Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Mol Biol ; 2661: 281-301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166643

RESUMO

Mitochondrial translation is an intricate process involving both general and mRNA-specific factors. In addition, in the yeast Saccharomyces cerevisiae, translation of mitochondrial mRNAs is coupled to assembly of nascent polypeptides into the membrane. ARG8m is a reporter gene widely used to study the mechanisms of yeast mitochondrial translation. This reporter is a recodified gene that uses the mitochondrial genetic code and is inserted at the desired locus in the mitochondrial genome. After deletion of the endogenous nuclear gene, this reporter produces Arg8, an enzyme necessary for arginine biosynthesis. Since Arg8 is a soluble protein with no relation to oxidative phosphorylation, it is a reliable reporter to study mitochondrial mRNAs translation and dissect translation form assembly processes. In this chapter, we explain how to insert the ARG8m reporter in the desired spot in the mitochondrial DNA, how to analyze Arg8 synthesis inside mitochondria, and how to follow steady-state levels of the protein. We also explain how to use it to find spontaneous suppressors of translation defects.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biossíntese de Proteínas , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36671026

RESUMO

Obesity and hypertension are health problems of increasing prevalence in developed countries. The link between obesity and hypertension is not yet fully determined. Oxidative stress (OS) and mitochondrial function may play a role in obesity-associated hypertension. A cross-sectional study with 175 subjects with normal weight, overweight, or obese who attended a medical check-up was included. The subjects were divided according to the body mass index (BMI) into normal-weight (n-53), overweight (n-84), and obesity (n-38). Hypertension was also evaluated. To measure mitochondrial function, ATP hydrolysis and ATP synthesis in platelets and serum, respectively, were determined. Superoxide dismutase (SOD), catalase, lipohydroperoxides, 8-isoprostanes, carbonyl groups in proteins, nitric oxide (NO) metabolites, 8-hydroxy-2'-deoxyguanosine (8-OHG), 8-oxoguanine glycosylase (hOGG1), tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were measured by standard colorimetric or immunoassay methods. Obese subjects showed lower ATP hydrolysis activity than normal weight and overweight subjects (p < 0.01). No differences between those groups were found in ATP synthase and catalase activities, lipid hydroperoxides, carbonyl groups in proteins, 8-isoprostanes, and NO metabolites. In the obesity group, SOD activity (p < 0.01) was decreased while 8-OHG (p < 0.01) was increased. Subjects with hypertension showed increased 8-OHG (p < 0.01) and less reparative enzyme (hOGG1 p = 0.04) than subjects with normal weight. Moreover, we found a decrease of SOD (p < 0.01), catalase activities (p = 0.04), NO metabolites (p < 0.01), and increases of carbonyl groups in proteins (p = 0.01), TNF-α (p < 0.01) and IL-6 (p < 0.01 in hypertensive subjects. Obese subjects show a decrease in ATP hydrolysis. The decrease in ATP hydrolysis rate and ATP synthesis and an increase in OS and inflammation markers were associated with the hypertensive state.

3.
Front Pharmacol ; 13: 1012008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313289

RESUMO

In addition to playing a central role in the mitochondria as the main producer of ATP, FOF1-ATP synthase performs diverse key regulatory functions in the cell membrane. Its malfunction has been linked to a growing number of human diseases, including hypertension, atherosclerosis, cancer, and some neurodegenerative, autoimmune, and aging diseases. Furthermore, inhibition of this enzyme jeopardizes the survival of several bacterial pathogens of public health concern. Therefore, FOF1-ATP synthase has emerged as a novel drug target both to treat human diseases and to combat antibiotic resistance. In this work, we carried out a computational characterization of the binding sites of the fungal antibiotic aurovertin in the bovine F1 subcomplex, which shares a large identity with the human enzyme. Molecular dynamics simulations showed that although the binding sites can be described as preformed, the inhibitor hinders inter-subunit communications and exerts long-range effects on the dynamics of the catalytic site residues. End-point binding free energy calculations revealed hot spot residues for aurovertin recognition. These residues were also relevant to stabilize solvent sites determined from mixed-solvent molecular dynamics, which mimic the interaction between aurovertin and the enzyme, and could be used as pharmacophore constraints in virtual screening campaigns. To explore the possibility of finding species-specific inhibitors targeting the aurovertin binding site, we performed free energy calculations for two bacterial enzymes with experimentally solved 3D structures. Finally, an analysis of bacterial sequences was carried out to determine conservation of the aurovertin binding site. Taken together, our results constitute a first step in paving the way for structure-based development of new allosteric drugs targeting FOF1-ATP synthase sites of exogenous inhibitors.

4.
Biochim Biophys Acta Bioenerg ; 1863(6): 148569, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577152

RESUMO

Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.


Assuntos
Glicogênio Sintase , ATPases Mitocondriais Próton-Translocadoras , Trifosfato de Adenosina/metabolismo , Glicogênio Sintase/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo
5.
Antibiotics (Basel) ; 11(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35625201

RESUMO

With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic ß subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the ß subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.

6.
Proteomes ; 10(2)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35466238

RESUMO

Visceral leishmaniasis (VL) is a neglected disease caused by Leishmania parasites. Although significant morbidity and mortality in tropical and subtropical regions of the world are associated with VL, the low investment for developing new treatment measures is chronic. Moreover, resistance and treatment failure are increasing for the main medications, but the emergence of resistance phenotypes is poorly understood at the protein level. Here, we analyzed the development of resistance to miltefosine upon experimental selection in a L. infantum strain. Time to miltefosine resistance emergence was ~six months and label-free quantitative mass-spectrometry-based proteomics analyses revealed that this process involves a remodeling of components of the membrane and mitochondrion, with significant increase in oxidative phosphorylation complexes, particularly on complex IV and ATP synthase, accompanied by increased energy metabolism mainly dependent on ß-oxidation of fatty acids. Proteins canonically involved in ROS detoxification did not contribute to the resistant process whereas sterol biosynthesis enzymes could have a role in this development. Furthermore, changes in the abundance of proteins known to be involved in miltefosine resistance such as ABC transporters and phospholipid transport ATPase were detected. Together, our data show a more complete picture of the elements that make up the miltefosine resistance phenotype in L. infantum.

7.
Antioxidants (Basel) ; 12(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36670920

RESUMO

Breast cancer (BC) is the second most common cancer worldwide in women. During the last decades, the mortality due to breast cancer has progressively decreased due to early diagnosis and the emergence of more effective new treatments. However, human epidermal growth factor receptor 2 (HER2) and triple-negative breast cancer (TNBC) remain with poor prognoses. In our research group, we are proposing the GK-1 immunomodulatory peptide as a new alternative for immunotherapy of these aggressive tumors. GK-1 reduced the growth rate of established tumors and effectively reduced lung metastasis in the 4T1 experimental murine model of breast cancer. Herein, the effect of GK-1 on the redox state, mitochondrial metabolism, and autophagy of triple-negative tumors that can be linked to cancer evolution was studied. GK-1 decreased catalase activity, reduced glutathione (GSH) content and GSH/oxidized glutathione (GSSG) ratio while increased hydrogen peroxide (H2O2) production, GSSG, and protein carbonyl content, inducing oxidative stress (OS) in tumoral tissues. This imbalance between reactive oxygen species (ROS) and antioxidants was related to mitochondrial dysfunction and uncoupling, characterized by reduced mitochondrial respiratory parameters and dissipation of mitochondrial membrane potential (ΔΨm), respectively. Furthermore, GK-1 likely affected autophagy flux, confirmed by elevated levels of p62, a marker of autophagy flux. Overall, the induction of OS, dysfunction, and uncoupling of the mitochondria and the reduction of autophagy could be molecular mechanisms that underlie the reduction of the 4T1 breast cancer induced by GK-1.

8.
Theranostics ; 11(1): 445-460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391485

RESUMO

Objectives: Mesenchymal Stem/Stromal Cells (MSC) are promising therapeutic tools for inflammatory diseases due to their potent immunoregulatory capacities. Their suppressive activity mainly depends on inflammatory cues that have been recently associated with changes in MSC bioenergetic status towards a glycolytic metabolism. However, the molecular mechanisms behind this metabolic reprogramming and its impact on MSC therapeutic properties have not been investigated. Methods: Human and murine-derived MSC were metabolically reprogramed using pro-inflammatory cytokines, an inhibitor of ATP synthase (oligomycin), or 2-deoxy-D-glucose (2DG). The immunosuppressive activity of these cells was tested in vitro using co-culture experiments with pro-inflammatory T cells and in vivo with the Delayed-Type Hypersensitivity (DTH) and the Graph versus Host Disease (GVHD) murine models. Results: We found that the oligomycin-mediated pro-glycolytic switch of MSC significantly enhanced their immunosuppressive properties in vitro. Conversely, glycolysis inhibition using 2DG significantly reduced MSC immunoregulatory effects. Moreover, in vivo, MSC glycolytic reprogramming significantly increased their therapeutic benefit in the DTH and GVHD mouse models. Finally, we demonstrated that the MSC glycolytic switch effect partly depends on the activation of the AMPK signaling pathway. Conclusion: Altogether, our findings show that AMPK-dependent glycolytic reprogramming of MSC using an ATP synthase inhibitor contributes to their immunosuppressive and therapeutic functions, and suggest that pro-glycolytic drugs might be used to improve MSC-based therapy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicólise/efeitos dos fármacos , Doença Enxerto-Hospedeiro/imunologia , Hipersensibilidade Tardia/imunologia , Células-Tronco Mesenquimais/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Animais , Antimetabólitos/farmacologia , Linfócitos T CD4-Positivos , Desoxiglucose/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Humanos , Imunoterapia , Ácido Láctico/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oligomicinas/farmacologia , Fosforilação Oxidativa , Consumo de Oxigênio
9.
Can J Physiol Pharmacol ; 99(3): 270-277, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32687730

RESUMO

Sodium deoxycholate (NaDOC) inhibits the intestinal Ca2+ absorption and ursodeoxycholic acid (UDCA) stimulates it. The aim of this study was to determine whether NaDOC and UDCA produce differential effects on the redox state of duodenal mitochondria altering the Krebs cycle and the electron transport chain (ETC) functioning, which could lead to perturbations in the mitochondrial dynamics and biogenesis. Rat intestinal mitochondria were isolated from untreated and treated animals with either NaDOC, UDCA, or both. Krebs cycle enzymes, ETC components, ATP synthase, and mitochondrial dynamics and biogenesis markers were determined. NaDOC decreased isocitrate dehydrogenase (ICDH) and malate dehydrogenase activities affecting the ETC and ATP synthesis. NaDOC also induced oxidative stress and increased the superoxide dismutase activity and impaired the mitochondrial biogenesis and functionality. UDCA increased the activities of ICDH and complex II of ETC. The combination of both bile acids conserved the functional activities of Krebs cycle enzymes, ETC components, oxidative phosphorylation, and mitochondrial biogenesis. In conclusion, the inhibitory effect of NaDOC on intestinal Ca2+ absorption is mediated by mitochondrial dysfunction, which is avoided by UDCA. The stimulatory effect of UDCA alone is associated with amelioration of mitochondrial functioning. This knowledge could improve treatment of diseases that affect the intestinal Ca2+ absorption.


Assuntos
Colagogos e Coleréticos/farmacologia , Ácido Desoxicólico/farmacologia , Duodeno/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Ursodesoxicólico/farmacologia , Animais , Cálcio/farmacocinética , Colagogos e Coleréticos/farmacocinética , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácido Desoxicólico/farmacocinética , Transporte de Elétrons , Absorção Intestinal/efeitos dos fármacos , Masculino , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Biogênese de Organelas , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Ácido Ursodesoxicólico/farmacocinética
10.
FEBS J ; 288(10): 3159-3163, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33377595

RESUMO

The F1 Fo -ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton-pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε-subunit of the bacterial F1 Fo -ATP synthase in vivo. We discuss if a gear-shifting versus a pawl-ratchet mechanism may explain the regulatory role of the ε-subunit.


Assuntos
Trifosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Transporte de Íons , Subunidades Proteicas/metabolismo
11.
Biol Res ; 52(1): 6, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728078

RESUMO

BACKGROUND: Pollen development is an energy-consuming process that particularly occurs during meiosis. Low levels of adenosine triphosphate (ATP) may cause cell death, resulting in CMS (cytoplasmic male sterility). DNA sequence differences in ATP synthase genes have been revealed between the N- and S-cytoplasms in the cotton CMS system. However, very few data are available at the RNA level. In this study, we compared five ATP synthase genes in the H276A, H276B and fertile F1 (H276A/H268) lines using RNA editing, RNA blotting and quantitative real time-PCR (qRT-PCR) to explore their contribution to CMS. A molecular marker for identifying male sterile cytoplasm (MSC) was also developed. RESULTS: RNA blotting revealed the absence of any novel orf for the ATP synthase gene sequence in the three lines. Forty-one RNA editing sites were identified in the coding sequences. RNA editing showed that proteins had 32.43% higher hydrophobicity and that 39.02% of RNA editing sites had proline converted to leucine. Two new stop codons were detected in atp6 and atp9 by RNA editing. Real-time qRT-PCR data showed that the atp1, atp6, atp8, and atp9 genes had substantially lower expression levels in H276A compared with those in H276B. By contrast, the expression levels of all five genes were increased in F1 (H276A/H268). Moreover, a molecular marker based on a 6-bp deletion upstream of atp8 in H276A was developed to identify male sterile cytoplasm (MSC) in cotton. CONCLUSIONS: Our data substantially contributes to the understanding of the function of ATP synthase genes in cotton CMS. Therefore, we suggest that ATP synthase genes might be an indirect cause of cotton CMS. Further research is needed to investigate the relationship among ATP synthase genes in cotton CMS.


Assuntos
Adenosina Trifosfatases/genética , Citoplasma/genética , Gossypium/enzimologia , Infertilidade das Plantas/genética , Edição de RNA , Citoplasma/metabolismo , DNA Mitocondrial/genética , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Reação em Cadeia da Polimerase , RNA Mitocondrial/genética
12.
Cell Mol Neurobiol ; 39(1): 149-160, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30539418

RESUMO

Epilepsy is a common disease presenting with recurrent seizures. Hippocampal sclerosis (HS) is the commonest histopathological alteration in patients with temporal lobe epilepsy (TLE) undergoing surgery. HS physiopathogenesis is debatable. We have recently studied, by using mass spectrometry-based proteomics, an experimental model of TLE induced by electrical stimulation. Specifically, protein expressions of both the beta subunit of mitochondrial ATP synthase (ATP5B) and of membrane ATPases were found to be reduced. Here, we investigated tissue distribution of ATP5B and sodium/potassium-transporting ATPase subunit alpha-3 (NKAα3), a protein associated with neuromuscular excitability disorders, in human hippocampi resected "en bloc" for HS treatment (n = 15). We used immunohistochemistry and the stained area was digitally evaluated (increase in binary contrast of microscopic fields) in the hippocampal sectors (CA1-CA4) and dentate gyrus. All HS samples were classified as Type 1, according to the International League Against Epilepsy (ILAE) 2013 Classification (predominant cell loss in CA1 and CA4). ATP5B was significantly decreased in all sectors and dentate gyrus of HS patients compared with individuals submitted to necropsy and without history of neurological alterations (n = 10). NKAα3 expression showed no difference. Moreover, we identified a negative correlation between frequency of pre-operative seizures and number of neurons in CA1. In conclusion, our data showed similarity between changes in protein expression in a model of TLE and individuals with HS. ATP5B reduction would be at least in part due to neuronal loss. Future investigations on ATP5B activity could provide insights into the process of such cell loss.


Assuntos
Epilepsia/enzimologia , Hipocampo/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Esclerose/enzimologia , Adolescente , Adulto , Contagem de Células , Giro Denteado/patologia , Epilepsia/patologia , Feminino , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Esclerose/patologia , ATPase Trocadora de Sódio-Potássio , Adulto Jovem
13.
Biochem Biophys Res Commun ; 509(2): 341-347, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30585150

RESUMO

The mitochondrial ATP synthase of Polytomella exhibits a peripheral stalk and a dimerization domain built by the Asa subunits, unique to chlorophycean algae. The topology of these subunits has been extensively studied. Here we explored the interactions of subunit Asa3 using Far Western blotting and subcomplex reconstitution, and found it associates with Asa1 and Asa8. We also identified the novel interactions Asa1-Asa2 and Asa1-Asa7. In silico analyses of Asa3 revealed that it adopts a HEAT repeat-like structure that points to its location within the enzyme based on the available 3D-map of the algal ATP synthase. We suggest that subunit Asa3 is instrumental in securing the attachment of the peripheral stalk to the membrane sector, thus stabilizing the dimeric mitochondrial ATP synthase.


Assuntos
Proteínas de Algas/química , Membrana Celular/química , Clorofíceas/química , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Clorofíceas/enzimologia , Clorofíceas/genética , Clorofíceas/ultraestrutura , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Biol. Res ; 52: 6, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011409

RESUMO

BACKGROUND: Pollen development is an energy-consuming process that particularly occurs during meiosis. Low levels of adenosine triphosphate (ATP) may cause cell death, resulting in CMS (cytoplasmic male sterility). DNA sequence differences in ATP synthase genes have been revealed between the N- and S-cytoplasms in the cotton CMS system. However, very few data are available at the RNA level. In this study, we compared five ATP synthase genes in the H276A, H276B and fertile F1 (H276A/H268) lines using RNA editing, RNA blotting and quantitative real time-PCR (qRT-PCR) to explore their contribution to CMS. A molecular marker for identifying male sterile cytoplasm (MSC) was also developed. RESULTS: RNA blotting revealed the absence of any novel orf for the ATP synthase gene sequence in the three lines. Forty-one RNA editing sites were identified in the coding sequences. RNA editing showed that proteins had 32.43% higher hydrophobicity and that 39.02% of RNA editing sites had proline converted to leucine. Two new stop codons were detected in atp6 and atp9 by RNA editing. Real-time qRT-PCR data showed that the atp1, atp6, atp8, and atp9 genes had substantially lower expression levels in H276A compared with those in H276B. By contrast, the expression levels of all five genes were increased in F1 (H276A/H268). Moreover, a molecular marker based on a 6-bp deletion upstream of atp8 in H276A was developed to identify male sterile cytoplasm (MSC) in cotton. CONCLUSIONS: Our data substantially contributes to the understanding of the function of ATP synthase genes in cotton CMS. Therefore, we suggest that ATP synthase genes might be an indirect cause of cotton CMS. Further research is needed to investigate the relationship among ATP synthase genes in cotton CMS.


Assuntos
Membrana Celular/genética , Edição de RNA , Adenosina Trifosfatases/genética , Gossypium/enzimologia , Infertilidade das Plantas/genética , DNA Mitocondrial/genética , Reação em Cadeia da Polimerase , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Citoplasma/metabolismo , RNA Mitocondrial/genética
15.
Front Physiol ; 9: 1243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233414

RESUMO

Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.

16.
J Bioenerg Biomembr ; 50(5): 403-424, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30267331

RESUMO

The ATP synthase is a ubiquitous nanomotor that fuels life by the synthesis of the chemical energy of ATP. In order to synthesize ATP, this enzyme is capable of rotating its central rotor in a reversible manner. In the clockwise (CW) direction, it functions as ATP synthase, while in counter clockwise (CCW) sense it functions as an proton pumping ATPase. In bacteria and mitochondria, there are two known canonical natural inhibitor proteins, namely the ε and IF1 subunits. These proteins regulate the CCW F1FO-ATPase activity by blocking γ subunit rotation at the αDP/ßDP/γ subunit interface in the F1 domain. Recently, we discovered a unique natural F1-ATPase inhibitor in Paracoccus denitrificans and related α-proteobacteria denoted the ζ subunit. Here, we compare the functional and structural mechanisms of ε, IF1, and ζ, and using the current data in the field, it is evident that all three regulatory proteins interact with the αDP/ßDP/γ interface of the F1-ATPase. In order to exert inhibition, IF1 and ζ contain an intrinsically disordered N-terminal protein region (IDPr) that folds into an α-helix when inserted in the αDP/ßDP/γ interface. In this context, we revised here the mechanism and role of the ζ subunit as a unidirectional F-ATPase inhibitor blocking exclusively the CCW F1FO-ATPase rotation, without affecting the CW-F1FO-ATP synthase turnover. In summary, the ζ subunit has a mode of action similar to mitochondrial IF1, but in α-proteobacteria. The structural and functional implications of these intrinsically disordered ζ and IF1 inhibitors are discussed to shed light on the control mechanisms of the ATP synthase nanomotor from an evolutionary perspective.


Assuntos
Conformação Proteica em alfa-Hélice/fisiologia , Subunidades Proteicas/metabolismo , Rotação
17.
Biochim Biophys Acta ; 1857(9): 1392-1402, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27137408

RESUMO

The core of F1-ATPase consists of three catalytic (ß) and three noncatalytic (α) subunits, forming a hexameric ring in alternating positions. A wealth of experimental and theoretical data has provided a detailed picture of the complex role played by catalytic subunits. Although major conformational changes have only been seen in ß-subunits, it is clear that α-subunits have to respond to these changes in order to be able to transmit information during the rotary mechanism. However, the conformational behavior of α-subunits has not been explored in detail. Here, we have combined unbiased molecular dynamics (MD) simulations and calorimetrically measured thermodynamic signatures to investigate the conformational flexibility of isolated α-subunits, as a step toward deepening our understanding of its function inside the α3ß3 ring. The simulations indicate that the open-to-closed conformational transition of the α-subunit is essentially barrierless, which is ideal to accompany and transmit the movement of the catalytic subunits. Calorimetric measurements of the recombinant α-subunit from Geobacillus kaustophilus indicate that the isolated subunit undergoes no significant conformational changes upon nucleotide binding. Simulations confirm that the nucleotide-free and nucleotide-bound subunits show average conformations similar to that observed in the F1 crystal structure, but they reveal an increased conformational flexibility of the isolated α-subunit upon MgATP binding, which might explain the evolutionary conserved capacity of α-subunits to recognize nucleotides with considerable strength. Furthermore, we elucidate the different dependencies that α- and ß-subunits show on Mg(II) for recognizing ATP.


Assuntos
ATPases Translocadoras de Prótons/química , Calorimetria , Simulação de Dinâmica Molecular , Conformação Proteica , Subunidades Proteicas/química , Termodinâmica
18.
Biochim Biophys Acta ; 1857(8): 1183-1190, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26873638

RESUMO

The algae Chlamydomonas reinhardtii and Polytomella sp., a green and a colorless member of the chlorophycean lineage respectively, exhibit a highly-stable dimeric mitochondrial F1Fo-ATP synthase (complex V), with a molecular mass of 1600 kDa. Polytomella, lacking both chloroplasts and a cell wall, has greatly facilitated the purification of the algal ATP-synthase. Each monomer of the enzyme has 17 polypeptides, eight of which are the conserved, main functional components, and nine polypeptides (Asa1 to Asa9) unique to chlorophycean algae. These atypical subunits form the two robust peripheral stalks observed in the highly-stable dimer of the algal ATP synthase in several electron-microscopy studies. The topological disposition of the components of the enzyme has been addressed with cross-linking experiments in the isolated complex; generation of subcomplexes by limited dissociation of complex V; detection of subunit-subunit interactions using recombinant subunits; in vitro reconstitution of subcomplexes; silencing of the expression of Asa subunits; and modeling of the overall structural features of the complex by EM image reconstruction. Here, we report that the amphipathic polymer Amphipol A8-35 partially dissociates the enzyme, giving rise to two discrete dimeric subcomplexes, whose compositions were characterized. An updated model for the topological disposition of the 17 polypeptides that constitute the algal enzyme is suggested. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Proteínas de Algas/química , Chlamydomonas reinhardtii/química , Mitocôndrias/química , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas/química , Volvocida/química , Proteínas de Algas/genética , Proteínas de Algas/isolamento & purificação , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Expressão Gênica , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Peptídeos/isolamento & purificação , Polímeros/química , Propilaminas/química , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Volvocida/enzimologia , Volvocida/genética
19.
Biochim Biophys Acta ; 1857(4): 359-69, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26657474

RESUMO

Mitochondrial F1FO-ATP synthase of chlorophycean algae is dimeric. It contains eight orthodox subunits (alpha, beta, gamma, delta, epsilon, OSCP, a and c) and nine atypical subunits (Asa1 to 9). These subunits build the peripheral stalk of the enzyme and stabilize its dimeric structure. The location of the 66.1kDa subunit Asa1 has been debated. On one hand, it was found in a transient subcomplex that contained membrane-bound subunits Asa1/Asa3/Asa5/Asa8/a (Atp6)/c (Atp9). On the other hand, Asa1 was proposed to form the bulky structure of the peripheral stalk that contacts the OSCP subunit in the F1 sector. Here, we overexpressed and purified the recombinant proteins Asa1 and OSCP and explored their interactions in vitro, using immunochemical techniques and affinity chromatography. Asa1 and OSCP interact strongly, and the carboxy-terminal half of OSCP seems to be instrumental for this association. In addition, the algal ATP synthase was partially dissociated at relatively high detergent concentrations, and an Asa1/Asa3/Asa5/Asa8/a/c10 subcomplex was identified. Furthermore, Far-Western analysis suggests an Asa1-Asa8 interaction. Based on these results, a model is proposed in which Asa1 spans the whole peripheral arm of the enzyme, from a region close to the matrix-exposed side of the mitochondrial inner membrane to the F1 region where OSCP is located. 3D models show elongated, helix-rich structures for chlorophycean Asa1 subunits. Asa1 subunit probably plays a scaffolding role in the peripheral stalk analogous to the one of subunit b in orthodox mitochondrial enzymes.


Assuntos
Clorófitas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Subunidades Proteicas
20.
Arch Biochem Biophys ; 575: 30-7, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25843420

RESUMO

The F1FO-ATP synthase of the colorless alga Polytomella sp. exhibits a robust peripheral arm constituted by nine atypical subunits only present in chlorophycean algae. The isolated dimeric enzyme exhibits a latent ATP hydrolytic activity which can be activated by some detergents. To date, the kinetic behavior of the algal ATPase has not been studied. Here we show that while the soluble F1 sector exhibits Michaelis-Menten kinetics, the dimer exhibits a more complex behavior. The kinetic parameters (Vmax and Km) were obtained for both the F1 sector and the dimeric enzyme as isolated or activated by detergent, and this activation was also seen on the enzyme reconstituted in liposomes. Unlike other ATP synthases, the algal dimer hydrolyzes ATP on a wide range of pH and temperature. The enzyme was inhibited by oligomycin, DCCD and Mg-ADP, although oligomycin induced a peculiar inhibition pattern that can be attributed to structural differences in the algal subunit-c. The hydrolytic activity was temperature-dependent and exhibited activation energy of 4 kcal/mol. The enzyme also exhibited a hysteretic behavior with a lag phase strongly dependent on temperature but not on pH, that may be related to a possible regulatory role in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Volvocida/enzimologia , Difosfato de Adenosina/farmacologia , Dicicloexilcarbodi-Imida/farmacologia , Dimerização , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Oligomicinas/farmacologia , Proteólise , ATPases Translocadoras de Prótons/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA