Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Dent ; 141: 104810, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110112

RESUMO

OBJECTIVE: The aim of this study was to determine the effect of different concentrations of resveratrol in protecting enamel against initial dental erosion in vitro. METHODS: Ninety bovine enamel samples (4 × 4 mm) were divided into six groups: Phosphate buffered saline (negative control; PBS), Commercial solution (Elmex Erosion Protection™; positive control) and resveratrol at 4 different concentrations (1, 10, 100 or 400 µg/mL). Initially, the samples were incubated in saliva for the formation of the acquired pellicle (250 µL, 1 h, 37 °C, 250 rpm). Afterward, the samples were incubated in the respective treatments (250 µL, 1 min, 37 °C, 250 rpm) and then reincubated in saliva (250 µL, 1 h, 37 °C, 250 rpm). Finally, the samples were subjected to an erosive challenge by incubating in 1 % citric acid (1 mL, pH 3.5, 1 min, 25 °C, 250 rpm). The percentage surface microhardness change (% SMC) was assessed using a microhardness tester. Data were analyzed by Kruskal-Wallis and Dunn's tests (p < 0.05). RESULTS: The treatments with Elmex™ and resveratrol (1, 10 and 100 µg/mL) significantly protected enamel compared to the negative control, without significant differences among them. However, the group treated with the highest resveratrol concentration (400 µg/mL) did not show a significant difference from the negative control. CONCLUSIONS: Resveratrol at concentrations ranging from 1 to 100 µg/ml was effective in preventing loss of enamel surface microhardness. CLINICAL SIGNIFICANCE: This result suggests a potential new direction for the development of dental products based on resveratrol for the prevention of dental erosion.


Assuntos
Erosão Dentária , Animais , Bovinos , Resveratrol/farmacologia , Erosão Dentária/prevenção & controle , Esmalte Dentário , Película Dentária , Saliva
2.
Molecules ; 28(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836647

RESUMO

(1) Background: In the oral environment, sound enamel and dental restorative materials are immediately covered by a pellicle layer, which enables bacteria to attach. For the development of new materials with repellent surface functions, information on the formation and maturation of salivary pellicles is crucial. Therefore, the present in situ study aimed to investigate the proteomic profile of salivary pellicles formed on different dental composites. (2) Methods: Light-cured composite and bovine enamel samples (controls) were exposed to the oral cavity for 30, 90, and 120 min. All samples were subjected to optical and mechanical profilometry, as well as SEM surface evaluation. Acquired pellicles and unstimulated whole saliva samples were analyzed by SELDI-TOF-MS. The significance was determined by the generalized estimation equation and the post-hoc bonferroni adjustment. (3) Results: SEM revealed the formation of homogeneous pellicles on all test and control surfaces. Profilometry showed that composite surfaces tend to be of higher roughness compared to enamel. SELDI-TOF-MS detected up to 102 different proteins in the saliva samples and up to 46 proteins in the pellicle. Significant differences among 14 pellicle proteins were found between the composite materials and the controls. (4) Conclusions: Pellicle formation was material- and time-dependent. Proteins differed among the composites and to the control.


Assuntos
Proteômica , Saliva , Animais , Bovinos , Película Dentária , Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
J Funct Biomater ; 14(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623639

RESUMO

Surface chemistry evaluation is crucial in assessing the efficacy of chemical decontamination products for titanium implants. This study aimed to investigate the effectiveness of chemical decontamination solutions in cleaning a contaminated dental implant surface and to evaluate the potential of combining Pluronic gel with hydrogen peroxide (NuBone®Clean) by evaluating pellicle disruption and re-formation on implant surfaces. In addition, ensuring safety with in vitro and human testing protocols. X-ray Photoelectron Spectroscopy (XPS) was utilised for surface analysis. All the tested gels had some effect on the surface cleanness except for PrefGel®. Among the tested chemical decontamination candidates, NuBone®Clean demonstrated effectiveness in providing a cleaner titanium surface. Furthermore, none of the tested chemical agents exhibited cytotoxic effects, and the safety assessment showed no adverse events. The results of this study highlight the significance of conducting comprehensive evaluations, encompassing safety and efficacy, before introducing new chemical agents for dental treatments. The findings suggest that NuBone®Clean shows potential as a chemical decontamination solution for implant surfaces. However, further investigation through randomised clinical trials is necessary. By adhering to rigorous testing protocols, the development of safe and efficient chemical decontamination strategies can be advanced, benefiting patients and promoting progress in implant dentistry.

4.
Clin Oral Investig ; 27(9): 5559-5568, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481640

RESUMO

OBJECTIVE: This study evaluated the protective capacity of a sugarcane-derived cystatin (CaneCPI-5) in different vehicles (1-solution and 2-chitosan gel) against erosive dentin wear in situ. METHODS: In part-1, 15 volunteers participated in a crossover protocol (solutions): Water; Elmex™ and CaneCPI-5. The volunteers wore an appliance with 4 dentin samples for 5 days. These samples were treated with a drop of the solutions for 1 min (4X/d), then the acquired pellicle (AP) was formed and the samples were subjected to erosive challenges (EROSION: citric acid, for 90 s, 4X/day). 2X/day, half of the samples were also abraded for 15 s (ABRASION). In part-2, 16 volunteers participated in a crossover protocol (gel): No gel, Chitosan gel, Chitosan gel + NaF and Chitosan gel + CaneCPI-5. The volunteers also wore an appliance. The samples were treated once/day with the gel or not for 4 min, then the AP was formed and the samples were subjected to erosive and abrasive challenges, as reported in part-1. Dentin wear was measured by profilometry. Data were analyzed by two-way RM-ANOVA and Sidak's tests (p < 0.05). RESULTS: Part-1: Elmex™ and CaneCPI-5 significantly reduced dentin loss in comparison with Water for the EROSION/ABRASION conditions (p < 0.05). Part-2, all the treated groups significantly reduced the dentin loss in comparison to the No gel. The greatest reduction was found for the gel + CaneCPI-5 group for the EROSION/ABRASION (p < 0.05). CONCLUSION: The solution and chitosan gel containing CaneCPI-5 protected against erosive dentin wear in situ. CLINICAL RELEVANCE: These different vehicles are probably sufficient for protecting people with high risk of developing erosive dentin wear.


Assuntos
Quitosana , Erosão Dentária , Humanos , Ácido Cítrico , Erosão Dentária/prevenção & controle , Água , Dentina
5.
Rev. Flum. Odontol. (Online) ; 2(61): 91-106, maio-ago. 2023. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1562630

RESUMO

The biological sealing (BS) around implants is a dominant factor to determine the long-term success of peri-implant health. There are several features of the BS around implants in common with the soft tissue attached to teeth, such as the presence of crevicular fluid, acquired pellicle, epithelium; otherwise, the quality of the BS around implants is weaker compared with the junctional epithelium of natural teeth. Then, this article aimed to describe three cases report showing the presence of a BS (cuticle-crevice fluid-acquired pellicle) around the fixed crowns on dental implants in the anterior zone, through photographic analysis. It was used a Nikon 8100 camera with a 105 mm macro lens and a Macro Ring circular flash. A photographic profile examination was made always showing the clinical case and, specifically, the focal point in the crown-gingival tissue (prosthesis boundary and peri-implant tissue), highlighting the anatomical gingiva on the ceramic prosthetic crown at an angle between 140 to 160 degrees. Although cases 1 and 2 had 1-year follow-up and case 3 around 4 years, the common findings for all treatments done were: (i) oral rehabilitation with crowns on dental implants; (ii) patients satisfied with the esthetic and functional result; (iii) stability of the soft tissue around the crowns; (iv) all the patients had a good oral hygiene; (v) presence of a thin membrane associated with the acquire pellicle, similar to an annular cuticle, which we named cuticle-acquired pellicle complex or tertiary cuticle or prosthetic-implant cuticle. This complex (cuticle-crevicular fluid-acquired pellicle) is suggested to be the responsible by the BS on dental implants. Moreover, the cuticle (epithelial part in the peri-implant sulcus), although similar to teeth, may be considered a tertiary pellicle due to be found on ceramic crowns on dental implants, differently of the primary and secondary pellicle. Whitin the limitation of these three cases reports, the BS was reported and can be introduced the new concept of the "cuticle-crevicular fluid-acquired pellicle complex" or "prosthetic-implant cuticle".


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Implantes Dentários , Líquido do Sulco Gengival , Biofilmes , Coroas , Película Dentária
6.
Clin Oral Investig ; 26(11): 6511-6519, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35829772

RESUMO

OBJECTIVE: This study evaluated the preventive effect of a chitosan gel containing CaneCPI-5 against enamel erosion and erosion + abrasion in situ. METHODS: Sixteen volunteers participated in a crossover, double-blind protocol, comprising 4 phases: (1) no treatment (Nt); (2) chitosan gel (Cg); (3) chitosan gel + 12,300 ppm NaF (Cg + NaF); and (4) chitosan gel + 0.1 mg/mL CaneCPI-5 (Cg + Cane). Volunteers wore an appliance containing 4 specimens. Once/day, they applied the gel (except for Nt) (4 min/specimen). Erosive challenges were performed extra-orally (0.1% citric acid, 90 s, 4 × /day; ERO). Specimens were also abraded (toothbrush, 15 s/specimen, 2 × /day; ERO + ABR). Enamel wear was assessed by profilometry and relative surface reflection intensity (%SRI). Two-way RM-ANOVA/Sidak's tests and Spearman's correlation were used (p < 0.05). RESULTS: For profilometry, ERO + ABR promoted significantly greater wear when compared with ERO. There was a significant difference among all treatments. The lowest enamel loss occurred for Cg + Cane, followed by Cg + NaF, Cg, and Nt (p < 0.05). The %SRI was significantly lower for ERO + ABR when compared to ERO, only for the Nt group. The greatest %SRI was found for the Cg + NaF and Cg + Cane groups, which did not differ significantly, regardless of the conditions. The lowest %SRI was found for the Nt and Cg groups, which did not differ from each other, regardless of the conditions. The Nt group did not differ significantly from the Cg + NaF (ERO). There was a significant correlation between both analyses. CONCLUSION: The incorporation of CaneCPI-5 in the chitosan gel prevented erosive wear in situ. CLINICAL RELEVANCE: These results open a new perspective for the use of CaneCPI-5 in other application vehicles, such as chitosan gel.


Assuntos
Quitosana , Abrasão Dentária , Erosão Dentária , Humanos , Quitosana/farmacologia , Esmalte Dentário , Fluoreto de Sódio/farmacologia , Abrasão Dentária/prevenção & controle , Erosão Dentária/prevenção & controle , Erosão Dentária/tratamento farmacológico , Escovação Dentária/métodos , Estudos Cross-Over , Método Duplo-Cego
7.
J. appl. oral sci ; 30: e20210698, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1386006

RESUMO

Abstract A new sugarcane-derived cystatin (CaneCPI-5) showed anti-erosive properties when included in solutions and strong binding force to enamel, but the performance of this protein when added to gel formulations and its effect on surface free energy (SFE) requires further studies. Objective 1) to evaluate the protective effect of gels containing different concentrations of CaneCPI-5 against initial enamel erosion (Experiment 1); and 2) to analyze the SFE (γS) after treating the enamel surface with CaneCPI-5 solution (Experiment 2). Methodology In Experiment 1, 75 bovine enamel specimens were divided into five groups according to the gel treatments: placebo (negative control); 0.27%mucin+0.5%casein (positive control); 0.1 mg/mL CaneCPI-5; 1.0 mg/mL CaneCPI-5; or 2.0 mg/mL CaneCPI-5. Specimens were treated with the gels for 1 min, the AP was formed (human saliva) for 2 h and the specimens were incubated in 0.65% citric acid (pH=3.4) for 1 min. The percentage of surface hardness change (%SHC) was estimated. In Experiment 2, measurements were performed by an automatic goniometer using three probing liquids: diiodomethane, water and ethylene glycol. Specimens (n=10/group) remained untreated (control) or were treated with solution containing 0.1 mg/mL CaneCPI-5, air-dried for 45 min, and 0.5 µL of each liquid was dispensed on the surface to measure contact angles. Results Gels containing 0.1 and 1.0 mg/mL CaneCPI-5 significantly reduced %SHC compared to the other treatments (p<0.05). Treated enamel showed significantly lower γS than control, without changes in the apolar component (γSLW), but the polar component (γSAB=Lewis acid-base) became more negative (p<0.01). Moreover, CaneCPI-5 treatment showed higher γS - (electron-donor) values compared to control (p<0.01). Conclusions Gels containing 0.1 mg/mL or 1.0 mg/mL CaneCPI-5 protected enamel against initial dental erosion. CaneCPI-5 increased the number of electron donor sites on the enamel surface, which may affect AP formation and could be a potential mechanism of action to protect from erosion.

8.
Caries Res ; 55(6): 594-602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34670214

RESUMO

The effect of solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) on the protection against enamel and dentin erosion in vitro was evaluated. Bovine enamel and dentin specimens were divided into 2 groups (n = 135 and 153/group for enamel and dentin, respectively) that were treated with solutions or chitosan gels containing 0.1 or 0.25 mg/mL CaneCPI-5. The positive controls for solutions and gels were Elmex Erosion Protection™ solution and NaF gel (12,300 ppm F), respectively. Deionized water and chitosan gel served as controls, respectively. The solutions were first applied on the specimens for 1 min and the gels for 4 min. Stimulated saliva was collected from 3 donors and used to form a 2-h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH cycling protocol 4 times/day for 7 days (0.1% citric acid pH 2.5/90 s, artificial saliva/2 h, and artificial saliva overnight). The solutions and gels were applied again during pH cycling, 2 times/day for 1 min and 4 min, respectively, after the first and last erosive challenges. Enamel and dentin losses (µm) were assessed by contact profilometry. Data were analyzed by 2-way ANOVA and Tukey's test (p < 0.05). All the treatments significantly reduced enamel and dentin loss in comparison with controls. Both CaneCPI-5 concentrations had a similar protective effect against enamel erosion, but only the higher concentration was as effective against dentin erosion as the positive control. Regarding the vehicles, only the 0.1 mg/mL gel performed worse than the positive control for dentin. CaneCPI-5 reduced enamel and dentin erosion to a similar extent as the fluoride-containing vehicles. However, dentin requires higher CaneCPI-5 concentrations, in the case of gels. Solutions or gels containing CaneCPI-5 might be a new approach to protect against dental erosion.


Assuntos
Cistatinas , Saccharum , Erosão Dentária , Animais , Bovinos , Esmalte Dentário , Dentina , Géis , Humanos , Fluoreto de Sódio , Erosão Dentária/prevenção & controle
9.
Caries Res ; 55(4): 333-340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34344000

RESUMO

Changes in the proteomic profile of the acquired enamel pellicle (AEP) formed for 3 min or 2 h after rinsing with a peptide containing the 15 N-terminal residues of statherin, with serines 2 and 3 phosphorylated (StatpSpS), were evaluated. Nine volunteers participated in 2 consecutive days. Each day, after professional tooth cleaning, they rinsed for 1 min with 10 mL of phosphate buffer containing 1.88 × 10-5 M StatpSpS or phosphate buffer only (control). The acquired pellicle formed on enamel after 3 min or 2 h was collected with electrode filter papers soaked in 3% citric acid. After protein extraction, samples were analyzed by quantitative shotgun label-free proteomics. In the 3-min AEP, 19 and 131 proteins were uniquely identified in the StatpSpS and control groups, respectively. Proteins typically found in the AEP were only found in the latter. Only 2 proteins (neutrophil defensins) were increased upon treatment with StatpSpS, while 65 proteins (among which are several typical AEP proteins) were decreased. In the 2-h AEP, 50 and 108 proteins were uniquely found in StatpSpS and control groups, respectively. Hemoglobin subunits and isoforms of keratin were only found in the StatpSpS group, while cystatin-C, cathepsin D, and cathepsin G, isoforms of heat shock 70 and protocadherin were exclusively found in the control group. In addition, 23 proteins were increased upon treatment with StatpSpS, among which are histatin-1, serum albumin, and isoforms of neutrophil defensin and keratin, while 77 were decreased, most of them were typical AEP proteins. In both evaluated periods, rinsing with StatpSpS profoundly changed the proteomic profile of the AEP, which might impact the protective role of this integument against carious or erosive demineralization. This study provides important insights on the dynamics of the protein composition of the AEP along time, after rinsing with a solution containing StatpSpS.


Assuntos
Proteoma , Proteômica , Esmalte Dentário , Película Dentária , Humanos , Peptídeos
10.
J Dent ; 108: 103642, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33757866

RESUMO

OBJECTIVES: To evaluate in vivo the proteomic profile of the acquired enamel pellicle (AEP) in patients with head and neck cancer (HNC) before, during and after radiotherapy. METHODS: Nine patients, after prophylaxis, had their AEPs collected before (BRT), during (DRT; 2-5 weeks) and after (ART; 3-4 months) radiotherapy. AEP was also collected from nine healthy patients (Control). The proteins were extracted in biological triplicate and processed by label-free proteomics. RESULTS: Statherin was increased more than 9-fold and several hemoglobin subunits were increased more than 5-fold DRT compared to BRT, while lactotransferrin, proline-rich proteins, cystatins, neutrophil defensins 1 and 3 and histatin-1 were decreased. ART, there was an increase in lactotransferrin and several isoforms of histones, while statherin and alpha-amylase proteins were decreased. MOAP-1 was exclusively found ART in comparison to BRT. When compared to Control, AEP of patients BRT showed an increase in proteins related to the perception of bitter taste, mucin-7 and alpha-amylases, while cystatin-S was decreased. CONCLUSIONS: HNC and radiotherapy remarkably altered the proteome of the AEP. Antibacterial and acid-resistant proteins were decreased during radiotherapy. CLINICAL SIGNIFICANCE: Our results provide important information for designing more effective dental products for these patients, in addition to contributing to a better understanding of the differential protective roles of the AEP proteins during radiotherapy. Moreover, some proteins identified in the AEP after radiotherapy may serve as prognostic markers for survival of HNC patients.


Assuntos
Proteínas do Esmalte Dentário , Neoplasias de Cabeça e Pescoço , Película Dentária , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Proteoma , Proteômica , Saliva , Proteínas e Peptídeos Salivares
11.
Biofouling ; 37(1): 109-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588651

RESUMO

The antimicrobial and anticaries effects of CaneCPI-5 were evaluated. Ninety bovine enamel samples were treated for 60 s with either phosphate-buffered-saline (PBS), 0.12% chlorhexidine (CHX), 0.05 mg ml-1 CaneCPI-5, 0.1 mg ml-1 CaneCPI-5 or 0.5 mg ml-1 CaneCPI-5. They were incubated with inoculum (human saliva + McBain's saliva) for the first 8 h. From then until the end of the experiment, the enamel was exposed to McBain saliva with sucrose and, once a day, for 5 days, they were treated with the solutions. At the end of the experimental period, resazurin and viable plate count assays were performed. Enamel demineralization was also measured. All concentrations of CaneCPI-5 and CHX significantly reduced the activity of biofilms compared with PBS. For viable plate counts, all treatments similarly reduced the lactobacilli and total streptococci; for the mutans streptococci, 0.05 mg ml-1 CaneCPI-5 performed better than CHX. All CaneCPI-5 concentrations significantly reduced the integrated mineral loss. This study represents the first step regarding the use of CaneCPI-5 within the concept of acquired enamel pellicle and biofilm engineering to prevent dental caries.


Assuntos
Cistatinas , Cárie Dentária , Saccharum , Desmineralização do Dente , Animais , Biofilmes , Bovinos , Cárie Dentária/prevenção & controle , Humanos , Saliva , Streptococcus mutans
12.
J Dent ; 107: 103612, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621617

RESUMO

OBJECTIVE: This study investigated the mechanism of action of different proteins/peptides (separately or in combination), focusing on how they act directly on the native enamel surface and on modifying the salivary pellicle. METHODS: A total of 170 native human enamel specimens were prepared and submitted to different treatments (2 h; 37 °C): with deionized water, CaneCPI-5, Hemoglobin, Statherin, or a combination of all three proteins/peptides. The groups were subdivided into treatment acting on the enamel surface (NoP - absence of salivary pellicle), and treatment modifying the salivary pellicle (P). Treatment was made (2 h; 37 °C) in all specimens, and later, for P, the specimens were incubated in human saliva (2 h; 37 °C). In both cases, the specimens were immersed in 1% citric acid (pH 3.6; 2 min; 25 °C). Calcium released from enamel (CaR) and its relative surface reflection intensity (%SRI) was measured after 5 cycles. Between-group differences were verified with two-way ANOVA, with "presence of pellicle" and "treatment" as factors (α = 0.05). RESULTS: The presence of pellicle provided better protection regarding %SRI (p < 0.01), but not regarding CaR (p = 0.201). In relation to treatment, when compared to the control group, all proteins/peptides provided significantly better protection (p < 0.01 for %SRI and Car). The combination of all three proteins/peptides demonstrated the best protective effect (p < 0.01 for %SRI). CONCLUSION: Depending on the protein or peptide, its erosion-inhibiting effect derives from their interaction with the enamel surface or from modifying the pellicle, so a combination of proteins and peptides provides the best protection. CLINICAL SIGNIFICANCE: The present study opens a new direction for a possible treatment with a combination of proteins for native human enamel, which can act directly on the enamel surface as well on the modification of the salivary pellicle, for the prevention of dental erosion.


Assuntos
Erosão Dentária , Esmalte Dentário , Película Dentária , Humanos , Peptídeos , Saliva , Erosão Dentária/prevenção & controle
13.
Arch Oral Biol ; 119: 104890, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32919104

RESUMO

OBJECTIVES: In the present study, we used an in vitro initial intrinsic erosion model to evaluate: (experiment 1) the influence of the degree of serine (Ser) phosphorylation of peptides containing the 15 N-terminal residues of statherin and (experiment 2) the effect of different concentrations of the peptide with the best performance in experiment 1 on initial enamel erosion. DESIGN: Bovine enamel specimens were divided into 6 groups (n = 15/group) for each experiment. In experiment 1, the peptides evaluated (at 1.88 × 10-5 M) were: not phosphorylated (StatSS), phosphorylated in Ser2 (StatpSS), phosphorylated in Ser3 (StatSpS) phosphorylated in Ser2 and Ser3 (StatpSpS). Phosphate buffer and human recombinant statherin were used as negative and positive controls, respectively. In experiment 2, StatpSpS was evaluated at different concentrations: 0.94, 1.88, 3.76 and 7.52 × 10-5 M. Phosphate buffer and 0.1 mg/mL CaneCPI-5 were employed as negative and positive controls, respectively. In each experiment, the specimens were incubated with the solutions for 2 h, then the AEP was allowed to form (under human pooled saliva) for 2 h. The specimens were then challenged with 0.01 M HCl for 10 s. Demineralization was evaluated by percentage of surface hardness change (%SHC). Data were analyzed by ANOVA and Tukey's test (p < 0.05). RESULTS: In experiment 1, only StatpSpS significantly reduced the % SHC in comparison with control. In experiment 2, 1.88 × 10-5 M StatpSpS significantly reduced the %SHC in comparison with control. CONCLUSIONS: This is the first study showing that statherin-derived peptide might protect against intrinsic erosion.


Assuntos
Esmalte Dentário/química , Proteínas e Peptídeos Salivares/química , Erosão Dentária , Animais , Bovinos , Humanos , Técnicas In Vitro , Fosforilação , Saliva , Serina/química , Erosão Dentária/prevenção & controle
14.
Arch Oral Biol ; 108: 104527, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31472277

RESUMO

OBJECTIVE: This study evaluated the influence of the addition of fillers and/or protease inhibitors [(epigallocatechin gallate - EGCG) or (chlorhexidine - CHX)] in experimental resins in the protein profile of the acquired pellicle (AP) formed in situ on enamel-resin specimens. DESIGN: 324 samples of bovine enamel were prepared (6 × 6 × 2 mm). The center of each sample was added with one of the following experimental resins (Bis-GMA+TEGDMA): no filler, no inhibitor (NF-NI); filler no inhibitor (F-NI); no filler plus CHX (NF-CHX); filler plus CHX (F-CHX); no filler plus EGCG (NF-EGCG); filler plus EGCG (F-EGCG). Nine subjects used a removable jaw appliance (BISPM - Bauru in situ pellicle model) with 2 slabs from each group. The AP was formed for 120 min, in 9 days and collected with electrode filter paper soaked in 3% citric acid. The pellicles collected were processed for analysis by LC-ESI-MS/MS. RESULTS: A total of 140 proteins were found in the AP collected from all the substrates. Among them, 16 proteins were found in common in all the groups: 2 isoforms of Basic salivary proline-rich protein, Cystatin-S, Cystatin-AS, Cystatin-SN, Histatin-1, Ig alpha-1 chain C region, Lysozyme C, Mucin-7, Proline-rich protein 4, Protein S100-A9, Salivary acidic proline-rich phosphoprotein ½ and Statherin. Proteins with other functions, such as metabolism and transport, were also identified. CONCLUSION: The composition of the experimental resins influenced the protein profile of the AP. This opens a new avenue for the development of new materials able to guide for AP engineering, thus conferring protection to the adjacent teeth.


Assuntos
Esmalte Dentário , Película Dentária , Inibidores de Proteases , Espectrometria de Massas em Tandem , Animais , Bovinos , Esmalte Dentário/metabolismo , Película Dentária/metabolismo , Inibidores de Proteases/farmacologia , Proteínas , Resinas Sintéticas
15.
Caries Res ; 52(5): 367-377, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29510412

RESUMO

OBJECTIVE: Changes in the protein profile of acquired enamel pellicles (AEP) formed in vivo over different time periods were evaluated after the application of hydrochloric acid (HCl). METHODS: Nine subjects were submitted to dental prophylaxis with pumice. After 3 or 120 min, the teeth were isolated with cotton rolls and 50 µL of 0.1 M HCl (pH 1.0), 0.01 M HCl (pH 2.0), or deionized water were applied on the buccal surface of the teeth for 10 s. The AEP was then collected using an electrode filter paper presoaked in 3% citric acid. After protein extraction, the samples were submitted to reverse-phase liquid chromatography coupled to mass spectrometry (nano LC-ESI-MS/MS). Label-free quantification was performed (Protein Lynx Global Service software). RESULTS: A total of 180 proteins were successfully identified in the AEP samples. The number of identified proteins increased with the time of pellicle formation. Only 4 proteins were present in all the groups (isoforms of IgA, serum albumin, and statherin). The greatest number of proteins identified uniquely in one of the groups was obtained for the groups treated with HCl after 2 h of pellicle formation (approx. 50 proteins). CONCLUSION: Proteins resistant to removal by HCl, such as serum albumin and statherin, were identified even in the short-term AEP. In addition, 120-min pellicles present many proteins that are resistant to removal by HCl. This suggests an increase in protection against intrinsic acids with the time of pellicle formation, which should be evaluated in future studies.


Assuntos
Proteínas do Esmalte Dentário/efeitos dos fármacos , Película Dentária/química , Ácido Clorídrico/efeitos adversos , Adolescente , Adulto , Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/isolamento & purificação , Película Dentária/efeitos dos fármacos , Película Dentária/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Proteômica , Adulto Jovem
16.
Caries Res ; 52(4): 288-296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29393147

RESUMO

This study detected changes in the protein profile of the acquired enamel pellicle (AEP) formed in vivo after rinsing with whole milk, fat-free milk, or water. Nine subjects in good oral condition took part in the study. The acquired pellicle was formed in the morning, for 120 min, after prophylaxis with pumice. Following this, the volunteers rinsed with 10 mL of whole milk, fat-free milk, or deionized water for 30 s, following a blinded crossover protocol. After 60 min, the pellicle was collected with filter paper soaked in 3% citric acid and processed for analysis by liquid chromatography-electrospray ionization tandem mass spectrometry. The obtained tandem mass spectrometry spectra were searched against a human protein database (Swiss-Prot). The proteomic data related to protein quantification were analysed using the PLGS software. A total of 260 proteins were successfully identified in the AEP samples collected from all groups. Forty-nine were common to all 3 groups, while 72, 62, and 49 were specific to the groups rinsing with whole milk, fat-free milk, and water, respectively. Some were typical components of the AEP, such as cystatin-B, cystatin-SN, isoforms of α-amylase, IgA and IgG, lysozyme C, protein S100 A78, histatin-1, proline-rich protein 27, statherin, and lactotransferrin. Other proteins are not commonly described as part of the AEP but could act in defence of the organism against pathogens. Distinct proteomic profiles were found in the AEP after rinsing with whole or fat-free milk, which could have an impact on bacterial adhesion and tooth dissolution. The use of fat-free milk could favourably modulate the adhesion of bacteria to the AEP as well as biofilm formation when compared with whole milk.


Assuntos
Película Dentária/química , Leite , Antissépticos Bucais , Proteínas/análise , Água/administração & dosagem , Adulto , Animais , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Estudos Cross-Over , Película Dentária/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Proteínas/classificação , Proteoma/análise , Método Simples-Cego , Espectrometria de Massas por Ionização por Electrospray
17.
Arch Oral Biol ; 82: 92-98, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28622550

RESUMO

OBJECTIVE: This study evaluated changes in protein profile of the acquired enamel pellicle (AEP) formed in vivo, after application of gels containing chlorhexidine or EGCG and further challenge with citric acid. DESIGN: AEP was formed in 9 volunteers for 2h and then treated with one of the following gels: placebo, 400µM EGCG or 0.012% chlorhexidine. A thin layer of gel was applied and after 1min the excess was removed. One hour after gel application, the AEP was collected from the buccal surface (upper and lower jaw) of one of the sides with filter paper dipped in 3% citric acid. On the other side, erosive challenge was performed through gentle application of 1% citric acid (pH 2.5) for 20s (using a pipette) followed by washing with deionized water. The AEP was collected as mentioned before. Proteomic analysis was performed through liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The MS/MS spectra obtained were compared with human protein databases (SWISS-PROT). Label-free quantitation was done using the PLGS software. RESULTS: In total, 223 proteins were identified. After treatment with EGCG and CHX gels, proteins with potential functions to protect against caries and erosion such as PRPs, calcium-bind proteins and Statherin were increased. When EGCG and CHX-treated AEPs were challenged with citric acid, there was increase in cystatins and Profilin-1. CONCLUSION: CHX- and EGCG-treated AEPs, submitted to challenge with citric acid or not, had remarkable changes in their proteomic profiles.


Assuntos
Catequina/análogos & derivados , Clorexidina/farmacologia , Película Dentária/química , Película Dentária/efeitos dos fármacos , Proteômica/métodos , Adulto , Proteínas de Ligação ao Cálcio/metabolismo , Catequina/administração & dosagem , Catequina/farmacologia , Clorexidina/administração & dosagem , Ácido Cítrico/administração & dosagem , Ácido Cítrico/farmacologia , Cistatinas/metabolismo , Feminino , Géis , Humanos , Masculino , Pessoa de Meia-Idade , Profilinas/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Regulação para Cima
18.
Arch Oral Biol ; 79: 20-29, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28282514

RESUMO

OBJECTIVE: This study evaluated the variation in the protein profile of the acquired enamel pellicle (AEP) formed in vivo according to its location in the dental arches. DESIGN: The AEP was formed for 120min in 9 volunteers. Pellicle formed at upper+lower anterior facial (ULAFa; teeth 13-23 and 33-43), upper anterior palatal (UAPa; teeth 13-23), lower anterior lingual (LALi; teeth 33-43), upper+lower posterior facial (ULPFa; teeth 14-17 24-27, 34-37 and 44-47), upper posterior palatal (UPPa; teeth 14-17 and 24-27) and lower posterior lingual (LPLi; teeth 34-37 and 44-47) regions were collected separately and processed for analysis by label-free LC-ESI-MS/MS. RESULTS: Three-hundred sixty three proteins were identified in total, twenty-five being common to all the locations, such as Protein S100-A8, Lysozyme C, Lactoferrin, Statherin, Ig alpha-2, ALB protein, Myeloperoxidase and SMR3B. Many proteins were found exclusively in the AEP collected from one of the regions (46-UAPa, 33-LALi, 59-ULAFa, 31-ULPFa, 44-LPLi and 39-UPPa). CONCLUSIONS: The protein composition of the AEP varied according to its location in the dental arches. These results provide important insights for understanding the differential protective roles of the AEP as a function of its location in the dental arches.


Assuntos
Arco Dental/metabolismo , Película Dentária/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Saliva/química , Proteínas de Ligação ao Cálcio/metabolismo , Cistatinas , Feminino , Humanos , Lactoferrina/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Muramidase/metabolismo , Peroxidase , Proteínas S100/metabolismo , Saliva/metabolismo , Proteínas e Peptídeos Salivares , Albumina Sérica Humana/metabolismo , Espectrometria de Massas em Tandem/métodos , Voluntários , Calponinas
19.
Colloids Surf B Biointerfaces ; 152: 68-76, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28086104

RESUMO

The salivary pellicle, covering natural as well as restored tooth surfaces in the oral cavity as an immobilized protein-rich layer, acts as an important physico-chemical and biological mediator at the tooth-saliva-interface. For the first time, the pellicle's proteome of individual volunteers were analyzed separately on three consecutive days and the relative protein abundance determined by a label-free quantitative nano-LC-MS/MS approach. A total of 72 major proteins were identified in the initial pellicles formed intraorally on dental ceramic specimens already after 3min with high inter-individual and inter-day consistency. In comparison, significant differences in protein abundance were evident between subjects, thus indicating unique individual pellicle profiles. Furthermore, the relative protein abundance in pellicles was compared to the proteome pattern in the corresponding saliva samples of the same individuals to provide first data on significantly enriched and depleted salivary proteins (p <0.05) within the surface-bound salivary pellicle. Our findings reveal the initial adsorption of salivary proteins at the solid-liquid interface to be a rapid, highly selective, and reproducible process leading to the immobilization of a broad range of protective proteins and enzymes on the substratum surface within a few minutes. This provides evidence that the pellicle layer might be physiologically functional even without further maturation.


Assuntos
Película Dentária/química , Proteínas e Peptídeos Salivares/química , Humanos , Proteínas Imobilizadas/química , Boca/química , Saliva/química , Espectrometria de Massas em Tandem
20.
ACS Biomater Sci Eng ; 3(12): 3553-3562, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445390

RESUMO

Tooth enamel can be eroded by the local cariogenic bacteria in plaque or nonbacterial factors in the oral environment. The damage is irreversible in most situations. For the etched human tooth enamel to be restored in situ, a salivary-acquired pellicle (SAP) bioinspired tannic acid (SAP-TA) is synthesized. Statherin is one of the SAP proteins that can selectively adsorb onto enamel surface. Peptide sequence DDDEEKC is a bioinspired sequence of statherin and has the adsorption capacity of hydroxyapatite (HAP). TA has abundant polyphenol groups that can grasp Ca2+ in saliva to induce the regeneration of HAP crystal. Hence, SAP-TA not only enhances the binding force at the interface of remineralization but also mimics the biomineralization process of tooth enamel. Moreover, ferric ion can coordinate with SAP-TA to form a compact coating that increases the adsorbed amounts of SAP-TA on tooth enamel. Compared with SAP-TA alone, the etched enamels treated with SAP-TA/Fe(III) have a better remineralization effect and mechanical properties (surface microhardness recovery >80% and binding force of 64.85 N) when being incubated in artificial saliva for 2 weeks. In vivo remineralization performance is evaluated in a classical rat caries model. The polarizing microscope and micro-CT results show that SAP-TA/Fe(III) has a good effect on the remineralization process in a real oral environment, indicating that it is a promising repair material for in situ remineralization of enamel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA