Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Biotechnol Bioeng ; 121(7): 2175-2192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613199

RESUMO

In the era of Biopharma 4.0, process digitalization fundamentally requires accurate and timely monitoring of critical process parameters (CPPs) and quality attributes. Bioreactor systems are equipped with a variety of sensors to ensure process robustness and product quality. However, during the biphasic production of viral vectors or replication-competent viruses for gene and cell therapies and vaccination, current monitoring techniques relying on a single working sensor can be affected by the physiological state change of the cells due to infection/transduction/transfection step required to initiate production. To address this limitation, a multisensor (MS) monitoring system, which includes dual-wavelength fluorescence spectroscopy, dielectric signals, and a set of CPPs, such as oxygen uptake rate and pH control outputs, was employed to monitor the upstream process of adenovirus production in HEK293 cells in bioreactor. This system successfully identified characteristic responses to infection by comparing variations in these signals, and the correlation between signals and target critical variables was analyzed mechanistically and statistically. The predictive performance of several target CPPs using different multivariate data analysis (MVDA) methods on data from a single sensor/source or fused from multiple sensors were compared. An MS regression model can accurately predict viable cell density with a relative root mean squared error (rRMSE) as low as 8.3% regardless of the changes occurring over the infection phase. This is a significant improvement over the 12% rRMSE achieved with models based on a single source. The MS models also provide the best predictions for glucose, glutamine, lactate, and ammonium. These results demonstrate the potential of using MVDA on MS systems as a real-time monitoring approach for biphasic bioproduction processes. Yet, models based solely on the multiplicity and timing of infection outperformed both single-sensor and MS models, emphasizing the need for a deeper mechanistic understanding in virus production prediction.


Assuntos
Adenoviridae , Reatores Biológicos , Humanos , Células HEK293 , Reatores Biológicos/virologia , Adenoviridae/genética , Análise Multivariada , Cultura de Vírus/métodos
2.
Cancers (Basel) ; 15(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136407

RESUMO

Persistent human papillomavirus (HPV) infection is responsible for practically all cervical and a high proportion of anogenital and oropharyngeal cancers. Therapeutic HPV vaccines in clinical development show great promise in improving outcomes for patients who mount an anti-HPV T-cell response; however, far from all patients elicit a sufficient immunological response. This demonstrates a translational gap between animal models and human patients. Here, we investigated the potential of a new assay consisting of co-culturing vaccine-transduced dendritic cells (DCs) with syngeneic, healthy, human peripheral blood mononuclear cells (PBMCs) to mimic a human in vivo immunization. This new promising human ex vivo PBMC assay was evaluated using an innovative therapeutic adenovirus (Adv)-based HPV vaccine encoding the E1, E2, E6, and E7 HPV16 genes. This new method allowed us to show that vaccine-transduced DCs yielded functional effector T cells and unveiled information on immunohierarchy, showing E1-specific T-cell immunodominance over time. We suggest that this assay can be a valuable translational tool to complement the known animal models, not only for HPV therapeutic vaccines, and supports the use of E1 as an immunotherapeutic target. Nevertheless, the findings reported here need to be validated in a larger number of donors and preferably in patient samples.

3.
Microorganisms ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138078

RESUMO

Mycobacterium tuberculosis is the main causal agent of pulmonary tuberculosis (TB); the treatment of this disease is long and involves a mix of at least four different antibiotics that frequently lead to abandonment, favoring the surge of drug-resistant mycobacteria (MDR-TB), whose treatment becomes more aggressive, being longer and more toxic. Thus, the search for novel strategies for treatment that improves time or efficiency is of relevance. In this work, we used a murine model of pulmonary TB produced by the MDR-TB strain to test the efficiency of gene therapy with adenoviral vectors codifying TNF (AdTNF), a pro-inflammatory cytokine that has protective functions in TB by inducing apoptosis, granuloma formation and expression of other Th1-like cytokines. When compared to the control group that received an adenoviral vector that codifies for the green fluorescent protein (AdGFP), a single dose of AdTNF at the chronic active stage of the disease produced total survival, decreasing bacterial load and tissue damage (pneumonia), which correlated with an increase in cells expressing IFN-γ, iNOS and TNF in pneumonic areas and larger granulomas that efficiently contain and eliminate mycobacteria. Second-line antibiotic treatment against MDR-TB plus AdTNF gene therapy reduced bacterial load faster within a week of treatment compared to empty vector plus antibiotics or antibiotics alone, suggesting that AdTNF is a new potential type of treatment against MDR-TB that can shorten second-line chemotherapy but which requires further experimentation in other animal models (non-human primates) that develop a more similar disease to human pulmonary TB.

4.
Viruses ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37112906

RESUMO

Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.


Assuntos
Retrovirus Endógenos , Neoplasias , Vacinas Virais , Animais , Humanos , Camundongos , Retrovirus Endógenos/genética , Vetores Genéticos/genética , Neoplasias/prevenção & controle , Neoplasias/genética , Linfócitos T , Vacinas Virais/genética , Receptor de Morte Celular Programada 1/imunologia
5.
Mol Ther Nucleic Acids ; 31: 746-762, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36937620

RESUMO

Genome editing based on dual CRISPR-Cas9 complexes (multiplexes) permits removing specific genomic sequences in living cells leveraging research on functional genomics and genetic therapies. Delivering the required large and multicomponent reagents in a synchronous and stoichiometric manner remains, however, challenging. Moreover, uncoordinated activity of independently acting CRISPR-Cas9 multiplexes increases the complexity of genome editing outcomes. Here, we investigate the potential of fostering precise multiplexing genome editing using high-capacity adenovector particles (AdVPs) for the delivery of Cas9 ortholog fusion constructs alone (forced Cas9 heterodimers) or together with their cognate guide RNAs (forced CRISPR-Cas9 heterodimers). We demonstrate that the efficiency and accuracy of targeted chromosomal DNA deletions achieved by single AdVPs encoding forced CRISPR-Cas9 heterodimers is superior to that obtained when the various components are delivered separately. Finally, all-in-one AdVP delivery of forced CRISPR-Cas9 heterodimers triggers robust DMD exon 51 splice site excision resulting in reading frame restoration and selection-free detection of dystrophin in muscle cells derived from Duchenne muscular dystrophy patients. In conclusion, AdVPs promote precise multiplexing genome editing through the integrated delivery of forced CRISPR-Cas9 heterodimer components, which, in comparison with split conventional CRISPR-Cas9 multiplexes, engage target sequences in a more coordinated fashion.

6.
Front Med Technol ; 5: 1095198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776626

RESUMO

Adenovirus based vectors are useful tools for vaccine development, gene therapy, and oncolytic virotherapy. Here we describe a novel approach for the genetic engineering of any portion of the adenovirus genome and the reconstruction of either fully replication competent or defective virions. This innovative strategy is rapid, effective and suitable for the manipulation of the entire genome broadening the spectrum of potential applications for the adenovirus system. Our strategy involved insertion of restriction enzyme recognition sequences absent in the native virus into the termini of the adenovirus genome in order to facilitate recovery. These restriction enzyme sites, together with the two inverted terminal repeats and packaging sequences, were synthesized and then subcloned into the pBR322 vector. The remaining internal portion of the adenovirus genome was separated and amplified via PCR into six segments, of which groups of two were joined together by PCR and then subcloned into pBR322 plasmids. During the PCR reaction, an overlap of 30-40 bp was added to the termini of the adjacent fragments, allowing for the subsequent isothermal assembly and correct orientation of all fragments. This approach allows for the genetic modification of each genomic fragment according to the specific research goals, (e.g., deletion, substitution, addition, etc.) To recreate the entire viral genome, the four engineered fragments (each comprised of two adenovirus genomic sections) as well as the pBR322 backbone, were reassembled into a single construct utilizing an isothermal assembly reaction. Finally, the reassembled plasmid containing the entire genome was linearized and transfected into HEK293 cells to recover the complete reconstructed adenoviral vector. Using this approach, we have successfully generated two recombinant reporter adenoviruses, one of human adenovirus serotype 14 and another of serotype 55. The E3 region was replaced by the reporter genes (GFP and Luciferase) to visualize and track the recovery process. Subsequent infection of A549 cells with these reconstructed adenovirus vectors demonstrated that they were replication competent. This method shortens the viral reconstruction process because the one-step isothermal assembly requires less than 4 days, and recombinant adenovirus recovery occurs within 10 days. This new method allows for single or multiple genetic modifications within any portion of the viral genome and can be used to construct or manipulate any adenovirus whose complete genome sequence is known.

7.
BioTechnologia (Pozn) ; 104(4): 403-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38213479

RESUMO

New prophylactic vaccine platforms are imperative to combat respiratory infections. The efficacy of T and B memory cell-mediated protection, generated through the adenoviral vector, was tested to assess the effectiveness of the new adenoviral-based platforms for infectious diseases. A combination of adenovirus AdV1 (adjuvant), armed with costimulatory ligands (ICOSL and CD40L), and rRBD (antigen: recombinant nonglycosylated spike protein rRBD) was used to promote the differentiation of T and B lymphocytes. Adenovirus AdV2 (adjuvant), without ligands, in combination with rRBD, served as a control. In vitro T-cell responses to the AdV1+rRBD combination revealed that CD8+ platform-specific T-cells increased (37.2 ± 0.7% vs. 23.1 ± 2.1%), and T-cells acted against SARS-CoV-2 via CD8+TEMRA (50.0 ± 1.3% vs. 36.0 ± 3.2%). Memory B cells were induced after treatment with either AdV1+rRBD (84.1 ± 0.8% vs. 82.3 ± 0.4%) or rRBD (94.6 ± 0.3% vs. 82.3 ± 0.4%). Class-switching from IgM and IgD to isotype IgG following induction with rRBD+Ab was observed. RNA-seq profiling identified gene expression patterns related to T helper cell differentiation that protect against pathogens. The analysis determined signaling pathways controlling the induction of protective immunity, including the MAPK cascade, adipocytokine, cAMP, TNF, and Toll-like receptor signaling pathway. The AdV1+rRBD formulation induced IL-6, IL-8, and TNF. RNA-seq of the VERO E6 cell line showed differences in the apoptosis gene expression stimulated with the platforms vs. mock. In conclusion, AdV1+rRBD effectively generates T and B memory cell-mediated protection, presenting promising results in producing CD8+ platform-specific T cells and isotype-switched IgG memory B cells. The platform induces protective immunity by controlling the Th1, Th2, and Th17 cell differentiation gene expression patterns. Further studies are required to confirm its effectiveness.

8.
Genes (Basel) ; 13(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36553489

RESUMO

The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Células-Tronco Hematopoéticas , Terapia Genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
9.
Front Cell Infect Microbiol ; 12: 1010873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211974

RESUMO

The tumour necrosis factor superfamily OX40L and CD70 and their receptors are costimulatory signalling axes critical for adequate T and B cell activation in humans and mice. In this work we inoculated groups of sheep with human recombinant adenovirus type 5 (Ad) expressing Ovis aries (Oa)OX40L or OaCD70 or a control adenoviral vector to determine whether they could improve the immune response to the model antigen OVA. PBMCs and serum samples were obtained for analysis of the adaptive immune response to OVA at days 0, 15, 30 and 90 post-inoculation (pi). Recall responses to OVA were assessed at day 7 and 30 after the second antigen inoculation (pb) at day 90. Administration of these immunomodulatory molecules did not induce unspecific PBMC stimulation. While OaOX40L administration mainly increased TNF-α and IL-4 in PBMC at day 15 pi concomitantly with a slight increase in antibody titer and the number of IFN-γ producing cells, we detected greater effects on adaptive immunity after OaCD70 administration. AdOaCD70 inoculation improved antibody titers to OVA at days 30 and 90 pi, and increased anti-OVA-specific IgG-secreting B cell counts when compared to control. Moreover, higher IFN-γ production was detected on days 7 pi, 7 pb and 30 pb in PBMCs from this group. Phenotypic analysis of T cell activation showed an increase in effector CD8+ T cells (CD8+ CD62L- CD27-) at day 15 pi in AdOaCD70 group, concurrent with a decrease in early activated cells (CD8+ CD62L- CD27+). Moreover, recall anti-OVA CD8+ T cell responses were increased at 7 pb in the AdOaCD70 group. AdOaCD70 administration could therefore promote CD8+ T cell effector differentiation and long-term activity. In this work we characterized the in vivo adjuvant potential on the humoral and cellular immune response of OaOX40L and OaCD70 delivered by non-replicative adenovirus vectors using the model antigen OVA. We present data highlighting the potency of these molecules as veterinary vaccine adjuvant.


Assuntos
Linfócitos T CD8-Positivos , Fator de Necrose Tumoral alfa , Adenoviridae/genética , Animais , Ligante CD27 , Humanos , Imunoglobulina G , Interleucina-4 , Leucócitos Mononucleares , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Ovinos
10.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298724

RESUMO

Molecular therapies exploiting mRNA vectors embody enormous potential, as evidenced by the utility of this technology for the context of the COVID-19 pandemic. Nonetheless, broad implementation of these promising strategies has been restricted by the limited repertoires of delivery vehicles capable of mRNA transport. On this basis, we explored a strategy based on exploiting the well characterized entry biology of adenovirus. To this end, we studied an adenovirus-polylysine (AdpL) that embodied "piggyback" transport of the mRNA on the capsid exterior of adenovirus. We hypothesized that the efficient steps of Ad binding, receptor-mediated entry, and capsid-mediated endosome escape could provide an effective pathway for transport of mRNA to the cellular cytosol for transgene expression. Our studies confirmed that AdpL could mediate effective gene transfer of mRNA vectors in vitro and in vivo. Facets of this method may offer key utilities to actualize the promise of mRNA-based therapeutics.


Assuntos
Infecções por Adenoviridae , COVID-19 , Humanos , Adenoviridae/genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Polilisina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pandemias , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Biologia
11.
Viruses ; 14(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36146759

RESUMO

Only two decades after discovering miRNAs, our understanding of the functional effects of deregulated miRNAs in the development of diseases, particularly cancer, has been rapidly evolving. These observations and functional studies provide the basis for developing miRNA-based diagnostic markers or new therapeutic strategies. Adenoviral (Ad) vectors belong to the most frequently used vector types in gene therapy and are suitable for strong short-term transgene expression in a variety of cells. Here, we report the set-up and functionality of an Ad-based miRNA vector platform that can be employed to deliver and express a high level of miRNAs efficiently. This vector platform allows fast and efficient vector production to high titers and the expression of pri-miRNA precursors under the control of a polymerase II promoter. In contrast to non-viral miRNA delivery systems, this Ad-based miRNA vector platform allows accurate dosing of the delivered miRNAs. Using a two-vector model, we showed that Ad-driven miRNA expression was sufficient in down-regulating the expression of an overexpressed and highly stable protein. Additional data corroborated the downregulation of multiple endogenous target RNAs using the system presented here. Additionally, we report some unanticipated synergistic effects on the transduction efficiencies in vitro when cells were consecutively transduced with two different Ad-vectors. This effect might be taken into consideration for protocols using two or more different Ad vectors simultaneously.


Assuntos
MicroRNAs , Adenoviridae/genética , Adenoviridae/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transgenes
12.
Methods Mol Biol ; 2573: 13-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040583

RESUMO

MicroRNA (miRNA) is a small, non-coding RNA molecule (~22 nucleotides) that acts as a post-transcriptional gene regulator, primarily by inhibiting the translation of target mRNA transcripts or affecting cell mRNA stability. Since miRNAs are comprehensively involved in gene regulation, their abnormalities are associated with various human diseases, including cardiovascular disease. Additionally, targeted inhibition of disease-related miRNAs and their targets should have therapeutic potential. Therefore, this chapter describes the experimental steps for targeted inhibition of specific miRNAs using adenoviral vectorized tough decoys that efficiently silence miRNA function in cardiac cells.


Assuntos
MicroRNAs , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Estabilidade de RNA , RNA Mensageiro/genética
13.
Immunol Rev ; 310(1): 27-46, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35733376

RESUMO

Immunological memory is the basis of protective immunity provided by vaccines and previous infections. Immunological memory can develop from multiple branches of the adaptive immune system, including CD4 T cells, CD8 T cells, B cells, and long-lasting antibody responses. Extraordinary progress has been made in understanding memory to SARS-CoV-2 infection and COVID-19 vaccines, addressing development; quantitative and qualitative features of different cellular and anatomical compartments; and durability of each cellular component and antibodies. Given the sophistication of the measurements; the size of the human studies; the use of longitudinal samples and cross-sectional studies; and head-to-head comparisons between infection and vaccines or between multiple vaccines, the understanding of immune memory for 1 year to SARS-CoV-2 infection and vaccines already supersedes that of any other acute infectious disease. This knowledge may help inform public policies regarding COVID-19 and COVID-19 vaccines, as well as the scientific development of future vaccines against SARS-CoV-2 and other diseases.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , COVID-19/prevenção & controle , Estudos Transversais , Humanos , Memória Imunológica , SARS-CoV-2
14.
Hum Gene Ther ; 33(19-20): 1037-1051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35615876

RESUMO

Tuberculosis (TB) has been for many years a major public health problem since treatment is long and sometimes ineffective favoring the increase of multidrug-resistant mycobacteria (MDR-TB). Gene therapy is a novel and effective tool to regulate immune responses. In this study we evaluated the therapeutic effect of an adenoviral vector codifying osteopontin (AdOPN), a molecule known for their roles to favor Th1 and Th17 type-cytokine expression which are crucial in TB containment. A single dose of AdOPN administration in BALB/c mice suffering late progressive pulmonary MDR-TB produced significant lower bacterial load and pneumonia, due to higher expression of IFN-γ, IL-12, and IL-17 in coexistence with increase of granulomas in number and size, resulting in higher survival, in contrast with mice treated with the control adenovirus that codify the green fluorescent protein (AdGFP). Combined therapy of AdOPN with a regimen of second line antibiotics produced a better control of bacterial load in lung during the first days of treatment, suggesting that AdOPN can shorten chemotherapy. Taken together, gene therapy with AdOPN leads to higher immune responses against TB infection, resulting in a new potential treatment against pulmonary TB that can co-adjuvant chemotherapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Camundongos , Animais , Interleucina-17/genética , Mycobacterium tuberculosis/genética , Osteopontina/genética , Osteopontina/farmacologia , Osteopontina/uso terapêutico , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Tuberculose Resistente a Múltiplos Medicamentos/terapia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/terapia , Tuberculose Pulmonar/tratamento farmacológico , Camundongos Endogâmicos BALB C , Pulmão , Terapia Genética/métodos , Interleucina-12/genética , Interleucina-12/farmacologia , Interleucina-12/uso terapêutico , Citocinas/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
16.
J Infect Dis ; 226(3): 396-406, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33400792

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is a significant cause of severe lower respiratory tract disease in children and older adults, but has no approved vaccine. This study assessed the potential of Ad26.RSV.preF to protect against RSV infection and disease in an RSV human challenge model. METHODS: In this double-blind, placebo-controlled study, healthy adults aged 18-50 years were randomized 1:1 to receive 1 × 1011 vp Ad26.RSV.preF or placebo intramuscularly. Twenty-eight days postimmunization, volunteers were challenged intranasally with RSV-A (Memphis 37b). Assessments included viral load (VL), RSV infections, clinical symptom score (CSS), safety, and immunogenicity. RESULTS: Postchallenge, VL, RSV infections, and disease severity were lower in Ad26.RSV.preF (n = 27) vs placebo (n = 26) recipients: median VL area under the curve (AUC) quantitative real-time polymerase chain reaction: 0.0 vs 236.0 (P = .012; predefined primary endpoint); median VL-AUC quantitative culture: 0.0 vs 109; RSV infections 11 (40.7%) vs 17 (65.4%); median RSV AUC-CSS 35 vs 167, respectively. From baseline to 28 days postimmunization, geometric mean fold increases in RSV A2 neutralizing antibody titers of 5.8 and 0.9 were observed in Ad26.RSV.preF and placebo, respectively. Ad26.RSV.preF was well tolerated. CONCLUSIONS: Ad26.RSV.preF demonstrated protection from RSV infection through immunization in a human challenge model, and therefore could potentially protect against natural RSV infection and disease. CLINICAL TRIALS REGISTRATION: NCT03334695; CR108398, 2017-003194-33 (EudraCT); VAC18193RSV2002.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Humanos , Imunização , Proteínas Virais de Fusão
17.
Mol Biotechnol ; 64(4): 413-423, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34687024

RESUMO

Chronic liver injury leads to advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Genetical cell treatment related to the use of adenovirus (Ads) has proven to be beneficial and efficient in the recovery of hepatic diseases. Nevertheless, they are highly immunogenic and trigger an immune response where interferons type 1 (IFN-I) play a very important role. Three shRNAs against the Interferon-1 receptor (IFNAR1) were designed and cloned in pENTR/U6 plasmid and amplified in DH5α cells. Huh7 cells were transfected with these plasmids in the presence or absence of 1 × 109 viral particles/ml of adenovirus containing the green fluorescent protein gene used as a reporter. Transfection with the shRNA plasmids partially inhibited the IFNAR1 expression. This inhibition substantially decreased antiviral response, demonstrated by the decrease of IFNAR1, IFN-α, and TNF-α gene expression, and the decrease at protein levels of IFNAR1, Protein kinase RNA-activated (PKR), and phosphorylated STAT1, allowing higher adenoviral transduction and transgene expression. Interestingly it was seen shRNA inhibited macrophage activation. These results suggest that the inhibition of the IFN-I pathway could be a strategy to minimize the immune response against Adenoviral vectors allowing higher Adenovirus transduction extending the transgene expression.


Assuntos
Adenoviridae , Receptor de Interferon alfa e beta , Adenoviridae/genética , Adenoviridae/metabolismo , Expressão Gênica , Hepatócitos/metabolismo , RNA Interferente Pequeno/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transgenes
18.
Viruses ; 13(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835096

RESUMO

With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Cricetinae , Feminino , Inflamação , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
19.
Front Immunol ; 12: 728513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484238

RESUMO

VITT is a rare, life-threatening syndrome characterized by thrombotic symptoms in combination with thrombocytopenia, which may occur in individuals receiving the first administration of adenoviral non replicating vectors (AVV) anti Covid19 vaccines. Vaccine-induced immune thrombotic thrombocytopenia (VITT) is characterized by high levels of serum IgG that bind PF4/polyanion complexes, thus triggering platelet activation. Therefore, identification of the fine pathophysiological mechanism by which vaccine components trigger platelet activation is mandatory. Herein, we propose a multistep mechanism involving both the AVV and the neo-synthetized Spike protein. The former can: i) spread rapidly into blood stream, ii), promote the early production of high levels of IL-6, iii) interact with erythrocytes, platelets, mast cells and endothelia, iv) favor the presence of extracellular DNA at the site of injection, v) activate platelets and mast cells to release PF4 and heparin. Moreover, AVV infection of mast cells may trigger aberrant inflammatory and immune responses in people affected by the mast cell activation syndrome (MCAS). The pre-existence of natural antibodies binding PF4/heparin complexes may amplify platelet activation and thrombotic events. Finally, neosynthesized Covid 19 Spike protein interacting with its ACE2 receptor on endothelia, platelets and leucocyte may trigger further thrombotic events unleashing the WITT syndrome.


Assuntos
Anticorpos/efeitos adversos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/fisiopatologia , Adenoviridae/genética , Animais , Plaquetas/imunologia , Plaquetas/patologia , Vacinas contra COVID-19/imunologia , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Camundongos , Ativação Plaquetária/imunologia , Fator Plaquetário 4 , Coelhos
20.
Front Vet Sci ; 8: 695222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368282

RESUMO

Malignant melanoma is a serious disease in both humans and dogs, and the high metastatic potential results in poor prognosis for many patients. Its similarities with human melanoma make spontaneous canine melanoma an excellent model for comparative studies of novel therapies and tumor biology. Gene therapy using adenoviruses encoding the immunostimulatory gene CD40L (AdCD40L) has shown promise in initial clinical trials enrolling human patients with various malignancies including melanoma. We report a study of local AdCD40L treatment in 32 cases of canine melanoma (23 oral, 5 cutaneous, 3 ungual and 1 conjunctival). Eight patients were World Health Organization (WHO) stage I, 9 were stage II, 12 stage III, and 3 stage IV. One to six intratumoral injections of AdCD40L were given every seven days, combined with cytoreductive surgery in 20 cases and only immunotherapy in 12 cases. Tumor tissue was infiltrated with T and B lymphocytes after treatment, suggesting immune stimulation. The best overall response based on result of immunotherapy included 7 complete responses, 5 partial responses, 5 stable and 2 progressive disease statuses according to the World Health Organization response criteria. Median survival was 285 days (range 20-3435 d). Our results suggest that local AdCD40L therapy is safe and could have beneficial effects in dogs, supporting further treatment development. Clinical translation to human patients is ongoing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...