Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.641
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39020526

RESUMO

Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce ß-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aß aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.

2.
Tissue Cell ; 89: 102447, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38991270

RESUMO

Activating transcription factor 3 (ATF3) has been identified as a regulator associated with osteoblast differentiation. However, the effects of ATF3 on the osteogenic differentiation and proliferation of human periodontal stem cells (hPDLSCs) in periodontitis have not been reported. With the purpose of establishing an in vitro model of periodontitis, hPDLSCs were challenged with lipopolysaccharide (LPS). The Cell Counting Kit-8 assay was applied to assess cell viability, while reverse transcription-quantitative PCR and western blotting were employed to detect ATF3 expression. Inflammatory release was assessed using ELISA, together with western blotting. Lipid peroxidation was explored using the C11 BODIPY 581/591 probe, biochemical kits, thiobarbituric acid reactive substances (TBARS) assay and DCFH-DA staining. Iron and Fe2+ levels, and the expression levels of ferroptosis-related proteins were measured using corresponding kits and western blotting. Osteogenic differentiative capability was evaluated using alkaline phosphatase staining, Alizarin red staining and western blotting. The expression levels of proteins associated with Nrf2/HO-1 signaling were identified using western blotting. The results indicated that ATF3 expression was upregulated in LPS-induced hPDLSCs. The knockdown of ATF3 alleviated the LPS-induced inflammatory response in hPDLSCs, together with increased levels of TNF-α, IL-6, IL-1ß, Cox-2 and iNOS, and decreased levels of IL-10. ATF3 silencing also led to lower TBARS production rate, and reduced levels of reactive oxygen species, iron, Fe2+, ACSL4 and TFR1, whereas it elevated the levels of SLC7A11 and GPX4. In addition, ATF3 silencing promoted hPDLSC mineralization and cell differentiation, and elevated the levels of OCN2, RUNX2 and BMP2. Additionally, ATF3 depletion upregulated the expression levels of proteins related with Nrf2/HO-1 signaling. The Nrf2 inhibitor ML385 partially counteracted the effects of ATF3 interference on the LPS-challenged inflammatory response, lipid peroxidation, ferroptosis as well as osteogenic differentiative capability in hPDLSCs. In summary, the results revealed that ATF3 silencing suppressed inflammation and ferroptosis, while it improved osteogenic differentiation in LPS-induced hPDLSCs by regulating Nrf2/HO-1 signaling, which may provide promising therapeutic targets for the treatment of periodontitis.

3.
J Gynecol Oncol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38991944

RESUMO

BACKGROUND: The existence of activating transcription factor 1 (ATF1) could be employed as a clinical marker in the context of cervical cancer development, although its specific mechanism has not been fully clarified. METHODS: To evaluate the presence of ATF1, miR-630, and myelin and lymphocyte protein 2 (MAL2) in cervical malignancies, we conducted quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot assays; further studied the expansion, migration, invasion and epithelial-mesenchymal transition (EMT) of cervical carcinoma cells using colony formation assay, transwell, loss cytometry, Western blot. Chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) were used to verify that ATF1 could directly transcriptionally repress miR-630; dual luciferase reporter assay and RIP assay were employed to confirm that miR-630 targeted to repress MAL2. RESULTS: In cervical cancer cases, elevated ATF1 expression and reduced miR-630 expression were detected, displaying a negative relationship between them. Inhibition of ATF1 hindered the growth, migration, infiltration, and EMT in cervical carcinoma cells, while upregulation of miR-630 mitigated the aggressive characteristics of these cells. ATF1 was found to transcriptionally repress miR-630 by TransmiR and ALGGEN prediction and ChIP validation. MicroRNA modulates gene expression and affects cancer progression, and we discovered that miR-630 regulates cancer progression by targeting and inhibiting MAL2. CONCLUSION: ATF1, which modulates the miR-630/MAL2 pathway, affects the EMT process and cervical carcinoma cell growth and spread. Therefore, ATF1 may serve as a promising marker and treatment target for cervical malignancies intervention.

4.
G3 (Bethesda) ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985658

RESUMO

One of a major function of programmed cell death (apoptosis) is the removal of cells which suffered oncogenic mutations, thereby preventing cancerous transformation. By making use of a Double-Headed-EP (DEP) transposon, a P element derivative made in our laboratory, we made an insertional mutagenesis screen in Drosophila melanogaster to identify genes which, when overexpressed, suppress the p53-activated apoptosis. The DEP element has Gal4-activatable, outward-directed UAS-promoters at both ends which can be deleted separately in vivo. In the DEP insertion mutants, we used the GMR-Gal4 driver to induce transcription from both UAS-promoters and tested the suppression effect on the apoptotic rough eye phenotype generated by an activated UAS-p53 transgene. By DEP insertions, seven genes were identified which suppressed the p53-induced apoptosis. In four mutants, the suppression effect resulted from single genes activated by one UAS-promoter (Pka-R2, Rga, crol, Spt5). In the other three (Orct2, Polr2M, stg), deleting either UAS-promoter eliminated the suppression effect. In qPCR experiments we found that the genes in the vicinity of the DEP insertion also showed an elevated expression level. This suggested an additive effect of the nearby genes on suppressing apoptosis. In the eucaryotic genomes there are co-expressed gene clusters. Three of the DEP insertion mutants are included and two are in close vicinity of separate co-expressed gene clusters. This raises the possibility that the activity of some of the genes in these clusters may help the suppression of the apoptotic cell death.

5.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3668-3675, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041139

RESUMO

Network Meta-analysis and multi-criteria decision analysis(MCDA) model were performed to evaluate the benefit-risk of Compound Cantharis Capsules, Huisheng Oral Solution, and Jinlong Capsules in the adjuvant treatment of primary liver cancer(PLC). The randomized controlled trial(RCT) of Compound Cantharis Capsules, Huisheng Oral Solution, and Jinlong Capsules in treating PLC were retrieved from CNKI, Wanfang, VIP, Web of Science, PubMed, and Cochrane Library. R 4.2 was employed to conduct a network Meta-analysis, on the basis of which the effect values of the three medicines were obtained by indirect comparison. MCDA was performed to establish the value tree based on the benefit-risk indexes. Hiview 3.2 was used to calculate the benefit values, risk values, and benefit-risk values of the three medicines in treating PLC, and a sensitivity analysis was carried out to evaluate the robustness of the results. Oracle Crystal Ball 11.1 was employed to optimize the evaluation results by Monte Carlo simulation. A total of 39 RCTs were included. The results showed that Compound Cantharis Capsules, Huisheng Oral Solution, and Jinlong Capsules combined with transcatheter arterial chemoembolization(TACE) had the benefit values of 45, 51 and 45, the risk values of 59, 47, and 41, and the benefit-risk values of 52, 49, and 43, respectively. The benefit-risk differences and [95%CI] of Compound Cantharis Capsules vs Huisheng Oral Solution, Compound Cantharis Capsules vs Jinlong Capsules, and Huisheng Oral Solution vs Jinlong Capsules were 3.00[-13.09, 21.82], 9.00[-4.39, 24.62], and 6.00[-8.84, 20.28], respectively. Based on the results of MCDA, Huisheng Oral Solution, Jinlong Capsules, and Compound Cantharis Capsules combined with TACE had the greatest benefit, the greatest risk, and the best overall benefit, respectively. Considering the efficacy and safety, the priority of the three oral Chinese patent medicines combined with TACE for treating PLC followed the trend of Compound Cantharis Capsules, Huisheng Oral Solution, and Jinlong Capsules.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Humanos , Medicamentos de Ervas Chinesas/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Medição de Risco , Metanálise em Rede , Administração Oral , Técnicas de Apoio para a Decisão , Ensaios Clínicos Controlados Aleatórios como Assunto , Medicamentos sem Prescrição
6.
Subcell Biochem ; 104: 269-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963491

RESUMO

Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais
7.
Arch Microbiol ; 206(8): 339, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958759

RESUMO

Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.


Assuntos
Cordyceps , Cordyceps/metabolismo , Cordyceps/genética , Cordyceps/crescimento & desenvolvimento , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Adenosina/metabolismo , Polissacarídeos/metabolismo , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Carpóforos/genética
8.
Acta Trop ; 257: 107283, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955322

RESUMO

Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.

9.
J Nanobiotechnology ; 22(1): 392, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965606

RESUMO

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores da Transferrina , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Receptores da Transferrina/metabolismo , Camundongos , Linhagem Celular Tumoral , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proliferação de Células/efeitos dos fármacos , Terapia Genética/métodos , RNA Interferente Pequeno/farmacologia , Camundongos Nus
10.
Pharmacol Res ; 206: 107296, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971269

RESUMO

The activity of sirtuin 1 (SIRT1, a member of the NAD+-dependent deacetylases family) decreases during aging as NAD+ levels naturally decline, thus increasing the risk of several age-associated diseases. Several sirtuin-activating compounds (STACs) have been developed to counteract the age-associated reduction in SIRT1 activity, and some of them are currently under development in clinical trials. STACs induce SIRT1 activation, either through allosteric activation of the enzyme in the presence of NAD+, or by increasing NAD+ levels by inhibiting its degradation or by supplying a key precursor in biosynthesis. In this study, we have identified (E)-2'-des-methyl sulindac analogues as a novel class of STACs that act also in the absence of NAD+, a peculiar behavior demonstrated through enzymatic and mass spectrometry experiments, both in vitro and in cell lines. The activation of the SIRT1 pathway was confirmed in vivo through gene expression and metabolomics analysis. Our data suggest that these compounds could serve as candidate leads for a novel therapeutic strategy aimed at addressing a key metabolic deficiency that may contribute to metabolic and age-associated diseases.


Assuntos
NAD , Sirtuína 1 , Sirtuína 1/metabolismo , NAD/metabolismo , Animais , Humanos , Ativadores de Enzimas/farmacologia , Linhagem Celular , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Descoberta de Drogas
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167332, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960056

RESUMO

Malignant cell plasticity is an important hallmark of tumor biology and crucial for metastasis and resistance. Cell plasticity lets cancer cells adapt to and escape the therapeutic strategies, which is the leading cause of cancer patient mortality. Epithelial cells acquire mobility via epithelial-mesenchymal transition (EMT), whereas mesenchymal cells enhance their migratory ability and clonogenic potential by acquiring amoeboid characteristics through mesenchymal-amoeboid transition (MAT). Tumor formation, progression, and metastasis depend on the tumor microenvironment (TME), a complex ecosystem within and around a tumor. Through increased migration and metastasis of cancer cells, the TME also contributes to malignancy. This review underscores the distinction between invasion pattern morphological manifestations and the diverse structures found within the TME. Furthermore, the mechanisms by which amoeboid-associated characteristics promote resistance and metastasis and how these mechanisms may represent therapeutic opportunities are discussed.

12.
Future Oncol ; : 1-12, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011928

RESUMO

Aim: Compare healthcare costs for patients with epidermal growth factor receptor mutated (EGFRm) metastatic non-small-cell lung cancer (mNSCLC) with and without progression and estimate costs of progression. Materials & methods: Retrospective claims analysis (2015-2020) from adults with EGFRm mNSCLC initiating EGFR tyrosine kinase inhibitors. Adjusted costs for 12 months were compared (with vs without progression) and cumulative costs for early versus late progression were predicted over 36 months. Results: A total of 228 patients with EGFRm mNSCLC were included. Patients with progression within 12 months incurred significantly higher total costs despite lower treatment costs (vs without progression). Medical costs were significantly higher among early versus late progressors. Conclusion: These data may aid providers aiming to administer quality care in a cost-efficient way.


Lung cancer is the leading cause of cancer death among both men and women in the US. Among US patients with adenocarcinoma histology, approximately 17% have epidermal growth factor activating mutations (EGFRm) that include exon 19 deletions or L858R mutations. These common mutations make up approximately 85% of all EGFR mutations. The aim of this study was to compare healthcare resource utilization and costs for patients with EGFRm metastatic non-small-cell lung cancer with and without disease progression within the first 12 months following first-line treatment initiation using data from insurance claims. The results suggest that patients with EGFRm metastatic non-small-cell lung cancer with disease progression in the first 12 months (after treatment initiation) have significantly higher costs compared with patients without disease progression in the first 12 months (and highest in the first 6 months). These data may help inform oncology providers aiming to administer high quality cancer care in a cost-efficient way.

13.
Sci Rep ; 14(1): 14350, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906975

RESUMO

Cardiac ischemic preconditioning (Pre) reduces cardiac ischemia-reperfusion injury (IRI) by stimulating opioid receptors. Chronic use of opioids can alter the signaling pathways. We investigated the effects of chronic methadone use on IRI and Pre. The experiments were performed on isolated hearts of male Wistar rats in four groups: IRI, Methadone + IRI (M-IRI), Pre + IRI (Pre-IRI), Methadone + Pre + IRI (M-Pre-IRI). The infarct size (IS) in the Pre-IRI group was smaller than the IRI group (26.8% vs. 47.8%, P < 0.05). In the M-IRI and M-Pre-IRI groups, the infarct size was similar to the IRI group. Akt (Ak strain transforming) phosphorylation in the Pre-IRI, M-IRI, and M-Pre-IRI groups was significantly higher than in the IRI group (0.56 ± 0.15, 0.63 ± 0.20, and 0.93 ± 0.18 vs 0.28 ± 0.17 respectively). STAT3 (signal transducer and activator of transcription 3) phosphorylation in the Pre-IRI and M-Pre-IRI groups (1.38 ± 0.14 and 1.46 ± 0.33) was significantly higher than the IRI and M-IRI groups (0.99 ± 0.1 and 0.98 ± 0.2). Thus, chronic use of methadone not only has no protective effect against IRI but also destroys the protective effects of ischemic preconditioning. This may be due to the hyperactivation of Akt and changes in signaling pathways.


Assuntos
Precondicionamento Isquêmico Miocárdico , Metadona , Traumatismo por Reperfusão Miocárdica , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Animais , Masculino , Ratos , Precondicionamento Isquêmico Miocárdico/métodos , Metadona/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
14.
ACS Appl Mater Interfaces ; 16(26): 33005-33020, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900067

RESUMO

Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.


Assuntos
Fosfatase Alcalina , Materiais Biomiméticos , Calcificação Fisiológica , Animais , Ratos , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Glicerofosfatos/química , Poliuretanos/química , Poliuretanos/farmacologia
15.
Front Immunol ; 15: 1400819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863696

RESUMO

Background: Integrin-dependent cell adhesion and migration play important roles in systemic sclerosis (SSc). The roles of integrin activating molecules including talins and kindlins, however, are unclear in SSc. Objectives: We aimed to explore the function of integrin activating molecules in SSc. Methods: Transcriptome analysis of skin datasets of SSc patients was performed to explore the function of integrin-activating molecules including talin1, talin2, kindlin1, kindlin2 and kindlin3 in SSc. Expression of talin1 in skin tissue was assessed by multiplex immunohistochemistry staining. Levels of talin1 in serum were determined by ELISA. The effects of talin1 inhibition were analyzed in human dermal fibroblasts by real-time PCR, western blot and flow cytometry. Results: We identified that talin1 appeared to be the primary integrin activating molecule involved in skin fibrosis of SSc. Talin1 was significantly upregulated and positively correlates with the modified Rodnan skin thickness score (mRSS) and the expression of pro-fibrotic biomarkers in the skin lesions of SSc patients. Further analyses revealed that talin1 is predominantly expressed in the dermal fibroblasts of SSc skin and promotes fibroblast activation and collagen production. Additionally, talin1 primarily exerts its effects through integrin ß1 and ß5 in SSc. Conclusions: Overexpressed talin1 is participated in skin fibrosis of SSc, and talin1 appears to be a potential new therapeutic target for SSc.


Assuntos
Fibroblastos , Fibrose , Escleroderma Sistêmico , Pele , Talina , Humanos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Talina/metabolismo , Talina/genética , Pele/metabolismo , Pele/patologia , Fibroblastos/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Células Cultivadas
16.
Heliyon ; 10(11): e31261, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832267

RESUMO

In this research, bubble departure diameter in pool boiling have been measured in aqueous amine and ethylene glycol solutions for various concentrations. The experimental data have been compared with major existing predictive correlations. It is shown that the effect and identity of the independent variables on bubble diameter proposed in the previous studies are inconsistent. The predictions of different correlations have on average a deviation of about 40% from the experimental data. This is mainly due to the complicated interactions between bubbles on the heterogeneous boiling medium, which provides a complex condition. This complexity limits any mathematical modelling of the forces acting on the developing bubbles. Particularly in liquid solutions, where mass transfer by back diffusion through micro-sub-layers adds further complexity. In this work, the classical artificial neural network, ANN, with rectified linear unit, ReLU, activating function, AF, has been modified. This modification is based on adding a numerical matrix to each layer to adjust the slope of AF for each neuron independently. The addition of this parameter, together with the adjustment of the bias matrix, makes the activation function more flexible than the classical ReLU. To find the tuning parameters, a genetic algorithm was implemented instead of the back-propagation technique. It is shown that the predictions of the trained ANN with modified ReLU AF agree within an absolute average error of 10%, which is equal to the total uncertainty of the measurements. Prediction of bubble departing diameter in boiling phenomena is a key parameter for accurate design, operation and optimisation in many industrial systems.

17.
Chin J Integr Med ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850481

RESUMO

OBJECTIVE: To investigate whether Buthus martensii karsch (Scorpiones), Scolopendra subspinipes mutilans L. Koch (Scolopendra) and Gekko gecko Linnaeus (Gekko) could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α (PI3K/AKT/mTOR/HIF-1α) signaling pathway. METHODS: Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models, with rapamycin and cyclophosphamide as positive controls. Carboxy methyl cellulose solutions of Scorpiones, Scolopendra and Gekko were administered intragastrically as 0.33, 0.33, and 0.83 g/kg, respectively once daily for 21 days. Fluorescent expression were detected every 7 days after inoculation, and tumor growth curves were plotted. Immunohistochemistry was performed to determine CD31 and HIF-1α expressions in tumor tissue and microvessel density (MVD) was analyzed. Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1α signaling pathway-related proteins. Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor (bFGF), transforming growth factor-ß1 (TGF-ß1) and vascular endothelial growth factor (VEGF) in mice. RESULTS: Scorpiones, Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α (all P<0.01). Moreover, Scorpiones, Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase (p70S6K) (P<0.05 or P<0.01). In addition, they also decreased the expression of CD31, MVD, bFGF, TGF-ß1 and VEGF compared with the model group (P<0.05 or P<0.01). CONCLUSION: Scorpiones, Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1α signaling pathway.

18.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38931393

RESUMO

PURPOSE: This study aimed to evaluate the feasibility of using [68Ga]-fibroblast-activating protein inhibitor (FAPI) positron emission tomography (PET) imaging for diagnosing pulmonary fibrosis in a mouse model. We also examined its value in monitoring treatment response and compared it with traditional [18F]-fluorodeoxyglucose (FDG) PET and computed tomography (CT) imaging. METHODS: A model of idiopathic pulmonary fibrosis was established using intratracheal injection of bleomycin (BLM, 2 mg/kg) into C57BL/6 male mice. For the treatment of IPF, a daily oral dose of 400 mg/kg/day of pirfenidone was administered from 9 to 28 days after the establishment of the model. Disease progression and treatment efficacy were assessed at different stages of the disease every week for four weeks using CT, [18F]FDG PET, and [68Ga]FAPI PET (baseline imaging performed at week 0). Mice were sacrificed and lung tissues were harvested for hematoxylin-eosin staining, picrosirius red staining, and immunohistochemical staining for glucose transporter 1 (GLUT1) and FAP. Expression levels of GLUT1 and FAP in pathological sections were quantified. Correlations between imaging parameters and pathological quantitative values were analyzed. RESULTS: CT, [18F]FDG PET and [68Ga]FAPI PET revealed anatomical and functional changes in the lung that reflected progression of pulmonary fibrosis. In untreated mice with pulmonary fibrosis, lung uptake of [18F]FDG peaked on day 14, while [68Ga]FAPI uptake and mean lung density peaked on day 21. In mice treated with pirfenidone, mean lung density and lung uptake of both PET tracers decreased. Mean lung density, [18F]FDG uptake, and [68Ga]FAPI uptake correlated well with quantitative values of picrosirius red staining, GLUT1 expression, and FAP expression, respectively. Conclusions: Although traditional CT and [18F]FDG PET reflect anatomical and metabolic status in fibrotic lung, [68Ga]FAPI PET provides a means of evaluating fibrosis progression and monitoring treatment response.

19.
Biomed Pharmacother ; 177: 117025, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941893

RESUMO

As a broad-spectrum anticancer drug, cisplatin is widely used in the treatment of tumors in various systems. Unfortunately, several serious side effects of cisplatin limit its clinical application, the most common of which are nephrotoxicity and ototoxicity. Studies have shown that cochlear hair cell degeneration is the main cause of cisplatin-induced hearing loss. However, the mechanism of cisplatin-induced hair cell death remains unclear. The present study aimed to explore the potential role of activating transcription factor 6 (ATF6), an endoplasmic reticulum (ER)-localized protein, on cisplatin-induced ototoxicity in vivo and in vitro. In this study, we observed that cisplatin exposure induced apoptosis of mouse auditory OC-1 cells, accompanied by a significant increase in the expression of ATF6 and C/EBP homologous protein (CHOP). In cell or cochlear culture models, treatment with an ATF6 agonist, an ER homeostasis regulator, significantly ameliorated cisplatin-induced cytotoxicity. Further, our in vivo experiments showed that subcutaneous injection of an ATF6 agonist almost completely prevented outer hair cell loss and significantly alleviated cisplatin-induced auditory brainstem response (ABR) threshold elevation in mice. Collectively, our results revealed the underlying mechanism by which activation of ATF6 significantly improved cisplatin-induced hair cell apoptosis, at least in part by inhibiting apoptosis signal-regulating kinase 1 expression, and demonstrated that pharmacological activation of ATF6-mediated unfolded protein response is a potential treatment for cisplatin-induced ototoxicity.

20.
Cell Rep ; 43(7): 114422, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943642

RESUMO

Platelet-activating factor (PAF) is a potent phospholipid mediator crucial in multiple inflammatory and immune responses through binding and activating the PAF receptor (PAFR). However, drug development targeting the PAFR has been limited, partly due to an incomplete understanding of its activation mechanism. Here, we present a 2.9-Å structure of the PAF-bound PAFR-Gi complex. Structural and mutagenesis analyses unveil a specific binding mode of PAF, with the choline head forming cation-π interactions within PAFR hydrophobic pocket, while the alkyl tail penetrates deeply into an aromatic cleft between TM4 and TM5. Binding of PAF modulates conformational changes in key motifs of PAFR, triggering the outward movement of TM6, TM7, and helix 8 for G protein coupling. Molecular dynamics simulation suggests a membrane-side pathway for PAF entry into PAFR via the TM4-TM5 cavity. By providing molecular insights into PAFR signaling, this work contributes a foundation for developing therapeutic interventions targeting PAF signal axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...