Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 714
Filtrar
1.
Int J Biol Macromol ; 279(Pt 2): 135285, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233172

RESUMO

This research aimed to elaborate a gelatin-Kappa carrageenan-based packaging with 0.22 %, 0.44 %, and 0.88 % w/v of Mekwiya date palm seeds extract (DSEMK). This extract improved the mechanical, physical, and thermal properties of the films. Moisture content, water solubility, and water vapor permeability were reduced from 17.54 ± 0.02 to 12.18 ± 0.02, from 77.61 ± 0.02 to 25.35 ± 0.29 %, and from 5.28 ± 0.29 to 1.69 ± 0.03 g s-1 m-1 Pa-1 × 10-10, respectively. During thermal degradation, DSEMK4 film had a residual weight of 27.99 %, compared to 20.67 % for the control. Despite a decline in the film's tensile strength from 24.19 to 8.94 MPa with the incorporation of DSEMK, elongation at the breaking point increased from 37.66 ± 0.16 to 46.17 ± 0.25 %. The film containing DSEMK4 displayed the highest phenolic contents and illustrated the best antioxidant effects in DPPH and FRAP assays, with IC50s of 756 and 1445 µg/mL, respectively and inhibited pathogen growth on the meat surface. Over storage at 4 °C, monitoring of pH, lipid and protein oxidation parameters, microbial spoilage, optical properties, and sensory attributes disclosed that the DSEMK-films successfully enhanced the meat quality and safety. These findings were supported by principal component analysis and heat maps.

2.
Food Chem ; 463(Pt 1): 141048, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39241424

RESUMO

This study developed a biodegradable food film, incorporating bioactive components of Polygonatum cyrtonema extracted using natural deep eutectic solvents (NADES) into a matrix of chitosan and soy protein isolate. The films containing varying concentrations (0 %-5 %) of P. cyrtonema extract (PCE) were characterized. The addition of PCE improved the mechanical (+25.9 MPa for tensile strength), optical (+11.29 mm-1 for opacity), and thermal stability (-14.39 % for weight loss) of the films. The DPPH and ABTS radical scavenging rates increased by approximately 1.1 times and 0.5 times, respectively, and malondialdehyde formation reduced by 8 %. The films also effectively inhibited the growth of Staphylococcus aureus or Escherichia coli. The films showed complete biodegradability after 7 days. Using the NADES-PCE coated film reduced the weight loss of sweet cherries by 41.04 % while significantly decreasing the loss of hardness, total phenols, vitamin C, total soluble solids, and titratable acidity, thereby considerably extending the storage life of the sweet cherries. Overall, this study developed a new environmentally friendly packaging material and improved the functionality of the packaging film by leveraging natural plant extracts, demonstrating tremendous potential in the field of food preservation and packaging.

3.
Carbohydr Polym ; 346: 122613, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245524

RESUMO

Perilla essential oil (PLEO) offers benefits for food preservation and healthcare, yet its instability restricts its applications. In this study, chitosan (CS) and TiO2 used to prepare composite particles. TiO2, after being modified with sodium laurate (SL), was successfully introduced at 0.1 %-3 % into the CS matrix. The resulting CS-SL-TiO2 composite particles can be formed by intertwining and rearranging through intramolecular and intermolecular interactions, and form an O/W interface with stability and viscoelasticity. The Pickering emulsions stabilized by these particles exhibit non-Newtonian pseudoplastic behavior, shear-thinning properties, and slow-release characteristics, along with antibacterial activity. Emulsions with 0.5 % and 1 % CS-SL-TiO2 composites demonstrated superior antibacterial effects against Escherichia coli and Staphylococcus aureus. The study revealed that all emulsions undergo Fickian diffusion and a sustained release of PLEO, with the Ritger-Peppas model best describing this release mechanism. The slow-release behaviors positively correlates with interfacial pressure, composite particle size, composite particle potential, composite contact angle, emulsion particle size and emulsion potential, but negatively correlates with diffusion rate, penetration rate, release kinetics and release rate. The findings lay groundwork for developing slow-release antimicrobial emulsions within polysaccharide matrices, showcasing promise for antimicrobial packaging solutions and enhanced food preservation techniques.


Assuntos
Antibacterianos , Quitosana , Emulsões , Escherichia coli , Staphylococcus aureus , Titânio , Água , Quitosana/química , Quitosana/farmacologia , Titânio/química , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Água/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Tamanho da Partícula , Preparações de Ação Retardada/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Testes de Sensibilidade Microbiana , Liberação Controlada de Fármacos
4.
Int J Biol Macromol ; 279(Pt 2): 135110, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39222782

RESUMO

Anionic cellulose nanofibers (CNFs) were used to stabilize emulsions that combined water-soluble (and oil-soluble), strongly antioxidant extracts with a water-immiscible, notably antimicrobial essential oil. Specifically, the radical scavenging activity was primarily provided by aqueous extracts from olive fruit (Olea europaea L.), while the antimicrobial effects owed eminently to thyme oil (Thymus vulgaris L.). The resulting emulsions were highly viscous at low shear rate (4.4 Pa·s) and displayed yield stress. The addition of edible salts decreased the yield stress, the apparent viscosity and the droplet size, to the detriment of stability at ionic strengths above 50 mM. Once characterized, the antioxidant and antimicrobial emulsions were applied on packaging-grade paper. Coated paper sheets inhibited the growth of Listeria monocytogenes, a common foodborne pathogen, and acted as antioxidant emitters. In this sense, the release to food simulants A (ethanol 10 vol%), B (acetic acid 3 wt%), and C (ethanol 20 vol%) was assessed. A 24-hour exposure of 0.01 m2 of coated paper to 0.1 L of these hydrophilic simulants achieved inhibition levels of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in the 15-29 % range. All considered, the bioactive properties of thyme essential oil towards lipophilic food products can be complemented with the antioxidant activity of aqueous olive extracts towards hydrophilic systems, resulting in a versatile combination for active food packaging.

5.
Int J Biol Macromol ; 279(Pt 3): 135114, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233147

RESUMO

Owing to a lack of specific biological functions, bacterial cellulose (BC) has been restricted in its application to the field of active packaging. In this study, we developed antimicrobial packaging materials using foaming BC (FBC) with chitosan (CS) and applied it to the preservation of chilled sea bass. The material property analysis demonstrated that 1.5 % CS/FBC maintained a high water content of 91 %, a swelling ratio of 75.6 %, great stress of 1.61 MPa, and great strain of 1.87 %. CS incorporation into FBC also decreased its crystallinity from 73.39 % to 69.3 %. Meanwhile, 1.5 % CS/FBC also provided great antimicrobial ability against Escherichia coli and Staphylococcus aureus by approximately 2 log colony-forming units/mL inhibition utilizing contact-killing. Results of the preservation assessment indicated that 1.5 % CS/FBC efficiently inhibited Shewanella putrefaciens growth, reduced total volatile basic nitrogen release, and slightly inhibited lipid oxidation. Based on the above results, CS/FBC is an ecofriendly biomaterial produced from a microorganism that possesses high absorbency and strong antibacterial properties, making it suitable for development as antibacterial active packaging.

6.
Food Chem ; 462: 140985, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217749

RESUMO

This study aimed to develop a double-layer film composed of an intelligent, gelatin-based film integrated with active polyvinyl alcohol electrospun nanofibers (PVANFs). Eggplant skin extract (ESE), a colorimetric indicator, was incorporated into the gelatin-based film at varying concentrations ranging from 0 % to 8 % w/w. The gelatin film containing 8 % ESE was identified as the optimal formulation based on its superior color indication, water barrier, and mechanical properties. Savory essential oil (SEO)-loaded PVANFs were electrospun onto the optimized gelatin film to fabricate the double-layer film. Analysis of the chemical and crystalline structures and the double-layer film's thermal properties confirmed the gelatin film's physical integration with PVANFs. Morphological examination revealed a smooth surface on the film and a uniform fibrillar structure within the PVANFs. Furthermore, the developed double-layer film effectively detected spoilage in trout fish while controlling pH, oxidation, and microbial changes during storage.

7.
Food Chem ; 460(Pt 3): 140629, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142198

RESUMO

This work utilizes a handheld electrospinning device to prepare a novel nanofibrous composite membrane in situ for packaging freshness. It can realize pick-and-pack and is easy to operate. The nanofibrous membrane is based on PVB as the matrix material, adding Camellia oil (CO) and ZnO-TiO2 composite nanoparticles (ZT) as the active material. The antimicrobial property of the CO and the photocatalytic activity of the nanoparticles give the material good antimicrobial and ethylene degradation functions. Meanwhile, this nanofibrous membrane has good mechanical properties, suitable moisture permeability and good optical properties. The nanofibrous membrane are suitable for both climacteric and non- climacteric fruits. Its use as a cling film extends the shelf life of strawberries by 4 days and significantly slows the ripening of small tomatoes. Therefore, this nanofibrous membrane has great potential for application in the field of fruit preservation.


Assuntos
Antibacterianos , Etilenos , Embalagem de Alimentos , Conservação de Alimentos , Frutas , Nanofibras , Óleos de Plantas , Titânio , Óxido de Zinco , Titânio/química , Titânio/farmacologia , Frutas/química , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Etilenos/química , Etilenos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/instrumentação , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Nanofibras/química , Fragaria/química , Solanum lycopersicum/química
8.
Adv Food Nutr Res ; 111: 1-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103211

RESUMO

Food packaging plays an important role in protecting the safety and quality of food products and enables communication with consumers. With the improved consumers' awareness of safety and quality of food products, the changes in consumers' lifestyle, and the growing demand for transparency of food products along the supply chain, food packaging technologies have evolved from only providing the four fundamental functions (i.e., protection and preservation, containment, communication and marketing, and convenience) to possessing additional functions including active modification of the inside microenvironment (i.e., active packaging) and monitoring the safety and quality of products in real-time (i.e., intelligent packaging). A variety of active and intelligent packaging systems have been developed to better protect and monitor the quality and safety of food products during the past several decades. Recently, advanced versions of smart packaging technologies, such as smart active packaging and smart intelligent packaging technologies have also been developed to enhance the effectiveness of conventional smart packaging systems. Additionally, smart packaging systems that harvest the advantages of both active packaging and intelligent packaging have also been developed. In this chapter, a brief overview of smart packaging technologies was provided. Specific technologies being covered include conventional smart packaging technologies and advanced smart packaging technologies, such as smart active packaging, smart intelligent packaging and dual-function smart packaging.


Assuntos
Embalagem de Alimentos , Embalagem de Alimentos/métodos , Humanos , Inocuidade dos Alimentos
9.
Heliyon ; 10(14): e34387, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108878

RESUMO

Active packaging is of great interest in the modern food industry due to increasing shelf life and enhancing food quality. The importance of this technology increases when natural polymers are used in the construction of active packages. Development of a natural, biodegradable, and dual-active film was aimed in this study. So, agar aerogel containing different amounts of chlorine-doped graphene quantum dots (Cl-GQDs) was prepared. Cl-GQDs had excitation-dependent fluorimetry behavior due to the zigzag edges of graphene. The mean diameter of spherical nanoparticles of Cl-GQDs was about 12 nm, according to HR-TEM images. The results of Raman and ATR-FTIR confirmed that chlorine was well-doped on the GQD structure. Cl-GQDs showed high UV-absorption capability and very strong antioxidant activity (94.31 %), which maintained these activities after incorporation into the agar aerogel. The doped chlorine was responsible for the capacity to charge transfer of GQDs. BET and SEM results showed that adding Cl-GQDs to agar caused a porous structure. Finally, different types of agar aerogels containing Cl-GQDs can be used considering the intended application of aerogel. Agar aerogel containing 20 % Cl-GQDs is suggested if a porous aerogel with good thermal insulation properties is considered. However, agar aerogel containing 1 % Cl-GQDs is suitable as an active film. In conclusion, while Cl-GQDs hold promise as sustainable and multifunctional food packaging materials, their potential toxic effects must be thoroughly evaluated. Future studies should explore migration, potential interactions with specific food matrices, and long-term safety to ensure consumer protection.

10.
Int J Biol Macromol ; 278(Pt 2): 134683, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147345

RESUMO

In this study, the active food packaging film were prepared using hydroxypropyltrimethyl ammonium chloride chitosan with different substitution sites (O-HACC & N-HACC) and dialdehyde chitosan (DCS) grafted with protocatechuic acid (PA). To explore the effect of chitosan quaternization positions and crosslinking approaches on the slow-release and antibacterial properties, the double-crosslinked film were fabricated through the self-coupling reaction of PA and Schiff base reaction between amino groups on HACC and aldehyde groups on DCS. The HACC/DCS-based film exhibited stable porous three-dimensional networks with high nisin loading ratios (>90 %). With the participation of the catechol-catechol structure, the dense double-crosslinked film effectively restricted the diffusion of the water molecules, resulting in excellent slow-release properties fitting with the Korsmeyer-Peppas kinetic model. Especially, O-HACC/PA-g-DCS film, which had more reaction sites for Schiff base crosslinking than N-HACC, exhibited the equilibrium swelling ratio of 800 % at 60 h and could sustainably release nisin via non-Fickian diffusion behavior until 48 h. Moreover, the HACC/DCS-based double-crosslinked film performed good long-time antibacterial activity and preservation effects on salmon. On the 10th day of storage, the TVBN of N-HACC/PA-g-DCS and O-HACC/PA-g-DCS groups were only 28.26 ± 1.93 and 29.06 ± 1.68 mg/100 g and still lower than the thresholds.

11.
Food Sci Nutr ; 12(8): 5605-5618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139976

RESUMO

This research was undertaken to assess the effect of tragacanth gum-chitin nanofiber (TG-CNF) film containing free (CEO) or encapsulated cumin essential oil (CNE) combined with oxygen absorber (OA) packaging on the shelf-life of ready-to-cook (RTC) turkey breast burgers during chilled storage. The experimental groups were OA and TG-CNF as single treatments, TG-CNF + CEO, TG-CNF + CNE, and TG-CNF + OA as binary treatments, TG-CNF + CEO + OA and TG-CNF + CNE + OA as ternary treatments, and control. The samples were stored at 3°C for 20 days and analyzed for microbial, physicochemical, and sensory attributes. Binary treatments, when compared to single treatments, and ternary treatments, when compared to binary treatments, exhibited enhanced effectiveness in managing microbial growth, hindering physicochemical alterations, and decelerating sensory alterations. At day 20, TG-CNF + CNE + OA group was identified as the most effective group in inhibiting the growth of total mesophilic bacteria (TMB), total psychrophilic bacteria (TSB), and coliforms (final counts were 4.8, 4.16, and ≤1 log CFU/g, respectively), and TG-CNF + CNE + OA and TG-CNF + CEO + OA groups were known as the most effective groups in inhibiting lactic acid bacteria (LAB) (final counts were 4.71 and 5.15 log CFU/g, respectively). Furthermore, the TG-CNF + CNE + OA treatment proved to be the most effective group in reducing the total volatile nitrogen (TVN) (final level was 19.2 mg N/100 g) and thiobarbituric acid reactive substances (TBARS) (final level was 0.119 mg malondialdehyde (MDA)/kg). TG-CNF + CNE + OA and TG-CNF + CEO + OA were the most efficient groups to delay the increasing rate of cooking loss (final values were 23.3% and 24.6%) and pH (final values were 7.01 and 6.99). The sample's shelf-life was 4 days in control and TG-CNF, 8 days in OA and TG-CNF + OA, 12 days in TG-CNF + CEO, 16 days in TG-CNF + CNE and TG-CNF + CEO + OA, and at least 20 days in TG-CNF + CNE + OA. As a result, the incorporation of TG-CNF + CNE alongside OA packaging emerges as a highly effective active packaging method for preserving RTC turkey breast burgers during chilled storage.

12.
Int J Biol Macromol ; 278(Pt 2): 134859, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39163966

RESUMO

Strawberry fruits are popular all over the world due to their rich organoleptic properties and enormous health benefits. However, it is highly susceptible to postharvest spoilage due to various factors, including moisture loss, nutrient oxidation, and microbial spoilage. Recently, various researchers have studied the effect of chitosan-based flexible films and surface coatings on the shelf life of strawberries. Despite various reviews providing general information on the effects of chitosan-based films and coatings on various food products, no review has focused solely on their effects on postharvest preservation and the shelf life of strawberries. The purpose of this review is to summarize the current research on chitosan-based formulations for extending the shelf life of strawberries. Chitosan, a cationic carbohydrate polymer, possesses excellent properties such as film formation, mechanical strength, non-toxicity, biodegradability, edibility, UV-blocking ability, antioxidant activity, and antibacterial functionality, justifying its potential as packaging/coating material for fresh agricultural products, including strawberries. This review covers the various factors responsible for strawberry spoilage and the properties of chitosan that help counteract these factors. Additionally, the advantages of chitosan-based preservation technology compared to existing strawberry preservation methods were explained, efficiency was evaluated, and future research directions were suggested.

13.
Int J Food Microbiol ; 425: 110871, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39178662

RESUMO

Using a solvent-casting method, a poly(lactic acid) (PLA) film incorporated with caprylic acid (CA) was developed as an active packaging against Salmonella enterica ser. Typhimurium and S. enteritidis to reduce the risk of microbial contamination during distribution and storage of meat. According to the minimum inhibitory concentration (MIC) test results of the natural antimicrobial, CA was introduced at 0.6, 1.2, 2.4, and 4.8 % (v/v) into neat PLA. The biofilm inhibitory effect and antimicrobial efficacy of CA-PLA film against both Salmonella strains, as well as the intermolecular interactions and barrier properties of CA-PLA film, were evaluated. Biofilm formation was reduced to below the detection limit (<1.0 log CFU/cm2) for both S. typhimurium and S. enteritidis when co-cultured overnight with 4.8 % CA-PLA film. The 4.8 % CA-PLA film achieved maximum log reductions of 2.58 and 1.65 CFU/g for S. typhimurium and 2.59 and 1.76 CFU/g for S. enteritidis on inoculated chicken breast and beef stored at 25 °C overnight, respectively, without any quality (color and texture) losses. CA maintained its typical chemical structure in the film, as confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. Furthermore, film surface morphology observations by field emission scanning electron microscopy (FESEM) showed that CA-PLA film was smoother than neat PLA film. No significant (P > 0.05) changes were observed for water vapor permeability and oxygen permeability by the addition of CA into PLA film, suggesting that CA-PLA film is a promising strategy for active packaging to control Salmonella contamination in the meat industry.


Assuntos
Biofilmes , Caprilatos , Embalagem de Alimentos , Carne , Testes de Sensibilidade Microbiana , Poliésteres , Salmonella typhimurium , Caprilatos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Embalagem de Alimentos/métodos , Poliésteres/farmacologia , Poliésteres/química , Carne/microbiologia , Animais , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Bovinos , Galinhas , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/crescimento & desenvolvimento , Microbiologia de Alimentos , Contaminação de Alimentos/prevenção & controle , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Salmonella/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Polímeros/farmacologia , Polímeros/química , Ácido Láctico/farmacologia
14.
Int J Biol Macromol ; 277(Pt 3): 134505, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106933

RESUMO

In this work, the modification of poly(butylene adipate-co-terephthalate) (PBAT) was combined with the development of active packaging films. PBAT, starch, plasticizer, and tea polyphenols (TP) were compounded and extrusion-blown into thermoplastic starch (TPS)/PBAT-TP active films. Effects of TPS contents on physicochemical properties, functional activities, biodegradability, and release kinetics of PBAT-based active films were explored. Starch interacted strongly with TP through hydrogen bonding and induced the formation of heterogeneous structures in the films. With the increase in TPS contents, surface hydrophilicity and water vapor permeability of the films increased, while mechanical properties decreased. Blending starch with PBAT greatly accelerated degradation behavior of the films, and the T30P70-TP film achieved complete degradation after 180 days. As TPS contents increased, swelling degree of the films increased and TP release were improved accordingly, resulting in significantly enhanced antioxidant and antimicrobial activities. This work demonstrated that filling starch into PBAT-based active films could achieve different antioxidant and antimicrobial activities of the films by regulating film swelling and release behavior.


Assuntos
Poliésteres , Polifenóis , Amido , Chá , Amido/química , Polifenóis/química , Polifenóis/farmacologia , Chá/química , Poliésteres/química , Antioxidantes/química , Antioxidantes/farmacologia , Permeabilidade , Fenômenos Químicos , Embalagem de Alimentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
15.
Food Sci Biotechnol ; 33(11): 2533-2541, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39144186

RESUMO

The presence of oxygen can degrade food quality, making it essential to remove oxygen from the packaging headspace of food products. In this study, the effect of catalyst type and concentration on iron-based oxygen-scavenging films was investigated to enhance the oxygen removal efficiency in food packaging films. Among the investigated catalysts, calcium chloride and lipophilic silica improved the oxygen-scavenging capacity more than sodium chloride and hydrophilic silica. As the catalyst content was increased from 0.1 to 6.0 %(w/w), the oxygen content (%) in the package decreased from 3.90 to 0.36%. Application of oxygen-scavenging films in apple packaging decreased the apple browning index from 52.87 to 38.13 and reduced the oxygen concentration inside the package from 9.8 to 0.0%. Therefore, the food packaging film developed in this study can be used as a food packaging material that removes oxygen and thus prevents food quality deterioration. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01520-4.

16.
Int J Biol Macromol ; 278(Pt 1): 134658, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128751

RESUMO

Protein and polysaccharides are the mostly used biopolymers for developing packaging film and their combination-based composite produced better quality film compared to their single counterpart. The combination of protein and polysaccharides are superior owing to the better physical properties like water resistance, mechanical and barrier properties of the film. The protein/polysaccharide-based composite film showed promising result in active and smart food packaging regime. This work discussed the recent advances on the different types of protein/polysaccharide combinations used for making bio-based sustainable packaging film formulation and further utilized in food packaging applications. The fabrication and properties of various protein/polysaccharide combination are comprehensively discussed. This review also presents the use of the multifunctional composite film in meat, fish, fruits, vegetables, milk products, and bakery products, etc. Developing composite is a promising approach to improve physical properties and practical applicability of packaging film. The low water resistance properties, mechanical performance, and barrier properties limit the real-time use of biopolymer-based packaging film. The combination of protein/polysaccharide can be one of the promising solutions to the biopolymer-based packaging and thus recently many works has been published which is suitable to preserve the shelf life of food as well trace the food spoilage during food storage.

17.
Polymers (Basel) ; 16(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39204536

RESUMO

Bacterial cellulose (BC) is a biodegradable polymer resembling paper after being dried. It finds a growing number of applications in many branches of industry and in medicine. In the present study, BC was produced after Gluconacetobacter hansenii ATCC 23769 strain culture and used as a matrix for plant extracts (tulsi, brahmi, lemon, blackberry, nettle root, and nettle leave) and essential oils (cinnamon, sage, clove, mint, thyme, lemongrass, rosemary, lemon, anise, tea tree, lime, grapefruit, and tangerine), and the antimicrobial properties of these biomaterials was determined. The growth-inhibiting effects of plant extracts and essential oils combined with BC were analyzed against five Cronobacter species isolated from food matrix and two reference strains from the ATCC (513229 and 29544). Additional analyses were conducted for BC water activity and for its capability to absorb biologically active plant compounds. The cellulose matrix with a 50% extract from brahmi was found to effectively inhibit the growth of the selected Cronobacter strains. The other plant water extracts did not show any antimicrobial activity against the tested strains. It was demonstrated that BC soaked with thyme essential oil was characterized with the strongest antimicrobial activity in comparison to the other tested EOs. These study results indicate the feasibility of deploying BC impregnated with natural plant components as an active and environmentally-friendly packaging material.

18.
Front Chem ; 12: 1448171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170869

RESUMO

Chia (Salvia hispanica L.) flour seeds produce films with good barrier properties against water vapor and could be used as food packaging; however, their mechanical properties are poor, which limits their application. The incorporation of nanoparticles into natural polymers is a strategy used to improve the properties of films to increase their applications. Furthermore, nanoparticles can encapsulate antioxidant agents and generate active films. The objective of this study was to evaluate the influence of chia flour (4%-7%), glycerol (15%-25%), and chia extract-loaded chitosan nanoparticles (ChCNp) (0%-0.75%) on the physical, mechanical, barrier, structural and antioxidant properties of chia flour nanocomposite films. Chitosan nanoparticles loaded with antioxidant chia extract were synthesized by ionic gelation and incorporated into the films. The thickness, water vapor permeability, tensile strength, and antioxidant properties of the films were evaluated using a Box-Behnken experimental design. Structural analysis was conducted using the FTIR technique. The results of the ANOVA of the responses were adjusted to second and third order polynomial models obtaining determination coefficients of 0.96-0.99. The water vapor permeability of the films was 3.89 × 10-8-1.68 × 10-7 g mm/Pa s m2, tensile strength was 0.67-3.59 MPa and antioxidant activity was 57.12%-67.84%. The variables presented different effects on the films. Increasing the chia seed flour concentration negatively affected the water vapor permeability but improved the tensile strength and the antioxidant capacity of the films. The increase in glycerol concentration caused the films to become brittle. The nanoparticles had a significant effect on the thickness of the films and improved their mechanical and antioxidant properties. However, they did not show an effect on barrier properties. The results demonstrate that it is possible to obtain nanocomposite films with antioxidant capacity from chia seed flour and with the incorporation of chitosan nanoparticles loaded with antioxidants.

19.
J Food Sci ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175180

RESUMO

This study targets explicitly finding an alternative to petroleum-based plastic films that burden the environment, which is a high priority. Hence, polymeric films were prepared with carboxymethyl cellulose (CMC) (4%), pectin (2%), and polyhydroxybutyrate (PHB) (0.5%) with different concentrations of thymol (0.3%, 0.9%, 1.8%, 3%, and 5%) and glycerol as a plasticizer by solution casting technique. The prepared films were tested for mechanical, optical, antimicrobial, and antioxidant properties. Film F5 (CMC + P + PHB + 0.9%thymol) showed an excellent tensile strength of 15 MPa, Young's modulus of 395 MPa, antioxidant activity (AA) (92%), rapid soil biodegradation (21 days), and strong antimicrobial activity against bacterial and fungal cultures such as Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus. The thymol content increase in films F6 (1.8%), F7 (3%), and F8 (5%) displayed a decrease in mechanical properties due to thymol's hydrophobicity. For shelf life studies on tomatoes, F2, a film without thymol (poor antimicrobial and antioxidant activities), F5 (film with superior mechanical, optical, antimicrobial, and antioxidant properties), and F7 (film with low mechanical properties) were selected. Film F5 coatings on tomato fruit enhanced the shelf life of up to 15 days by preventing weight loss, preserving firmness, and delaying changes in biochemical constituents like lycopene, phenols, and AA. Based on the mechanical, optical, antimicrobial, antioxidant, and shelf life results, the film F5 is suitable for active food packaging and preservation. PRACTICAL APPLICATION: The developed active biodegradable composite can be utilized as a coating to extend the shelf life of fruits and vegetables. These coatings are easy to produce and apply, offering a sustainable solution to reduce food waste. On an industrial scale, they can be applied to food products, ensuring longer freshness without any technical challenges.

20.
Int J Biol Macromol ; 278(Pt 4): 135086, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39191339

RESUMO

This study developed active packaging films of Polylactic acid incorporated with the plant-based essential oils of Trachyspermum ammi, T. ammi and Vanilla to package waffles, where the antimicrobial property was provided by T. ammi and its odor was masked by vanilla essential oil. Compared to conventional solvent-cast films of smaller sizes requiring a huge amount of solvents, bigger-size PLA-oil films with lower solvent demand were prepared by tape casting technique with 10, 30, and 50 wt% essential oil blends. Films were studied for their morphological, chemical, mechanical, barrier, and antimicrobial properties. The presence and time-bound release of volatile oils from the films was confirmed by infrared spectroscopy, with a continuous decrease of oils from the films till day 30. The plasticizing effect of oils in films was evidenced by decreased tensile strength and crystallinity. In contrast, an increase in elongation at break and water vapor permeability of oil films were also measured. Finally, when packed in PLA films containing 50 wt% blend of both oils, waffles shelf-life extended up to 30 days compared to 2 days for the neat PLA film, where Vanilla was found effective in masking the unpleasant odor of T.ammi as confirmed by sensory analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA