Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.429
Filtrar
1.
Phytochem Anal ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957046

RESUMO

INTRODUCTION: Sophora flavescens Aiton (Fabaceae), a ubiquitous plant species in Asia, contains a wide range of pharmacologically active compounds, such as flavonoids, with potential anti-Alzheimer's disease (anti-AD) effects. OBJECTIVES: The objective of the study is to develop a quaternity method for the screening, isolation, extraction optimization, and activity evaluation of acetylcholinesterase (AChE)-inhibiting compounds from S. flavescens to realize high-throughput screening of active substances in traditional Chinese medicine and to provide experimental data for the development of anti-AD drugs. METHODS: With AChE as the target molecule, affinity ultrafiltration and liquid chromatography-mass spectrometry were applied to screen for potential inhibitors of the enzyme in S. flavescens. Orthogonal array experiments combined with the multi-objective Non-Dominated Sorting Genetic Algorithm III was used for the first time to optimize the process for extracting the active substances. Enzyme inhibition kinetics and molecular docking studies were performed to verify the potential anti-AD effects of the active compounds. RESULTS: Five AChE-inhibiting compounds were identified: kushenol I, kurarinone, sophoraflavanone G, isokurarinone, and kushenol E. These were successfully separated at purities of 72.88%, 98.55%, 96.86%, 96.74%, and 95.84%, respectively, using the n-hexane/ethyl acetate/methanol/water (4.0/5.0/4.0/5.0, v/v/v/v), n-hexane/ethyl acetate/methanol/water (5.0/5.0/6.0/4.0, v/v/v/v), and n-hexane/ethyl acetate/methanol/water (4.9/5.1/5.7/4.3, v/v/v/v) mobile phase systems. Enzyme inhibition kinetics revealed that kushenol E had the best inhibitory effect. CONCLUSION: This study elucidates the mechanism of action of five active AChE inhibitors in S. flavescens and provides a theoretical basis for the screening and development of anti-AD and other therapeutic drugs.

2.
Steroids ; 209: 109468, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959993

RESUMO

Steroidal alkaloids are secondary metabolites that are often found in plants, fungi and sponges. These compounds are considered as a source of bioactive compounds for the treatment of chronic diseases, such as neurological disorder like Alzheimer's disease (AD). Some examples of alkaloid derivatives currently used to treat AD symptoms include galantamine, huperzine A, and other alkaloids. AD is a multifactorial disease caused by multiple factors such as inflammation, oxidative stress, and protein aggregation. Based on the various important neuroprotective activities and different pharmacological effects of steroidal alkaloids with polypharmacological modulatory effects, they can lead to the development of new drugs for the treatment of AD. There are limited studies on the involvement of steroidal alkaloids in AD. Therefore, the mechanisms and neuroprotective abilities of these compounds are still poorly understood. The purpose of this review article is to provide an overview of the mechanism, toxicity and neuroprotective benefits of steroidal alkaloids and to discuss future possibilities to improve the application of steroidal alkaloids as anti-AD agents. The therapeutic value and limitations of the steroidal alkaloid are investigated to provide new perspectives for future clinical development studies.

3.
Arch Pharm (Weinheim) ; : e2400067, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967191

RESUMO

The development of targeted phthalazine-1,4-dione acetylcholinesterase (AChE) inhibitors for treating Alzheimer's disease involved the synthesis of 32 compounds via a multistage process. Various analytical techniques confirmed the compounds' identities. Thirteen compounds were found to inhibit AChE by more than 50% without affecting butyrylcholinesterase (BChE). Among these, three compounds, 8m, 8n, and 8p, exhibited extraordinary activity similar to donepezil, a reference AChE inhibitor. During enzyme kinetic studies, compound 8n, displaying the highest AChE inhibitory activity, underwent evaluation at three concentrations (2 × IC50, IC50, and IC50/2). Lineweaver-Burk plots indicated mixed inhibition activity for compound 8n against AChE, suggesting a combination of competitive and noncompetitive characteristics. Additionally, effective derivatives 8m, 8n, and 8p exhibited high blood-brain barrier (BBB) permeability in in vitro parallel artificial membrane permeability assay tests. Molecular docking studies revealed that these compounds bind to the enzyme's active site residues in a position similar to donepezil. Molecular dynamic simulations confirmed the stability of the protein-ligand system, and the chemical reactivity characteristics of the compounds were investigated using density functional theory. The compounds' wide energy gaps suggest stability and therapeutic potential. This research represents a significant step toward finding a potential cure for Alzheimer's disease. However, further research and testing are required to determine the compounds' safety and efficacy. The unique structure of phthalazine derivatives makes them suitable for various biological activities, and these compounds show promise for developing effective drugs for treating Alzheimer's disease. Overall, the development of these targeted compounds is a crucial advancement in the search for an effective treatment for Alzheimer's disease.

4.
J Biochem Mol Toxicol ; 38(7): e23750, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952032

RESUMO

The treatment of organophosphate (OP) anticholinesterases currently lacks an effective oxime reactivator of OP-inhibited acetylcholinesterase (AChE) which can penetrate the blood-brain barrier (BBB). Our laboratories have synthesized novel substituted phenoxyalkyl pyridinium oximes and tested them for their ability to promote survival of rats challenged with lethal doses of nerve agent surrogates. These previous studies demonstrated the ability of some of these oximes to promote 24-h survival to rats challenged with a lethal level of highly relevant surrogates for sarin and VX. The reactivation of OP-inhibited AChE in peripheral tissues was likely to be a major contributor to their efficacy in survival of lethal OP challenges. In the present study, twenty of these novel oximes were screened in vitro for reactivation ability for AChE in rat skeletal muscle and serum using two nerve agent surrogates: phthalimidyl isopropyl methylphosphonate (PIMP, a sarin surrogate) and 4-nitrophenyl ethyl methylphosphonate (NEMP, a VX surrogate). The oximes demonstrated a range of 23%-102% reactivation of AChE in vitro across both tissue types. Some of the novel oximes tested in the present study demonstrated the ability to more effectively reactivate AChE in serum than the currently approved oxime, 2-PAM. Therefore, some of these novel oximes have the potential to reverse AChE inhibition in peripheral target tissues and contribute to survival efficacy.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Músculo Esquelético , Organofosfatos , Oximas , Animais , Oximas/farmacologia , Oximas/química , Ratos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/sangue , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/toxicidade , Organofosfatos/toxicidade , Masculino , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Compostos de Piridínio/farmacologia , Ratos Sprague-Dawley
5.
Mol Divers ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990393

RESUMO

Multi-target directed ligands (MTDLs) have recently been popularized due to their outstanding efficacy in combating the complicated features of Alzheimer's disease. This study details the synthesis of piperazine-quinoline-based MTDLs through a multicomponent Petasis reaction, targeting multiple factors such as AChE, BuChE, metal chelation to restore metal dyshomeostasis, and antioxidant activity. Some of the synthesized compounds exhibited notable inhibitory activity against AChE and BuChE enzymes at specific concentrations. Among the synthesized compounds compound (95) containing a 4-chloroaniline moiety and a 4-methoxybenzyl group displayed the most promising inhibitory activities against AChE (IC50 3.013 µM) and BuChE (IC50 = 3.144 µM). Compound (83) featuring 2-methoxyaniline and 4-fluorobenzyl substituents, exhibited the highest BuChE inhibition (IC50 1.888 µM). Notably, compound (79) demonstrated 93-times higher selectivity for BuChE over AChE. Molecular docking and molecular dynamics simulations were also performed to explore the binding modes and stability of these compounds with the AChE amd BuChE proteins. Further, kinetics study was performed against AChE for comounds (83 and 95) which indicated mixed inhibition of the enzyme by these compounds, Amongs the synthesized compounds, nine compounds were assessed for their antioxidant activity, displaying significant antioxidant properties with IC50 values ranging from 156 µM to 310 µM. Moreover, all the compounds demonstrated metal chelating tendency with Cu+2, Zn+2, Fe+2, Fe+3 and Al+3. This study provides insights into the design of novel MTDLs, highlighting compound (95) as a potential candidate for combating Alzheimer's disease.

6.
Bioorg Med Chem ; 110: 117829, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39002183

RESUMO

In pharmaceutical science and drug design the versatility of the pyrrolidine scaffold relating to spatial arrangement, synthetic accessibility and pharmacological profile is a largely explored and most likely interesting one. Nonetheless, few evidences suggest the pivotal role of pyrrolidine as scaffold for multipotent agents in neurodegenerative diseases. We then challenged the enrolling in the field of Alzheimer disease of so far not ravelled targets of this chemical cliché with a structure based and computer-aided design strategy focusing on multi-target action, versatile synthesis as well as pharmacological safeness. To achieve these hits, ten enantiomeric pairs of compounds were obtained and tested, and the biological data will be here presented and discussed. Among the novel compounds, coumarin and sesamol scaffolds containing analogues resulted promising perspectives.

7.
J Hazard Mater ; 476: 135158, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002475

RESUMO

Recent research has highlighted the ecological risk posed by microplastics (MPs) from mulching film and heavy metals to soil organisms. However, most studies overlooked real environmental levels of MPs and heavy metals. To address this gap, pristine and aged polyethylene (PE) mulching film-derived MPs (PMPs, 500 mg/kg; AMPs, 500 mg/kg) were combined with cadmium (Cd, 0.5 mg/kg) to assess the acute toxicity to earthworms and investigate associated molecular mechanisms (oxidative stress, osmoregulation pressure, gut microbiota, and metabolic responses) at environmentally relevant concentrations. Compared to Cd alone and Cd + PMPs treatments (11.15 ± 4.19 items/g), Cd + AMPs treatment resulted in higher MPs bioaccumulation (23.73 ± 13.14 items/g), more severe tissue lesions, and increased cell membrane osmotic pressure in earthworms' intestines. Cd + AMPs induced neurotoxicity through elevated levels of glutamate and acetylcholinesterase. Earthworm intestines (0.98 ± 0.49 to 3.33 ± 0.37 mg/kg) exhibited significantly higher Cd content than soils (0.19 ± 0.01 to 0.51 ± 0.06 mg/kg) and casts (0.15 ± 0.01 to 0.25 ± 0.05 mg/kg), indicating PE-MPs facilitated Cd transport in earthworms' bodies. Metabolomic analysis showed Cd + AMPs exposure depleted energy and nucleotide metabolites, disrupted cell homeostasis more profoundly than Cd and Cd + PMPs treatments. Overall, co-exposure to AMPs + Cd induced more severe neurotoxicity and disruption of homeostasis in earthworm than Cd and PMPs + Cd treatments. Our study, using Cd and MPs with environmental relevance, underscores MPs' role in amplifying Cd accumulation and toxicity in earthworms.

8.
Chem Biodivers ; : e202401430, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031897

RESUMO

A series of resveratrol surrogate molecules were designed, synthesized and biologically evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) along with anti-oxidant activity as potential novel multifunctional agents against Alzheimer's disease (AD). Six novel compounds were synthesized by reacting (E)-4-(3,5-Dimethoxystyryl) aniline with benzaldehyde and some selected derivatives of benzaldehyde in the presence of ethanol and a few drops of glacial acetic acid which followed the general scheme involved in the formation of Schiff bases. The spectral analysis data including FT-IR, 1H-NMR, 13C-NMR, and Mass spectroscopy results were found to be in good agreement with the newly synthesized compounds (Resveratrol Surrogate Molecules 1-6). The synthesized compounds were evaluated for their dual cholinesterase inhibitory activities, cytotoxic effect, and anti-oxidant potential. The results showed that compound RSM-5 showed potent inhibitory activity against AChE and BChE. In, addition the cytotoxicity of the compound RSM5 is less and found to be within the desirable limit indicating the potential safety of RSM5. Also, it possesses substantial anti-oxidant activity which qualifies RSM5 as an anti-AD agent. Taken together, these findings demonstrate that the molecule RSM5 had the most multifunctional properties and could be a promising lead molecule for the future development of drugs for Alzheimer's treatments.

9.
Food Chem ; 460(Pt 1): 140432, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39033643

RESUMO

In this study, a novel acetylcholinesterase (AChE)-based electrochemical sensor was successfully constructed using two-dimensional MXene, carbon nanohorns (CNHs) and polypyrrole (PPy) as the substrate material for the detection of methyl parathion (MP) residue. The multidimensional MXene/CNHs composite, formed through electrostatic self-assembly, provided a high specific surface area and excellent conductivity. With an active surface area of 0.1062 cm2, the composite provided numerous electroactive sites for AChE immobilization and facilitated electron diffusion at the sensing interface, amplifying the electrochemical signals. Additionally, polypyrrole (PPy) improved AChE adhesion on the electrode surface, further enhancing the stability of the sensor. The proposed sensor exhibited a wide linear range (0.002-346 ng mL-1) and low detection limit (0.00021 ng mL-1) for MP. This study offers an innovative strategy to detect MP, showcasing the potential of two-dimensional materials in electrochemical sensing.

10.
ACS Chem Neurosci ; 15(14): 2545-2564, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979773

RESUMO

Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Estresse Oxidativo , Proteínas tau , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Colinesterases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/fisiologia , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo
11.
Anal Bioanal Chem ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009770

RESUMO

We have developed a bienzymatic biosensor that contains acetylcholinesterase together with butyrylcholinesterase co-immobilized on the same electrode modified with a stabilized copper containing Prussian blue electrodeposited on electrodes coated with 4-aminothiophenol monolayer using diazonium chemistry and copper nanoparticles for improved sensitivity. There are organophosphorus and carbamate neurotoxic insecticides that inhibit only one of the two enzymes, e.g., pirimicarb inhibits butyrylcholinesterase at much lower concentrations than acetylcholinesterase while methomyl inhibits only acetylcholinesterase. Our system is simple and in a single measurement provides a sensitive signal for insecticides' presence based on the inhibition of the enzyme with the highest affinity for each toxic compound. The limits of detection are 50 ng/mL pirimicarb for the bienzymatic biosensor in comparison with 400 ng/mL pirimicarb for the acetylcholinesterase biosensor and 6 ng/mL methomyl for the bienzymatic biosensor, while inhibition is obtained for the butyrylcholinesterase biosensor at 700 ng/mL.

12.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000410

RESUMO

Alzheimer's disease (AD) is a multifactorial and fatal neurodegenerative disorder. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system and particularly in the formation of amyloid plaques; therefore, the inhibition of AChE has become one of the most promising strategies for the treatment of AD, particularly concerning AChE inhibitors that interact with the peripheral anionic site (PAS). Ceanothic acid isolated from the Chilean Rhamnaceae plants is an inhibitor of AChE through its interaction with PAS. In this study, six ceanothic acid derivatives were prepared, and all showed inhibitory activity against AChE. The structural modifications were performed starting from ceanothic acid by application of simple synthetic routes: esterification, reduction, and oxidation. AChE activity was determined by the Ellmann method for all compounds. Kinetic studies indicated that its inhibition was competitive and reversible. According to the molecular coupling and displacement studies of the propidium iodide test, the inhibitory effect of compounds would be produced by interaction with the PAS of AChE. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the ceanothane derivatives were performed using the Swiss ADME tool.


Assuntos
Acetilcolinesterase , Domínio Catalítico , Inibidores da Colinesterase , Desenho de Fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Humanos , Doença de Alzheimer/tratamento farmacológico , Cinética , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Ânions/química , Animais
13.
Arch Toxicol ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004640

RESUMO

The risk of the use of toxic chemicals for unlawful acts has been a matter of concern for different governments and multilateral agencies. The Organisation for the Prohibition of Chemical Weapons (OPCW), which oversees the implementation of the Chemical Weapons Convention (CWC), considering recent events employing chemical warfare agents as means of assassination, has recently included in the CWC "Annex on Chemicals" some organophosphorus compounds that are regarded as acting in a similar fashion to the classical G- and V-series of nerve agents, inhibiting the pivotal enzyme acetylcholinesterase. Therefore, knowledge of the activity of the pyridinium oximes, the sole class of clinically available acetylcholinesterase reactivators to date, is plainly justified. In this paper, continuing our research efforts in medicinal chemistry on this class of toxic chemicals, we synthesized an A-230 nerve agent surrogate and applied a modified Ellman's assay to evaluate its ability to inhibit our enzymatic model, acetylcholinesterase from Electrophorus eel, and if the clinically available antidotes are able to rescue the enzyme activity for the purpose of relating the findings to the previously disclosed in silico data for the authentic nerve agent and other studies with similar A-series surrogates. Our experimental data indicates that pralidoxime is the most efficient compound for reactivating acetylcholinesterase inhibited by A-230 surrogate, which is the opposite of the in silico data previously disclosed.

14.
Aging Med (Milton) ; 7(3): 312-319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975305

RESUMO

Objective: We aimed to examine the factors associated with treatment outcomes in patients with Alzheimer's disease (AD) after 1 year of acetylcholinesterase inhibitors (AChEI) treatment. Method: We obtained electronic medical records from a medical center in Southern Taiwan between January 2015 and September 2021. Participants aged ≥60 who were newly diagnosed with AD and had been prescribed AChEIs were included. Cognitive assessments were performed before the AChEIs were prescribed and at the 1 year follow-up. Cognition progressors were defined as a Mini-Mental State Examination decline of >3 or a Clinical Dementia Rating decline of ≥1 after 1 year of AChEI treatment. The relationship between the baseline characteristics and cognitive status after follow-up was investigated using logistic regression analysis after adjusting for potential confounders. Results: A total of 1370 patients were included in our study (mean age, 79.86 ± 8.14 years). After adjustment, the body mass index (BMI) was found to be significantly lower in the progressor group [adjusted odds ratio (AOR): 0.970, 95% confidence intervals (95% CIs): 0.943 to 0.997, P = 0.033]. The usage of antipsychotics was significantly higher in the progressor group (AOR: 1.599, 95% CIs: 1.202 to 2.202, P = 0.001). The usage of benzodiazepine receptor agonists also tended to be significantly higher in the progressor group (AOR: 1.290, 95% CIs: 0.996 to 1.697, p = 0.054). Conclusion: These results suggest that patients with AD who receive 1 year of AChEI treatment and have a lower BMI or concurrent treatment with antipsychotics and benzodiazepine receptor agonists are more likely to suffer from cognitive decline.

15.
Ecotoxicology ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003411

RESUMO

Two monophyletic Daphnia species (Daphnia magna and D. similis) were exposed to a sub-lethal concentration of Pb (50 µg/L) for nine generations under two food regimes (usual and restricted) and analyzed for acetylcholinesterase (AChE) activity, first reproduction delay, lifespan, and net reproductive rate (R0) at the subcellular, individual, and population levels, respectively. In the sixth generation, Pb-acclimated neonates were moved to clean media for three more generations to check for recovery. The net reproductive rate (R0) of D. magna was not affected by Pb. However, Pb stimulated reproduction, reduced lifespan, and decreased AChE activity. First reproduction delay and lifespan did not improve during the recovery process, suggesting a possible genetic adaptation. Food restriction reduced R0, lifespan, delayed hatching, and increased AChE activity; the opposite outcomes were observed for D. similis. The full recovery shown by R0 suggests the physiological acclimation of D. similis. Under food restriction, the animals exhibited a reduction of R0 and lifespan, delayed first reproduction, and increased AChE activity; however, there was no effect of Pb. The recovery process under food restriction showed that D. similis might not cope with Pb exposure, indicating a failed recovery. Such outcomes indicate that one model species' sensitivity may not represent another's sensitivity.

16.
Physiol Rep ; 12(13): e16095, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946616

RESUMO

The present study aimed to investigate the effect of catechin-loaded Chitosan-Alginate nanoparticles (NPs) on cognitive function in an aluminum chloride (AlCl3)-induced rat model of Alzheimer's disease (AD). The Catechin-loaded Chitosan-Alginate nanocarriers were synthesized through ionotropic gelation (IG) method. Physio-chemical characterization was conducted with the Zetasizer Nano system, the scanning electron microscope, and the Fourier transform infrared spectroscopy. The experiments were performed over 21 days on six groups of male Wistar rats. The control group, AlCl3 treated group, Catechin group, nanocarrier group, treatment group 1 (AlCl3 + Catechin), and treatment group 2 (AlCl3 + nanocarrier). A behavioral study was done by the Morris water maze (MWM) test. In addition, the level of oxidative indices and acetylcholine esterase (AChE) activity was determined by standard procedures at the end of the study. AlCl3 induced a significant increase in AChE activity, along with a significant decrease in the level of Catalase (CAT) and total antioxidant capacity (TAC) in the hippocampus. Moreover, the significant effect of AlCl3 was observed on the behavioral parameters of the MWM test. Both forms of Catechin markedly improved AChE activity, oxidative biomarkers, spatial memory, and learning. The present study indicated that the administration of Catechin-loaded Chitosan-Alginate NPs is a beneficial therapeutic option against behavioral and chemical alteration of AD in male Wistar rats.


Assuntos
Alginatos , Cloreto de Alumínio , Doença de Alzheimer , Catequina , Quitosana , Nanopartículas , Ratos Wistar , Animais , Catequina/administração & dosagem , Catequina/farmacologia , Cloreto de Alumínio/toxicidade , Quitosana/química , Quitosana/administração & dosagem , Alginatos/química , Alginatos/administração & dosagem , Masculino , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Ratos , Administração Oral , Cognição/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Modelos Animais de Doenças , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Portadores de Fármacos/química
17.
J Sep Sci ; 47(14): e2400288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034832

RESUMO

Dalbergia odorifera is a natural product rich in pharmacological ingredients, but the comprehensive characterization and rapid profiling of active components remain a challenge. Thus, an integrated data mining and identification strategy was exploited to efficiently identify the chemical constituents and screen acetylcholinesterase inhibitors (AChEIs) through affinity ultrafiltration and ultra-high-performance liquid chromatography-mass spectrometry (AUF-UHPLC-MS). As a result, polygonal mass defect filtering, diagnostic product ions, and neutral loss rules were created for rapid structural classification and component identification. A total of 140 flavonoids were tentatively characterized, including 41 isoflavonoids, 23 flavanones, 21 isoflavans, 19 flavones and flavonols, 13 neoflavonoids, 11 isoflavanones, seven flavone glycosides, and five chalcones. Subsequently, six natural AChEIs including tectorigenin, fisetin, dalbergin, pterostilbene, isoliquiritigenin, and biochanin A were screened out using AUF-UHPLC-MS and molecular docking. Meanwhile, the AChE inhibitory activities of the six compounds were assessed in vitro, tectorigenin, fisetinand, and dalbergin have moderate inhibitory activity. In conclusion, a novel strategy for systematic characterization and further screening of active compounds in natural products was established, which provides a material basis for quality control of Dalbergia odorifera.


Assuntos
Inibidores da Colinesterase , Dalbergia , Espectrometria de Massas em Tandem , Ultrafiltração , Inibidores da Colinesterase/química , Inibidores da Colinesterase/análise , Dalbergia/química , Cromatografia Líquida de Alta Pressão , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/química , Flavonoides/análise , Estrutura Molecular , Extratos Vegetais/química
18.
Cureus ; 16(6): e62697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036134

RESUMO

Factors, including exposure to substances like organophosphorus compounds (OPCs), have been linked to fertility issues, which are a growing concern. In this case study, a 29-year-old farmer and his 26-year-old wife, married for the past five years, faced challenges conceiving despite several attempts. It was found that the husband's exposure to OPCs like chlorpyrifos, malathion, diazinon, etc., had impacted the quality of his sperm. However, after undergoing treatments and making lifestyle changes such as panchakarma therapy and taking Shilajit supplements, there was an improvement in sperm quality. Through in vitro fertilization using physiological intracytoplasmic sperm injection, successful fertilization and the development of high-quality blastocysts were achieved. This case demonstrates the potential for addressing infertility caused by toxins through a blend of traditional medicinal practices and modern reproductive technologies. It underscores the need for research into strategies that can reduce the effects of OPC exposure on male fertility.

19.
Curr Issues Mol Biol ; 46(6): 5117-5130, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920979

RESUMO

We studied the effect of succinimide derivatives on acetylcholinesterase activity due to the interest in compounds that influence this enzyme's activity, which could help treat memory issues more effectively. The following parameters were established for this purpose based on kinetic investigations of the enzyme in the presence of succinimide derivatives: the half-maximal inhibitory concentration, the maximum rate, the inhibition constant, and the Michaelis-Menten constant. Furthermore, computational analyses were performed to determine the energy required for succinimide derivatives to dock with the enzyme's active site. The outcomes acquired in this manner demonstrated that all compounds inhibited acetylcholinesterase in a competitive manner. The values of the docking energy parameters corroborated the kinetic parameter values, which indicated discernible, albeit slight, variations in the inhibitory intensity among the various derivatives.

20.
Food Chem X ; 23: 101526, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38933989

RESUMO

Most phenolic compounds in beans exist in complex, insoluble binding forms that bind to cell wall components via ether, ester, or glucoside bonds. In the process of solid-state fermentation, Eurotium Cristatum can produce many hydrolase enzymes, such as α-amylase, pectinase, cellulase and ß-glucosidase, which can effectively hydrolyze ether, ester or glucoside bond, release bound polyphenols, and increase polyphenol content in soybeans. When the fermentation conditions of soybean were fermentation time 12 days, inoculation amount 15% and initial pH 2, the content of free polyphenols in fermented soybean was 2.79 mg GAE/g d.w, which was 4.98 times that of unfermented soybean. The contents of bound polyphenols and total phenols in fermented soybean were 0.62 mg GAE/g d.w and 3.41 mg GAE/g d.w, respectively, which were 2.38 times and 4.16 times of those in unfermented soybean. At the same time, the inhibitory effect of free polyphenols in fermented soybean on acetylcholinesterase reached 91.51%. Thus, our results demonstrated that solid state fermentation and Eurotium Cristatum can be used as an effective way to increase soybean polyphenol content and combat Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...