Gram-positive bacteria.


Assuntos
Bacteriófagos , Paenibacillus polymyxa , Paenibacillus polymyxa/genética , Replicação do DNA , Bacteriófagos/genética , DNA , Adenosina Trifosfatases/genética
13.
Front Mol Biosci ; 10: 1159603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363397

RESUMO

We aim to develop a theory based on a concept other than the chemo-mechanical coupling (transduction of chemical free energy of ATP to mechanical work) for an ATP-driven protein complex. Experimental results conflicting with the chemo-mechanical coupling have recently emerged. We claim that the system comprises not only the protein complex but also the aqueous solution in which the protein complex is immersed and the system performs essentially no mechanical work. We perform statistical-mechanical analyses on V1-ATPase (the A3B3DF complex) for which crystal structures in more different states are experimentally known than for F1-ATPase (the α3ß3γ complex). Molecular and atomistic models are employed for water and the structure of V1-ATPase, respectively. The entropy originating from the translational displacement of water molecules in the system is treated as a pivotal factor. We find that the packing structure of the catalytic dwell state of V1-ATPase is constructed by the interplay of ATP bindings to two of the A subunits and incorporation of the DF subunit. The packing structure represents the nonuniformity with respect to the closeness of packing of the atoms in constituent proteins and protein interfaces. The physical picture of rotation mechanism of F1-ATPase recently constructed by Kinoshita is examined, and common points and differences between F1- and V1-ATPases are revealed. An ATP hydrolysis cycle comprises binding of ATP to the protein complex, hydrolysis of ATP into ADP and Pi in it, and dissociation of ADP and Pi from it. During each cycle, the chemical compounds bound to the three A or ß subunits and the packing structure of the A3B3 or α3ß3 complex are sequentially changed, which induces the unidirectional rotation of the central shaft for retaining the packing structure of the A3B3DF or α3ß3γ complex stabilized for almost maximizing the water entropy. The torque driving the rotation is generated by water with no input of chemical free energy. The presence of ATP is indispensable as a trigger of the torque generation. The ATP hydrolysis or synthesis reaction is tightly coupled to the rotation of the central shaft in the normal or inverse direction through the water-entropy effect.

14.
J Biol Chem ; 299(7): 104858, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236356

RESUMO

Asthenozoospermia characterized by decreased sperm motility is a major cause of male infertility, but the majority of the etiology remains unknown. Here, we showed that the cilia and flagella associated protein 52 (Cfap52) gene was predominantly expressed in testis and its deletion in a Cfap52 knockout mouse model resulted in decreased sperm motility and male infertility. Cfap52 knockout also led to the disorganization of the midpiece-principal piece junction of the sperm tail but had no effect on the axoneme ultrastructure in spermatozoa. Furthermore, we found that CFAP52 interacted with the cilia and flagella associated protein 45 (CFAP45) and knockout of Cfap52 decreased the expression level of CFAP45 in sperm flagellum, which further disrupted the microtubule sliding produced by dynein ATPase. Together, our studies demonstrate that CFAP52 plays an essential role in sperm motility by interacting with CFAP45 in sperm flagellum, providing insights into the potential pathogenesis of the infertility of the human CFAP52 mutations.


Assuntos
Cílios , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Cílios/metabolismo , Flagelos/genética , Flagelos/metabolismo , Infertilidade Masculina/metabolismo , Camundongos Knockout , Proteínas/metabolismo , Sêmen , Motilidade dos Espermatozoides , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Espermatozoides/metabolismo
15.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176150

RESUMO

FoF1-ATP synthases in mitochondria, in chloroplasts, and in most bacteria are proton-driven membrane enzymes that supply the cells with ATP made from ADP and phosphate. Different control mechanisms exist to monitor and prevent the enzymes' reverse chemical reaction of fast wasteful ATP hydrolysis, including mechanical or redox-based blockade of catalysis and ADP inhibition. In general, product inhibition is expected to slow down the mean catalytic turnover. Biochemical assays are ensemble measurements and cannot discriminate between a mechanism affecting all enzymes equally or individually. For example, all enzymes could work more slowly at a decreasing substrate/product ratio, or an increasing number of individual enzymes could be completely blocked. Here, we examined the effect of increasing amounts of ADP on ATP hydrolysis of single Escherichia coli FoF1-ATP synthases in liposomes. We observed the individual catalytic turnover of the enzymes one after another by monitoring the internal subunit rotation using single-molecule Förster resonance energy transfer (smFRET). Observation times of single FRET-labeled FoF1-ATP synthases in solution were extended up to several seconds using a confocal anti-Brownian electrokinetic trap (ABEL trap). By counting active versus inhibited enzymes, we revealed that ADP inhibition did not decrease the catalytic turnover of all FoF1-ATP synthases equally. Instead, increasing ADP in the ADP/ATP mixture reduced the number of remaining active enzymes that operated at similar catalytic rates for varying substrate/product ratios.


Assuntos
ATPases Translocadoras de Prótons , Prótons , ATPases Translocadoras de Prótons/metabolismo , Escherichia coli/metabolismo , Hidrólise , Trifosfato de Adenosina
16.
Biol Chem ; 404(7): 727-737, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37185095

RESUMO

The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of Gram-negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrólise , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo
17.
Bio Protoc ; 13(10): e4676, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37251095

RESUMO

ATPase assays are a common tool for the characterization of purified ATPases. Here, we describe a radioactive [γ-32P]-ATP-based approach, utilizing complex formation with molybdate for phase separation of the free phosphate from non-hydrolyzed, intact ATP. The high sensitivity of this assay, compared to common assays such as the Malachite green or NADH-coupled assay, enables the examination of proteins with low ATPase activity or low purification yields. This assay can be used on purified proteins for several applications including the identification of substrates, determination of the effect of mutations on ATPase activity, and testing specific ATPase inhibitors. Furthermore, the protocol outlined here can be adapted to measure the activity of reconstituted ATPases. Graphical overview.

18.
Front Cell Dev Biol ; 11: 1105460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009486

RESUMO

The dynamic assembly of actin is controlled by the hydrolysis of ATP, bound to the center of the molecule. Upon polymerization, actin undergoes a conformational change from the monomeric G-form to the fibrous F-form, which is associated with the flipping of the side chain of His161 toward ATP. His161 flipping from the gauche-minus to gauche-plus conformation leads to a rearrangement of the active site water molecules, including ATP attacking water (W1), into an orientation capable of hydrolysis. We previously showed that by using a human cardiac muscle α-actin expression system, mutations in the Pro-rich loop residues (A108G and P109A) and in a residue that was hydrogen-bonded to W1 (Q137A) affect the rate of polymerization and ATP hydrolysis. Here, we report the crystal structures of the three mutant actins bound to AMPPNP or ADP-Pi determined at a resolution of 1.35-1.55 Å, which are stabilized in the F-form conformation with the aid of the fragmin F1 domain. In A108G, His161 remained non-flipped despite the global actin conformation adopting the F-form, demonstrating that the side chain of His161 is flipped to avoid a steric clash with the methyl group of A108. Because of the non-flipped His161, W1 was located away from ATP, similar to G-actin, which was accompanied by incomplete hydrolysis. In P109A, the absence of the bulky proline ring allowed His161 to be positioned near the Pro-rich loop, with a minor influence on ATPase activity. In Q137A, two water molecules replaced the side-chain oxygen and nitrogen of Gln137 almost exactly at their positions; consequently, the active site structure, including the W1 position, is essentially conserved. This seemingly contradictory observation to the reported low ATPase activity of the Q137A filament could be attributed to a high fluctuation of the active site water. Together, our results suggest that the elaborate structural design of the active site residues ensures the precise control of the ATPase activity of actin.

19.
EMBO J ; 42(10): e111699, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36912136

RESUMO

The maintenance of cellular function relies on the close regulation of adenosine triphosphate (ATP) synthesis and hydrolysis. ATP hydrolysis by mitochondrial ATP Synthase (CV) is induced by loss of proton motive force and inhibited by the mitochondrial protein ATPase inhibitor (ATPIF1). The extent of CV hydrolytic activity and its impact on cellular energetics remains unknown due to the lack of selective hydrolysis inhibitors of CV. We find that CV hydrolytic activity takes place in coupled intact mitochondria and is increased by respiratory chain defects. We identified (+)-Epicatechin as a selective inhibitor of ATP hydrolysis that binds CV while preventing the binding of ATPIF1. In cells with Complex-III deficiency, we show that inhibition of CV hydrolytic activity by (+)-Epichatechin is sufficient to restore ATP content without restoring respiratory function. Inhibition of CV-ATP hydrolysis in a mouse model of Duchenne Muscular Dystrophy is sufficient to improve muscle force without any increase in mitochondrial content. We conclude that the impact of compromised mitochondrial respiration can be lessened using hydrolysis-selective inhibitors of CV.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Camundongos , Animais , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas/metabolismo , Homeostase , Hidrólise
20.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982903

RESUMO

The substitution for Arg168His (R168H) in γ-tropomyosin (TPM3 gene, Tpm3.12 isoform) is associated with congenital muscle fiber type disproportion (CFTD) and muscle weakness. It is still unclear what molecular mechanisms underlie the muscle dysfunction seen in CFTD. The aim of this work was to study the effect of the R168H mutation in Tpm3.12 on the critical conformational changes that myosin, actin, troponin, and tropomyosin undergo during the ATPase cycle. We used polarized fluorescence microscopy and ghost muscle fibers containing regulated thin filaments and myosin heads (myosin subfragment-1) modified with the 1,5-IAEDANS fluorescent probe. Analysis of the data obtained revealed that a sequential interdependent conformational-functional rearrangement of tropomyosin, actin and myosin heads takes place when modeling the ATPase cycle in the presence of wild-type tropomyosin. A multistep shift of the tropomyosin strands from the outer to the inner domain of actin occurs during the transition from weak to strong binding of myosin to actin. Each tropomyosin position determines the corresponding balance between switched-on and switched-off actin monomers and between the strongly and weakly bound myosin heads. At low Ca2+, the R168H mutation was shown to switch some extra actin monomers on and increase the persistence length of tropomyosin, demonstrating the freezing of the R168HTpm strands close to the open position and disruption of the regulatory function of troponin. Instead of reducing the formation of strong bonds between myosin heads and F-actin, troponin activated it. However, at high Ca2+, troponin decreased the amount of strongly bound myosin heads instead of promoting their formation. Abnormally high sensitivity of thin filaments to Ca2+, inhibition of muscle fiber relaxation due to the appearance of the myosin heads strongly associated with F-actin, and distinct activation of the contractile system at submaximal concentrations of Ca2+ can lead to muscle inefficiency and weakness. Modulators of troponin (tirasemtiv and epigallocatechin-3-gallate) and myosin (omecamtiv mecarbil and 2,3-butanedione monoxime) have been shown to more or less attenuate the negative effects of the tropomyosin R168H mutant. Tirasemtiv and epigallocatechin-3-gallate may be used to prevent muscle dysfunction.


Assuntos
Actinas , Miopatias Congênitas Estruturais , Humanos , Actinas/metabolismo , Tropomiosina/metabolismo , Miosinas/metabolismo , Mutação , Adenosina Trifosfatases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Troponina/genética , Troponina/metabolismo , Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...