RESUMO
Nanoconfinement effects on water dissociation and reactivity remain controversial, despite their importance to understand the aqueous chemistry at interfaces, pores, or aerosols. The pKw in confined environments has been assessed from experiments and simulations in a few specific cases, leading to dissimilar conclusions. Here, with the use of carefully designed ab initio simulations, we demonstrate that the energetics of bulk water dissociation is conserved intact to unexpectedly small length-scales, down to aggregates of only a dozen molecules or pores of widths below 2â nm. The reason is that most of the free-energy involved in water autoionization comes from breaking the O-H covalent bond, which has a comparable barrier in the bulk liquid, in a small droplet of nanometer size, or in a nanopore in the absence of strong interfacial interactions. Thus, dissociation free-energy profiles in nanoscopic aggregates or in 2D slabs of 1â nm width reproduce the behavior corresponding to the bulk liquid, regardless of whether the corresponding nanophase is delimited by a solid or a gas interface. The present work provides a definite and fundamental description of the mechanism and thermodynamics of water dissociation at different scales with broader implications on reactivity and self-ionization at the air-liquid interface.
RESUMO
There is scarce information on the vibrational and thermal properties of small Ni clusters. Here, the outcomes of ab initio spin-polarized density functional theory calculations on the size and geometry effects upon the vibrational and thermal properties of Nin (n = 13 and 55) clusters, are discussed. For theses clusters a comparison is presented between the closed shell symmetric octahedral (Oh) and the icosahedral (Ih) geometries. The results indicate that the Ih isomers are lower in energy. Besides, ab initio molecular dynamics runs at T = 300K show that Ni13 and Ni55 clusters transform from their initial Oh geometries towards the corresponding Ih ones. For Ni13, we also consider the lowest energy less symmetric layered 1-3-6-3 structure, and the cuboid, recently observed experimentally for Pt13, which is competitive in energy but is unstable, as phonon analysis reveals. We calculate their vibrational density of states (νDOS) and heat capacity, and compare with the Ni FCC bulk counterpart. The characteristic features of the νDOS curves of these clusters are interpreted in terms of the clusters' sizes, the interatomic distance contractions, the bond order values as well as the internal pressure and strains of the clusters. We find that the softest possible frequency of the clusters is size and structure-dependent, being the smallest for the Oh ones. We identify mostly shear, tangential type displacements involving mainly surface atoms for the lowest frequency of the spectra of both Ih and Oh isomers. For the maximum frequencies of these clusters the central atom shows anti-phase movements against groups of nearest neighbor atoms. An excess of heat capacity at low temperatures with respect to the bulk is found, while at high temperatures a constant limiting value, close but lower to the Dulong and Petit value, is determined.
Assuntos
Temperatura Alta , Simulação de Dinâmica MolecularRESUMO
There is an ongoing effort to replace rare and expensive noble-element catalysts with more abundant and less expensive transition metal oxides. With this goal in mind, the intrinsic defects of a rhombohedral perovskite-like structure of LaMnO3 and their implications on CO catalytic properties were studied. Surface thermodynamic stability as a function of pressure (P) and temperature (T) were calculated to find the most stable surface under reaction conditions (P=0.2â atm, T=323â K to 673â K). Crystallographic planes (100), (111), (110), and (211) were evaluated and it was found that (110) with MnO2 termination was the most stable under reaction conditions. Adsorption energies of O2 and CO on (110) as well as the effect of intrinsic defects such as Mn and O vacancies were also calculated. It was found that O vacancies favor the interaction of CO on the surface, whereas Mn vacancies can favor the formation of carbonate species.
RESUMO
BACKGROUND: Copper is a metal that plays a central role in biology, for example, as co-factor in various redox enzymes. Its stable isotopic composition is being used as tracer of its transport in living organisms and as a biomarker for diseases affecting its homeostasis. While the application of copper stable isotopes to biological studies is a growing field, there are presently no biological standards that are systematically analyzed in the different laboratories, as it is the case for geological samples (e.g., by using widely available basalt samples). It is therefore paramount for the community to establish such standard. Copper also binds oxygen in the respiratory protein, hemocyanin, in the hemolymph of mollusks and arthropods and is thus critical to respiration for these species. METHODS: Here, the Cu isotope composition of hemocyanin of different modern species of mollusks and arthropods (Megathura crenulate Keyhole limpet, Limulus polyphemus Horseshoe crab and Concholepas concholepas Chilean abalone), as well as theoretical constraints on the origin of these isotopic fractionations through ab initio calculations are reported. RESULTS: The isotopic fractionation factors for Cu(I) and Cu(II), both in hemocyanin and in seawater, predict an enrichment in the lighter isotope of Cu in the hemocyanin by over 1 permil compared to seawater. The hemocyanin of Chilean abalone and Horseshoe crab have Cu isotope compositions (δ65Cu = +0.63 ± 0.04 and +0.61 ± 0.04, respectively, with δ65Cu the permil deviation of the 65Cu/63Cu ratio from the NIST SRM 976 standard), similar to that of the octopus reported in literature (+0.62), that are undistinguishable from seawater, suggesting quantitative Cu absorption for these organisms. Conversely, the Keyhole limpet is enriched in the lighter isotope of Cu, which is in line with the ab initio calculation and therefore Cu isotopic fractionation during incorporation of Cu into the hemocyanin. CONCLUSIONS: Because these hemocyanin standard samples are widely available, they could serve in the future as inter-laboratory standards to verify the accuracy of the Cu isotopic measurements on biological matrices.
Assuntos
Cobre , Hemocianinas , Animais , Cobre/análise , Isótopos/análise , ChileRESUMO
After exploring the potential energy surfaces of Mm CE2 p (E=S-Te, M=Li-Cs, m=2, 3 and p=m-2) and Mn CE3 q (E=S-Te, M=Li-Cs, n=1, 2, q=n-2) combinations, we introduce 38 new global minima containing a planar hypercoordinate carbon atom (24 with a planar tetracoordinate carbon and 14 with a planar pentacoordinate carbon). These exotic clusters result from the decoration of V-shaped CE2 2- and Y-shaped CE3 2- dianions, respectively, with alkali counterions. All these 38 systems fulfill the geometrical and electronic criteria to be considered as true planar hypercoordinate carbon systems. Chemical bonding analyses indicate that carbon is covalently bonded to chalcogens and ionically connected to alkali metals.
RESUMO
The development of complexes featuring low-valent, multiply bonded metal centers is an exciting field with several potential applications. In this work, we describe the design principles and extensive computational investigation of new organometallic platforms featuring the elusive manganese-manganese bond stabilized by experimentally realized N-heterocyclic carbenes (NHCs). By using DFT computations benchmarked against multireference calculations, as well as MO- and VB-based bonding analyses, we could disentangle the various electronic and structural effects contributing to the thermodynamic and kinetic stability, as well as the experimental feasibility, of the systems. In particular, we explored the nature of the metal-carbene interaction and the role of the ancillary η6 coordination to the generation of Mn2 systems featuring ultrashort metal-metal bonds, closed-shell singlet multiplicities, and positive adiabatic singlet-triplet gaps. Our analysis identifies two distinct classes of viable synthetic targets, whose electrostructural properties are thoroughly investigated.
RESUMO
Despite the belief that noble gases (Ng) are completely inert and cannot form stable molecules, a variety of Ng compounds have been reported under laboratory conditions and others were recently detected in the interstellar media, raising interest in knowing and studying their bond nature and the physicochemical properties associated with their stability. In the present work, a systematic analysis of the thermodynamic stability of noble gas halide cations (NgX+ ) at the CCSD(T)/def2-QZVP level have been performed. In addition, chemical bond was characterized through Natural Bonding Theory (NBO), Quantum Theory of Atoms in Molecules (QTAIM) and Energy Decomposition Analysis (EDA) with relativistic corrections. All methods suggest that NgX+ compounds possess a strong covalent bond. However, results show that only compounds containing Ar-Rn atoms are thermodynamic stable with a highly energetic and endergonic dissociation process. For these reasons, it is possible to suggest that several compounds that have not yet been reported could be obtained at the laboratory level or observed in the interstellar medium.
RESUMO
The physical adsorption of cisplatin (CP) on graphene oxide (GO) and reduced graphene oxide (rGO) is investigated at the DFT level of theory by exploiting suitable molecular prototypes representing the most probable adsorbing regions of GO and rGO nano-structures. The results show that the CP binding energy is enhanced with respect to that for the interaction with pristine graphene. This is due to the preferential adsorption of the drug in correspondence of the epoxy and hydroxy groups located on GO basal plane: an energy decomposition analysis of the corresponding binding energy reveals that the most attractive contribution comes from the electrostatic attraction between the -NH 3 ends of CP and the oxygen groups on (r)GO, which can be associated with hydrogen bonding effects. Moreover, it is found that the reactivity of the physically adsorbed CP is practically unaltered being the free energy variation of the first hydrolysis reaction almost matching that of its free (unadsorbed drug) counterpart. The reported results suggest that the CP physical adsorption on GO and rGO carriers is overall feasible being an exergonic process in aqueous solution. The CP adsorption could facilitate its solubility and transport in water solutions, exploiting the high hydrophilicity of the peripheral carboxylic groups located on the edge of the GO and rGO nano-structures. Moreover, the the higher affinity of CP with respect to the oxidized sites suggests a possible dependence of drug loading and release on pH conditions, which would highly facilitate its specific delivery.
RESUMO
In this work, a review of six functional forms used to represent potential energy curves (PECs) is presented. The starting point is the Rydberg potential, followed by functions by Hulburt-Hirschfelder, Murrell-Sorbie, Thakkar, Hua and finalizing with the potential for diatomic systems by Aguado and Paniagua. The mathematical behavior of these functions for the short- and long-range regions is discussed. A comparison highlighting the positive and negative aspects of each representation is also presented. As study cases, three diatomic systems O2, N2 and SO in their respective ground electronic states were selected. To obtain spectroscopic parameters, ab initio energies were first calculated at multi-reference configuration interaction (MRCI) with the Davidson modification (MRCI+Q) level of theory, using aug-cc-pVXZ (X = T,Q,5,6) Dunning basis sets. Such energies were then fitted to respective functional forms. The so-obtained spectroscopic constants are compared also with available literature data.
RESUMO
Born-Oppenheimer molecular dynamics (BOMD) and periodic density functional theory (DFT) calculations have been applied for describing the mechanism of formation of lithium fluoride (LiF) nanotubes with cubic, hexagonal, octagonal, decagonal, dodecagonal, and tetradecagonal cross-sections. It has been shown that high energy structures, such as nanowires, nanorings, nanosheets, and nanopolyhedra are transient species for the formation of stable nanotubes. Unprecedented (LiF)n clusters (n≤12) were also identified, some of them lying less than 10â kcal mol-[1] above their respective global minima. Such findings indicate that stochastic synthetic techniques, such as laser ablation and chemical vapor deposition, should be combined with a template-driven procedure in order to generate the nanotubes with adequate efficiency. Apart from the stepwise growth of LiF units, the formation of nanotubes was also studied by rolling up a planar square sheet monolayer, which could be hypothetically produced from the exfoliation of the FCC crystal structure. It was shown that both pathways could lead to the formation of alkali halide nanotubes, a still unprecedented set of one-dimensional materials.
RESUMO
Tuning the magnetic properties of materials is a demand of several technologies; however, our microscopic understanding of the process that drives the enhancement of those properties is still unsatisfactory. In this work, we combined experimental and theoretical techniques to investigate the handling of magnetic properties of FeCo thin films via the thickness-tuning of a gold film used as an underlayer. We grow the samples by the deposition of polycrystalline FeCo thin films on the Au underlayer at room temperature by a magnetron sputtering technique, demonstrating that the lattice parameter of the sub-20 nm thickness gold underlayer is dependent on its thickness, inducing a stress up to 3% in sub-5 nm FeCo thin films deposited over it. Thus, elastic-driven variations for the in-plane magnetic anisotropy energy, Ku, up to 110% are found from our experiments. Our experimental findings are in excellent agreement with ab initio quantum chemistry calculations based on density functional theory, which helps to build up an atomistic understanding of the effects that take place in the tuning of the magnetic properties addressed in this work. The handling mechanism reported here should be applied to other magnetic films deposited on different metallic underlayers, opening possibilities for large-scale fabrication of magnetic components to be used in future devices.
RESUMO
An unpredicted fourfold screw N-H...O hydrogen bond C(4) motif in a primary dicarboxamide (trans-cyclohexane-1,4-dicarboxamide, C8H14N2O2) was investigated by single-crystal X-ray diffraction and IR and Raman spectroscopies. Electron-density topology and intermolecular energy analyses determined from ab initio calculations were employed to examine the influence of weak C-H...O hydrogen-bond interactions on the peculiar arrangement of molecules in the tetragonal P43212 space group. In addition, the way in which the co-operative effects of those weak bonds might modify their relative influence on molecular packing was estimated from cluster calculations. Based on the results, a structural model is proposed which helps to rationalize the unusual fourfold screw molecular arrangement.
RESUMO
We report herein a detailed structural study by collision-induced dissociation (CID) of nonglycosylated anthocyanins (anthocyanidins) using electrospray ionization triple quadrupole mass spectrometry (ESI-QqQ) and isotope labeling experiments to understand the fragmentation process often used in mass spectrometry analysis of this class of compounds. Tandem mass spectrometric product ion spectra for three anthocyanidins (cyanidin, delphynidin, and pelargonin) were evaluated to propose fragmentation mechanisms to this natural colorant class of organic compounds. The proposed rearrangements, retro Diels-Alder reaction, water loss, CO losses, and stable acylium ion formation, were evaluated based on tandem mass spectrometric experiments of normal and labeled precursor ions together to computational thermochemistry. B3LYP/6-311 + G** ab initio calculations studies were carried out to obtain energy diagrams to show the viability of the proposed mechanisms. The CO losses fragmentation channels have lower energies when compared with water losses and the other proposed fragmentations. The isotope labeling experiments indicate the H/D exchange of the hydroxyl protons and corroborate the proposed general fragmentation mechanism for anthocyanidins.
RESUMO
We report sufficient theoretical evidence of the energy stability of the e+ â H22- molecule, formed by two H- anions and one positron. Analysis of the electronic and positronic densities of the latter compound undoubtedly points out the formation of a positronic covalent bond between the otherwise repelling hydride anions. The lower limit for the bonding energy of the e+ â H22- molecule is 74â kJ mol-1 (0.77â eV), accounting for the zero-point vibrational correction. The formation of a non electronic covalent bond is fundamentally distinct from positron attachment to stable molecules, as the latter process is characterized by a positron affinity, analogous to the electron affinity.
RESUMO
High-level quantum chemical calculations are performed to investigate C=Seâ â â Se=C interactions. Bounded structures are found with binding energies between -4 and -7â kJ mol-1 . An energy decomposition analysis shows that dispersion is the more attractive term, and in all cases save one, the electrostatic interaction is attractive despite each selenium atom having a positive σ-hole at the extension of the C=Se bond. The topological analysis of the molecular electrostatic potential and L(r)=-∇2 ρ(r) function, and natural bond orbital analysis reveal that these particular Seâ â â Se contacts can be considered to be quadruple Lewis acid-base interactions.
RESUMO
The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations.
Assuntos
Carbazóis/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Propanolaminas/química , Isótopos de Carbono/química , Carvedilol , Cristalização , Cristalografia por Raios X , Estrutura Molecular , Isótopos de Nitrogênio/químicaRESUMO
The molecular structure and conformational properties of 2,2,2-trichloroethylacetate, CH(3)CO(2)CH(2)CCl(3), were determined by ab initio (MP2) and DFT quantum chemical calculations at different levels of theory. The theoretical study was complemented with experimental measurements such as IR and Raman spectroscopy. The experimental and calculations confirm the presence of two conformers, one with anti, gauche conformation (C1 symmetry) and another with anti, anti form (Cs symmetry). The conformational preference was studied using the total energy scheme, NBO and AIM analysis. The infrared spectra of CH(3)CO(2)CH(2)CCl(3) are reported in the liquid and solid phases and the Raman spectrum in liquid phase. Using calculated frequencies as a guide, evidence for both C1 and Cs conformers is obtained in the IR and Raman spectra.
Assuntos
Etano/análogos & derivados , Hidrocarbonetos Clorados/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Etano/química , Modelos Moleculares , Conformação MolecularRESUMO
We report a permutationally invariant, ab initio potential energy surface (PES) for the OH + HBr â Br + H2O reaction. The PES is a fit to roughly 26 000 spin-free UCCSD(T)/cc-pVDZ-F12a energies and has no classical barrier to reaction. It is used in quasiclassical trajectory calculations with a focus on the thermal rate constant, k(T), over the temperature range 5 to 500 K. Comparisons with available experimental data over the temperature range 23 to 416 K are made using three approaches to treat the OH rotational and associated electronic partition function. All display an inverse temperature dependence of k(T) below roughly 160 K and a nearly constant temperature dependence above 160 K, in agreement with experiment. The calculated rate constant with no treatment of spin-orbit coupling is overall in the best agreement with experiment, being (probably fortuitously) within 20% of it.
RESUMO
A method to calculate angular distributions for electrons ejected from fixed-in-space molecular hydrogen molecules subject to ultrashort intense laser pulses is proposed, based on the ab initio solution of the time-dependent Schrodinger equation. This method of solution allows for a temporal picture of interferences arising in the dissociative ionization channel (in the proton kinetic energy spectrum) due to the presence of the autoionizing double excited states in the Hydrogen molecule. In particular, we show how this autoionization during the dissociative photoionization process may also induce a counterintuitive asymmetry in the angular distribution of the ionized electron with respect to nuclei inversion, in spite of dealing with an homonuclear system.
Se propone un método para calcular distribuciones angulares de electrones ionizados en la molécula de hidrógeno fija en el espacio sometida a pulsos láser intensos y ultracortos, basado en la solución desde primeros principios de la ecuación de Schrodinger dependiente del tiempo. Esta solución nos permite tener una visión temporal de la interferencias generadas en el canal de ionización disociativa (en el espectro de energía cinética de los protones) debido a la presencia de la autoionización de estados doblemente excitados de la molécula de hidrógeno. Se muestra específicamente cómo la autoionización durante el proceso de fotoionización disociativa también puede inducir una asimetría en la distribución angular del electrón ionizado con respecto a la inversión nuclear, un efecto no intuitivo a pesar de estar tratando con un sistema homonuclear.
Propõe-se um método para calcular as distribuições angulares de elétrons ionizados de uma molécula de hidrogênio fixa no espaço, sujeita a pulsos de laser intensos e ultra-curtos, baseado na soluçao desde primeiros princípios da equaçao de Schrõdinger dependente do tempo. Esta soluçao nos permite ter uma visão temporal das interferências geradas no canal de ionizaçao dissociativa (no espectro de energia cinética dos prótons) devido á presença da auto-ionização de estados duplamente excitados da molécula de hidrogênio. Mostra-se especificamente como a auto-ionização durante o processo de foto-ionização dissociativa pode também induzir uma assimetria na distribuição angular do elétron ionizado com respeito á inversão nuclear, um efeito não intuitivo apesar de estar se tratando de um sistema homonuclear.