Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Zhejiang Univ Sci B ; 25(5): 438-450, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725342

RESUMO

Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)|-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.


Assuntos
Progressão da Doença , Pequeno RNA não Traduzido , RNA de Transferência , Neoplasias Gástricas , Humanos , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Pequeno RNA não Traduzido/metabolismo
2.
Nutr Res ; 126: 180-192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759501

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.


Assuntos
Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Treinamento Intervalado de Alta Intensidade , Resistência à Insulina , Fígado , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas , Condicionamento Físico Animal , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Fígado Gorduroso/prevenção & controle , Oxirredução
3.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141016, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615987

RESUMO

Acyl-Coenzyme A binding domain containing proteins (ACBDs) are ubiquitous in nearly all eukaryotes. They can exist as a free protein, or a domain of a large, multidomain, multifunctional protein. Besides modularity, ACBDs also display multiplicity. The same organism may have multiple ACBDs, differing in sequence and organization. By virtue of this diversity, ACBDs perform functions ranging from transport, synthesis, trafficking, signal transduction, transcription, and gene regulation. In plants and some microorganisms, these ACBDs are designated ACBPs (acyl-CoA binding proteins). The simplest ACBD/ACBP is a small, ∼10 kDa, soluble protein, comprising the acyl-CoA binding (ACB) domain. Most of these small ACBDs exist as monomers, while a few show a tendency to oligomerize. In sync with those studies, we report the crystal structure of two ACBDs from Leishmania major, named ACBP103, and ACBP96 based on the number of residues present. Interestingly, ACBP103 crystallized as a monomer and a dimer under different crystallization conditions. Careful examination of the dimer disclosed an exposed 'AXXA' motif in the helix I of the two ACBP103 monomers, aligned in a head-to-tail arrangement in the dimer. Glutaraldehyde cross-linking studies confirm that apo-ACBP103 can self-associate in solution. Isothermal titration calorimetry studies further show that ACBP103 can bind ligands ranging from C8 - to C20-CoA, and the data could be best fit to a 'two sets of sites'/sequential binding site model. Taken together, our studies show that Leishmania major ACBP103 can self-associate in the apo-form through a unique dimerization motif, an interaction that may play an important role in its function.


Assuntos
Motivos de Aminoácidos , Leishmania major , Multimerização Proteica , Leishmania major/metabolismo , Leishmania major/genética , Acil Coenzima A/metabolismo , Acil Coenzima A/química , Cristalografia por Raios X , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Modelos Moleculares , Sítios de Ligação
4.
J Diabetes Investig ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650121

RESUMO

AIMS/INTRODUCTION: Tanshinone IIA (TIIA) is one of the main components of the root of the red-rooted Salvia miltiorrhiza Bunge. However, the molecular mechanisms underlying TIIA-mediated protective effects in diabetic nephropathy (DN) are still unclear. MATERIALS AND METHODS: High glucose (HG)-induced mouse podocyte cell line (MPC5) cells were used as the in vitro model of DN and treated with TIIA. Cell viability, proliferation and apoptosis were detected using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine and flow cytometry assays. The protein levels were assessed using western blot assay. The levels of inflammatory factors were deleted by enzyme-linked immunoassay. Fe+ level, reactive oxygen species, malondialdehyde and glutathione products were detected using special assay kits. After ENCORI prediction, the interaction between embryonic lethal abnormal visual-like protein 1 (ELAVL1) and acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) was verified using co-immunoprecipitation assay and dual-luciferase reporter assays. ACSL4 messenger ribonucleic acid expression was measured using real-time quantitative polymerase chain reaction. RESULTS: TIIA repressed HG-induced MPC5 cell apoptosis, inflammatory response and ferroptosis. ACSL4 upregulation relieved the repression of TIIA on HG-mediated MPC5 cell injury and ferroptosis. ELAVL1 is bound with ACSL4 to positively regulate the stability of ACSL4 messenger ribonucleic acid. TIIA hindered HG-triggered MPC5 cell injury and ferroptosis by regulating the ELAVL1-ACSL4 pathway. TIIA blocked DN progression in in vivo research. CONCLUSION: TIIA treatment restrained HG-caused MPC5 cell injury and ferroptosis partly through targeting the ELAVL1-ACSL4 axis, providing a promising therapeutic target for DN treatment.

5.
Mol Cell ; 84(7): 1338-1353.e8, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503284

RESUMO

MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid ß-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.


Assuntos
Ácidos Graxos , Mitocôndrias , Animais , Camundongos , Apoptose , Coenzima A Ligases/genética , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Oxirredução
6.
J Cancer ; 15(2): 370-382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169575

RESUMO

Reprogramming of energy metabolism is one of the most important characteristics of tumors. Bladder cancer (BLCA) cells contain higher levels of cholesterol content compared to normal cells, and acyl-coenzyme A (CoA): cholesterol acyltransferase-1 (ACAT1) plays a crucial role in the esterification of cholesterol. Avasimibe is a drug that has been used in the treatment of atherosclerosis, and it can effectively inhibit ACAT1. We observed that ACAT1 was significantly up-regulated in BLCA and positively correlated with tumor grade. By avasimibe administration, the proliferation and migration ability of BLCA cells were reduced, while the production of ROS was strongly increased, accompanied by the up-regulated expression of ROS metabolism-related proteins SOD2 and catalase. Furthermore, BLCA cell cycle was arrested at the G1 phase, accompanied by the downregulation of cell cycle-related proteins (CCNA1/2, CCND1, CDK2 and CDK4), while the PPARγ was found to be up-regulated at both transcriptional and protein levels after avasimibe treatment. Then we found that the PPARγ antagonist GW9662 could reverse the effect of avasimibe on the cell cycle. Moreover, xenograft and pulmonary metastasis models further demonstrated that avasimibe could inhibit tumor cell growth and metastasis in vivo. Taken together, our results for the first time revealed that avasimibe can inhibit BLCA progression and metastasis, and PPARγ signaling pathway may play a key role in regulation of cell cycle distribution induced by avasimibe.

7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 707-713, 2023 Dec 07.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38105686

RESUMO

OBJECTIVES: To investigate the genotypes and biochemical phenotypes of neonates with abnormal metabolism of butyrylcarnitine (C4). METHODS: One hundred and twenty neonates with increased C4 levels detected by tandem mass spectrometry in the neonatal screening at Children's Hospital, Zhejiang University School of Medicine from January 2018 to June 2023 were included. The initial screening data and recalled data of C4 and C4/C3 were collected and converted into multiples of C4 reference range. Next generation sequencing was performed and the exons with adjacent 50 bp regions of ACAD8 and ACADS genes were captured by liquid phase capture technique. Variant information was obtained by bioinformatic analysis and the pathogenicity were classified according to the American College of Medical Genetics and Genomics criteria. The Wilcoxon rank sum test was used to analyze the differences in C4 levels among neonates with different variation types. RESULTS: In total, 32 variants in ACAD8 gene were detected, of which 7 variants were reported for the first time; while 41 variants of ACADS gene were detected, of which 17 variants have not been previously reported. There were 39 cases with ACAD8 biallelic variations and 3 cases with ACAD8 monoallelic variations; 34 cases with ACADS biallelic variations and 36 cases with ACADS monoallelic variations. Furthermore, 5 cases were detected with both ACAD8 and ACADS gene variations. Inter group comparison showed that the multiples of C4 reference range in initial screening and re-examination of the ACAD8 biallelic variations and ACADS biallelic variations groups were significantly higher than those of the ACADS monoallelic variations group (all P<0.01), while the multiples in the ACAD8 biallelic variations group were significantly higher than those in the ACADS biallelic variations group (all P<0.01). The multiples of C4 reference range in the initial screening greater than 1.5 times were observed in all neonates carrying ACAD8 or ACADS biallelic variations, while only 25% (9/36) in neonates carrying ACADS monoallelic variations. CONCLUSIONS: ACAD8 and/or ACADS gene variants are the main genetic causes for elevated C4 in newborns in Zhejiang region with high genotypic heterogeneity. The C4 levels of neonates with biallelic variations are significantly higher than those of neonates with monoallelic variations. The cut-off value for C4 level could be modestly elevated, which could reduce the false positive rate in tandem mass spectrometry neonatal screening.


Assuntos
Carnitina , Criança , Humanos , Recém-Nascido , Acil-CoA Desidrogenase/genética , Genótipo , Fenótipo , Carnitina/metabolismo , Mutação
8.
FASEB J ; 37(9): e23151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585289

RESUMO

Docosahexaenoic acid (DHA) and ultra-long-chain polyunsaturated fatty acids (ULC-PUFAs) are uniquely enriched in membrane phospholipids of retinal photoreceptors. Several studies have shown that di-DHA- and ULC-PUFA-containing phospholipids in photoreceptors have an important role in maintaining normal visual function; however, the molecular mechanisms underlying the synthesis and enrichment of these unique lipids in the retina, and their specific roles in retinal function remain unclear. Long-chain acyl-coenzyme A (CoA) synthetase 6 (ACSL6) preferentially converts DHA into DHA-CoA, which is a substrate during DHA-containing lipid biosynthesis. Here, we report that Acsl6 mRNA is expressed in the inner segment of photoreceptor cells and the retinal pigment epithelial cells, and genetic deletion of ACSL6 resulted in the selective depletion of di-DHA- and ULC-PUFA-containing phospholipids, but not mono-DHA-containing phospholipids in the retina. MALDI mass spectrometry imaging (MALDI-MSI) revealed the selective distribution of di-DHA- and ULC-PUFA-containing phospholipids in the photoreceptor outer segment (OS). Electroretinogram of Acsl6-/- mice exhibited photoreceptor cell-derived visual impairment, whereas the expression levels and localization of opsin proteins were unchanged. Acsl6-/- mice exhibited an age-dependent progressive decrease of the thickness of the outer nuclear layers, whereas the inner nuclear layers and OSs were normal. These results demonstrate that ACSL6 facilitates the local enrichment of di-DHA- and ULC-PUFA-containing phospholipids in the retina, which supports normal visual function and retinal homeostasis.


Assuntos
Ácidos Docosa-Hexaenoicos , Fosfolipídeos , Camundongos , Animais , Fosfolipídeos/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Retina/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ligases/análise , Ligases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo
9.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446119

RESUMO

Lipid metabolism is a complex process crucial for energy production resulting in high levels of acyl-coenzyme A (acyl-CoA) molecules in the cell. Acyl-CoAs have also been implicated in inflammation, which could be possibly linked to lipoxygenase (LOX) biochemistry by the observation that an acyl-CoA was bound to human platelet 12-lipoxygenase via cryo-EM. Given that LOX isozymes play a pivotal role in inflammation, a more thorough investigation of the inhibitory effects of acyl-CoAs on lipoxygenase isozymes was judged to be warranted. Subsequently, it was determined that C18 acyl-CoA derivatives were the most potent against h12-LOX, human reticulocyte 15-LOX-1 (h15-LOX-1), and human endothelial 15-LOX-2 (h15-LOX-2), while C16 acyl-CoAs were more potent against human 5-LOX. Specifically, oleoyl-CoA (18:1) was most potent against h12-LOX (IC50 = 32 µM) and h15-LOX-2 (IC50 = 0.62 µM), stearoyl-CoA against h15-LOX-1 (IC50 = 4.2 µM), and palmitoleoyl-CoA against h5-LOX (IC50 = 2.0 µM). The inhibition of h15-LOX-2 by oleoyl-CoA was further determined to be allosteric inhibition with a Ki of 82 +/- 70 nM, an α of 3.2 +/- 1, a ß of 0.30 +/- 0.07, and a ß/α = 0.09. Interestingly, linoleoyl-CoA (18:2) was a weak inhibitor against h5-LOX, h12-LOX, and h15-LOX-1 but a rapid substrate for h15-LOX-1, with comparable kinetic rates to free linoleic acid (kcat = 7.5 +/- 0.4 s-1, kcat/KM = 0.62 +/- 0.1 µM-1s-1). Additionally, it was determined that methylated fatty acids were not substrates but rather weak inhibitors. These findings imply a greater role for acyl-CoAs in the regulation of LOX activity in the cell, either through inhibition of novel oxylipin species or as a novel source of oxylipin-CoAs.


Assuntos
Isoenzimas , Lipoxigenase , Humanos , Oxilipinas , Acil Coenzima A/metabolismo , Inflamação , Receptores Depuradores Classe E
10.
Pharmgenomics Pers Med ; 16: 577-587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305019

RESUMO

Objective: To investigate the clinical and gene mutation characteristics of fatty acid oxidative metabolic diseases found in neonatal screening. Methods: A retrospective analysis was performed on 29,948 neonatal blood tandem mass spectrometry screening samples from January 2018 to December 2021 in our neonatal screening centre. For screening positive, recall review is still suspected of fatty acid oxidation metabolic disorders in children as soon as possible to improve the genetic metabolic disease-related gene detection package to confirm the diagnosis. All diagnosed children were followed up to the deadline. Results: Among 29,948 neonates screened by tandem mass spectrometry, 14 cases of primary carnitine deficiency, six cases of short-chain acyl coenzyme A dehydrogenase deficiency, two cases of carnitine palmitoyltransferase-I deficiency and one case of multiple acyl coenzyme A dehydrogenase deficiency were recalled. Except for two cases of multiple acyl coenzyme A dehydrogenase deficiency that exhibited [manifestations], the other 21 cases were diagnosed pre-symptomatically. Eight mutations of SLC22A5 gene were detected, including c.51C>G, c.403G>A, c.506G>A, c.1400C>G, c.1085C>T, c.706C>T, c.1540G>C and c.338G>A. Compound heterozygous mutation of CPT1A gene c.2201T>C, c.1318G>A, c.2246G>A, c.2125G>A and ETFA gene c.365G>A and c.699_701delGTT were detected, and new mutation sites were found. Conclusion: Neonatal tandem mass spectrometry screening is an effective method for identifying fatty acid oxidative metabolic diseases, but it should be combined with urine gas chromatography-mass spectrometry and gene sequencing technology. Our findings enrich the gene mutation profile of fatty acid oxidative metabolic disease and provide evidence for genetic counselling and prenatal diagnosis in families.

11.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239883

RESUMO

Cotton (Gossypium spp.) is the fifth largest oil crop in the world, and cottonseed provides abundant vegetable oil resources and industrial bioenergy fuels for people; therefore, it is of practical significance to increase the oil content of cotton seeds for improving the oil yield and economic benefits of planting cotton. Long-chain acyl-coenzyme A (CoA) synthetase (LACS) capable of catalyzing the formation of acyl-CoAs from free fatty acids has been proven to significantly participate in lipid metabolism, of which whole-genome identification and functional characterization of the gene family have not yet been comprehensively analyzed in cotton. In this study, a total of sixty-five LACS genes were confirmed in two diploid and two tetraploid Gossypium species, which were divided into six subgroups based on phylogenetic relationships with twenty-one other plants. An analysis of protein motif and genomic organizations displayed structural and functional conservation within the same group but diverged among the different group. Gene duplication relationship analysis illustrates the LACS gene family in large scale expansion through WGDs/segmental duplications. The overall Ka/Ks ratio indicated the intense purifying selection of LACS genes in four cotton species during evolution. The LACS genes promoter elements contain numerous light response cis-elements associated with fatty acids synthesis and catabolism. In addition, the expression of almost all GhLACS genes in high seed oil were higher compared to those in low seed oil. We proposed LACS gene models and shed light on their functional roles in lipid metabolism, demonstrating their engineering potential for modulating TAG synthesis in cotton, and the genetic engineering of cottonseed oil provides a theoretical basis.


Assuntos
Genoma de Planta , Gossypium , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Família Multigênica , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo
12.
Front Microbiol ; 14: 1179536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187543

RESUMO

Magnaporthe oryzae is a filamentous fungus that causes rice blast. Rice blast seriously threatens the safety of food production. The normal synthesis and metabolism of fatty acids are extremely important for eukaryotes, and acyl-CoA is involved in fatty acid metabolism. Acyl-CoA binding (ACB) proteins specifically bind both medium-chain and long-chain acyl-CoA esters. However, the role of the Acb protein in plant-pathogenic fungi has not yet been investigated. Here, we identified MoAcb1, a homolog of the Acb protein in Saccharomyces cerevisiae. Disruption of MoACB1 causes delayed hyphal growth, significant reduction in conidial production and delayed appressorium development, glycogen availability, and reduced pathogenicity. Using immunoblotting and chemical drug sensitivity analysis, MoAcb1 was found to be involved in endoplasmic reticulum autophagy (ER-phagy). In conclusion, our results suggested that MoAcb1 is involved in conidia germination, appressorium development, pathogenicity and autophagy processes in M. oryzae.

13.
FEBS J ; 290(16): 4057-4073, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37042241

RESUMO

Acyl-coenzyme A thioesterase (Acot) enzymes are involved in a broad range of essential intracellular roles including cell signalling, lipid metabolism, inflammation and the opening of ion channels. Dysregulation in lipid metabolism has been linked to neuroinflammatory and neurological disorders such as Alzheimer's and Parkinson's diseases. Structurally, Acot enzymes adopt a circularised trimeric arrangement with each monomer containing an N- and a C-terminal hotdog domain. Acot7 spontaneously forms amyloid fibrils in vitro under physiological conditions. The resultant amyloid fibrillar structures were characterised by dye-binding fluorescence assays, far-UV circular dichroism spectroscopy, transmission electron microscopy and X-ray fibre diffraction. Acot7 has an unusual mechanism of aggregation with no lag phase. The initial phase (~ 18 h) of aggregation involves conformational rearrangement within the oligomers to form species of enhanced ß-sheet character. The subsequent loss of α-helical structure is accompanied by large-scale amyloid fibril formation. The crystal structure of Acot7 revealed an unexpected arrangement of the two domains within the circularised trimeric structure, which is the basis for a proposed mechanism of amyloid fibril formation involving domain swapping during the initial phase of aggregation. Acot7 formed fibrils in the presence of its substrate arachidonoyl-CoA and its inhibitors and maintained its enzyme activity during fibril assembly. It is proposed that the Acot7 fibrillar form acts as functional amyloid.


Assuntos
Amiloide , Doença de Parkinson , Humanos , Amiloide/química , Difração de Raios X , Microscopia Eletrônica de Transmissão , Inflamação , Dicroísmo Circular
14.
Methods Enzymol ; 683: 3-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087194

RESUMO

Analyses of the enzymatic activities of hydroxycinnamoyl-coenzyme A (CoA) hydroxycinnamoyltransferases of the BAHD family require hydroxycinnamoyl-CoA thioesters as assay reagents. Here we describe a simple, cost-effective method for preparing p-coumaroyl-, caffeoyl- and feruloyl-CoA thioesters using the Arabidopsis thaliana 4-coumarate:CoA ligase 1 (4CL1) expressed in Escherichia coli. Preparation of the 4CL enzyme, in vitro synthesis of the thioesters, and thioester purification utilizing a C-18 solid phase extraction column are detailed. The hydroxycinnamoyl-CoA thioesters produced are suitable for downstream qualitative and quantitative analyses.


Assuntos
Coenzima A Ligases , Coenzima A Ligases/genética
15.
Actual. anestesiol. reanim ; 70(4): 231-234, Abr. 2023.
Artigo em Espanhol | IBECS | ID: ibc-218275

RESUMO

La deficiencia de acil-coenzima A deshidrogenasa de cadena muy larga (VLCADD) es un trastorno infrecuente del metabolismo de β-oxidación de los ácidos grasos que origina susceptibilidad a hipoglucemia, fallo hepático, cardiomiopatía y rabdomiólisis durante las situaciones catabólicas. Reportamos el caso de un varón de 10 años de edad programado para la colocación de catéter venoso central totalmente implantado durante su hospitalización por rabdomiólisis, que fue exitosamente gestionada con anestesia general con óxido nitroso, sevoflurano y remifentanilo. No se produjo hipoglucemia y los niveles de creatina quinasa no se incrementaron durante el periodo perioperatorio. Describimos las dificultades a que nos enfrentamos, y las estrategias utilizadas para evitar mayor descompensación de la enfermedad debida al estrés quirúrgico.(AU)


Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD) is a rare disorder of β-oxidation fatty acid metabolism that results in susceptibility to hypoglycemia, liver failure, cardiomyopathy and rhabdomyolysis during catabolic situations. We report the case of a 10-year-old male undergoing a totally implanted central venous catheter placement during hospitalization for rhabdomyolysis, who was successfully managed with general anesthesia with nitrous oxide, sevoflurane and remifentanil. No hypoglycemia occurred and creatine kinase levels did not increase in the perioperative period. We describe the challenges encountered and the strategies used to avoid further decompensation of the disease due to surgical stress.(AU)


Assuntos
Humanos , Masculino , Criança , Período Perioperatório , Acil-CoA Desidrogenase de Cadeia Longa , Anestesia , Rabdomiólise , Cardiomiopatias , Hipoglicemia , Anestesiologia , Doenças Metabólicas , Metabolismo dos Lipídeos
16.
Mol Med Rep ; 27(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36825562

RESUMO

Following the publication of the above paper, a concerned reader drew to the Editor's attention that the "con" and "ox­LDL" panels in Fig. 1E on p. 3602, and various data panels included in Figs. 3 and 5 on p. 3604, contained apparent anomalies, including what appeared to be matching patternings of cellular data either within the same figure panels or comparing among the data panels. After having conducted an independent investigation in the Editorial Office, the Editor of Molecular Medicine Reports has determined that the above paper should be retracted from the Journal on account of a lack of confidence in the overall authenticity of the data. After having consulted the authors in this regard, they agreed with the decision to retract this paper. The Editor deeply regrets any inconvenience that has been caused to the readership of the Journal. [Molecular Medicine Reports 12: 3599­3606, 2015; DOI: 10.3892/mmr.2015.3864.

17.
Rev Esp Anestesiol Reanim (Engl Ed) ; 70(4): 231-234, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842679

RESUMO

Very long-chain acyl-coenzyme A dehydrogenase deficiency is a rare disorder of ß-oxidation fatty acid metabolism that results in susceptibility to hypoglycemia, liver failure, cardiomyopathy and rhabdomyolysis during catabolic situations. We report the case of a 10-year-old male undergoing a totally implanted central venous catheter placement during hospitalisation for rhabdomyolysis, who was successfully managed with general anesthesia with nitrous oxide, sevoflurane and remifentanil. No hypoglycemia occurred and creatine kinase levels did not increase in the perioperative period. We describe the challenges encountered and the strategies used to avoid further decompensation of the disease due to surgical stress.


Assuntos
Anestésicos , Doenças Mitocondriais , Doenças Musculares , Rabdomiólise , Masculino , Humanos , Criança , Rabdomiólise/etiologia
18.
AACE Clin Case Rep ; 9(1): 13-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36654993

RESUMO

Background: Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a rare metabolic disorder affecting fatty acid oxidation. Incidence at birth is estimated at 1:250 000, but type III presents in adults. It is characterized by nonspecific symptoms but if undiagnosed may cause ketoacidosis and rhabdomyolysis. A review of 350 patients found less than one third presented with metabolic crises. Our objective is to describe an adult with weakness after carbohydrate restriction that developed a pulmonary embolism and ketoacidosis, and was diagnosed with MADD type III. Case Report: A 27-year-old woman with obesity presented to the hospital with fatigue and weakness worsening over months causing falls and decreased intake. She presented earlier to clinic with milder symptoms starting months after initiating a low carbohydrate diet. Testing revealed mild hypothyroidism and she started Levothyroxine for presumed hypothyroid myopathy but progressed. Muscle biopsy suggested a lipid storage myopathy. Genetic testing revealed a mutation in the ETFDH (electron transfer flavoprotein dehydrogenase) gene likely pathogenic for MADD; however, before this was available she developed severe ketoacidosis and rhabdomyolysis. She empirically started a low-fat diet, carnitine, cyanocobalamin, and coenzyme Q10 supplementation with improvement. Over months her energy and strength normalized. Discussion: MADD may cause ketoacidosis and rhabdomyolysis but this is rare in adults. Diagnosis requires clinical suspicion followed by biochemical and genetic testing. It should be considered when patients present with weakness or fasting intolerance. Treatment includes high carbohydrate, low-fat diets, supplementation, and avoiding fasting. Conclusion: There should be greater awareness to consider MADD in adults presenting with neuromuscular symptoms, if untreated it may cause severe metabolic derangements.

19.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1009940

RESUMO

OBJECTIVES@#To investigate the genotypes and biochemical phenotypes of neonates with abnormal metabolism of butyrylcarnitine (C4).@*METHODS@#One hundred and twenty neonates with increased C4 levels detected by tandem mass spectrometry in the neonatal screening at Children's Hospital, Zhejiang University School of Medicine from January 2018 to June 2023 were included. The initial screening data and recalled data of C4 and C4/C3 were collected and converted into multiples of C4 reference range. Next generation sequencing was performed and the exons with adjacent 50 bp regions of ACAD8 and ACADS genes were captured by liquid phase capture technique. Variant information was obtained by bioinformatic analysis and the pathogenicity were classified according to the American College of Medical Genetics and Genomics criteria. The Wilcoxon rank sum test was used to analyze the differences in C4 levels among neonates with different variation types.@*RESULTS@#In total, 32 variants in ACAD8 gene were detected, of which 7 variants were reported for the first time; while 41 variants of ACADS gene were detected, of which 17 variants have not been previously reported. There were 39 cases with ACAD8 biallelic variations and 3 cases with ACAD8 monoallelic variations; 34 cases with ACADS biallelic variations and 36 cases with ACADS monoallelic variations. Furthermore, 5 cases were detected with both ACAD8 and ACADS gene variations. Inter group comparison showed that the multiples of C4 reference range in initial screening and re-examination of the ACAD8 biallelic variations and ACADS biallelic variations groups were significantly higher than those of the ACADS monoallelic variations group (all P<0.01), while the multiples in the ACAD8 biallelic variations group were significantly higher than those in the ACADS biallelic variations group (all P<0.01). The multiples of C4 reference range in the initial screening greater than 1.5 times were observed in all neonates carrying ACAD8 or ACADS biallelic variations, while only 25% (9/36) in neonates carrying ACADS monoallelic variations.@*CONCLUSIONS@#ACAD8 and/or ACADS gene variants are the main genetic causes for elevated C4 in newborns in Zhejiang region with high genotypic heterogeneity. The C4 levels of neonates with biallelic variations are significantly higher than those of neonates with monoallelic variations. The cut-off value for C4 level could be modestly elevated, which could reduce the false positive rate in tandem mass spectrometry neonatal screening.


Assuntos
Criança , Humanos , Recém-Nascido , Acil-CoA Desidrogenase/genética , Genótipo , Fenótipo , Carnitina/metabolismo , Mutação
20.
Front Pediatr ; 10: 999596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452356

RESUMO

Objective: To report a case of glycogen storage disease (GSD) type Ia misdiagnosed as multiple acyl-coenzyme a dehydrogenase deficiency (MADD) by mass spectrometry. Methods: A 7 months old boy was admitted to our hospital for elevated transaminase levels lasting more than 1 month. His blood biochemistry showed hypoglycemia, metabolic acidosis, hyperlipidemia, elevated lactate and uric acid, elevated alanine amino transferase (ALT), aspartate amino transaminase (AST) and gamma-glutamyl transferase (GGT). Mass spectrometry analysis of blood and urine showed elevated blood acylcarnitines and dicarboxylic aciduria, indicating multiple acyl-coenzyme A dehydrogenase deficiency. Sanger sequencing of all exons of glucose-6-phosphatase (G6Pase) and electronic transfer flavoprotein dehydrogenase (ETFDH) was performed for the patient and his parents. Results: Coding and flanking sequences of the G6Pase gene detected two heterozygous single base substitutions in the boy. One variant was in exon 1 (c.209G > A), Which was also detected in the father. Another was in exon 5 (c.648G > T), which was detected in the mother. Coding and flanking sequences of the ETFDH gene revealed no pathogenic/likely pathogenic variants in the boy. Conclusion: GSD Ia can manifest elevated blood acyl carnitines and dicarboxylic aciduria which were the typical clinical manifestations of MADD. So the patient with clinical manifestations similar to MADD is in need of differential diagnosis for GSD Ia. Genetic testing is helpful to confirming the diagnosis of inherited metabolic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...