Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
J Comp Neurol ; 532(7): e25656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980012

RESUMO

Some recent publications have used the term "vagal-adrenal axis" to account for mechanisms involved in the regulation of inflammation by electroacupuncture. This concept proposes that efferent parasympathetic nerve fibers in the vagus directly innervate the adrenal glands to influence catecholamine secretion. Here, we discuss evidence for anatomical and functional links between the vagi and adrenal glands that may be relevant in the context of inflammation and its neural control by factors, including acupuncture. First, we find that evidence for any direct vagal parasympathetic efferent innervation of the adrenal glands is weak and likely artifactual. Second, we find good evidence that vagal afferent fibers directly innervate the adrenal gland, although their function is uncertain. Third, we highlight a wealth of evidence for indirect pathways, whereby vagal afferent signals act via the central nervous system to modify adrenal-dependent anti-inflammatory responses. Vagal afferents, not efferents, are thus the likely key to these phenomena.


Assuntos
Glândulas Suprarrenais , Nervo Vago , Nervo Vago/fisiologia , Humanos , Animais , Glândulas Suprarrenais/fisiologia , Inflamação
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338771

RESUMO

Dichlorodiphenyltrichloroethane (DDT) is a wide-spread systemic pollutant with endocrine disrupting properties. Prenatal exposure to low doses of DDT has been shown to affect adrenal medulla growth and function. The role of postnatal exposure to DDT in developmental disorders remains unclear. The aim of the present investigation is to assess growth parameters and the expression of factors mediating the function and renewal of chromaffin cells in the adult adrenal medulla of male Wistar rats exposed to the endocrine disruptor o,p'-DDT since birth until sexual maturation. The DDT-exposed rats exhibited normal growth of the adrenal medulla but significantly decreased tyrosine hydroxylase production by chromaffin cells during postnatal period. Unlike the control, the exposed rats showed enhanced proliferation and reduced expression of nuclear ß-catenin, transcription factor Oct4, and ligand of Sonic hedgehog after termination of the adrenal growth period. No expression of pluripotency marker Sox2 and absence of Ascl 1-positive progenitors were found in the adrenal medulla during postnatal ontogeny of the exposed and the control rats. The present findings indicate that an increase in proliferative activity and inhibition of the formation of reserve for chromaffin cell renewal, two main mechanisms for cell maintenance in adrenal medulla, in the adult DDT-exposed rats may reflect a compensatory reaction aimed at the restoration of catecholamine production levels. The increased proliferation of chromaffin cells in adults suggests excessive growth of the adrenal medulla. Thus, postnatal exposure to DDT alters cell physiology and increases the risk of functional insufficiency and hyperplasia of the adrenal medulla.


Assuntos
Medula Suprarrenal , Células Cromafins , Disruptores Endócrinos , Gravidez , Feminino , Ratos , Animais , Masculino , Ratos Wistar , Disruptores Endócrinos/toxicidade , DDT/toxicidade , Proteínas Hedgehog , Fenômenos Fisiológicos Celulares
3.
Vitam Horm ; 124: 367-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408803

RESUMO

Without knowledge of the spatial [three-dimensional, (3D)] organization of an organ at the tissue and cellular levels, it is impossible to form a complete picture of its structure and function. At the same time, tissue components hidden in the thickness of the organ are the most difficult to study. The rapid development of computer technologies has contributed both to the development and implementation of new methods for studying 3D microstructures of organs, and the improvement of classical ones but the most complete picture can still be obtained only by recreating 3D models from serial histological sections. This fully applies to the important, but hidden in the thickness of the organ, and difficult to study 3D organization of the adrenal medulla. Only 3D reconstruction from serial sections makes it possible to identify all the main tissue components of the adrenal medulla simultaneously and with good resolution. Of particular importance to this method is the ability to reliably differentiate and study separately the 3D organization of the two main subpopulations of medulla endocrinocytes: adrenaline-storing (A-) cells and noradrenaline-storing (NA-) cells. In this chapter, we discuss the 3D organization of the adrenal medulla based on these original serial section 3D reconstructions and correlating them with data obtained by other methods.


Assuntos
Medula Suprarrenal , Ratos , Animais , Norepinefrina , Epinefrina
4.
Vitam Horm ; 124: 39-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408804

RESUMO

The adrenal glands are key components of the mammalian endocrine system, helping maintain physiological homeostasis and the coordinated response to stress. Each adrenal gland has two morphologically and functionally distinct regions, the outer cortex and inner medulla. The cortex is organized into three concentric zones which secrete steroid hormones, including aldosterone and cortisol. Neural crest-derived chromaffin cells in the medulla are innervated by preganglionic sympathetic neurons and secrete catecholamines (epinephrine, norepinephrine) and neuropeptides into the bloodstream, thereby functioning as the neuroendocrine arm of the sympathetic nervous system. In this article we review serotonin (5-HT) and the serotonin transporter (SERT; SLC6A4) in the adrenal gland. In the adrenal cortex, 5-HT, primarily sourced from resident mast cells, acts as a paracrine signal to stimulate aldosterone and cortisol secretion through 5-HT4/5-HT7 receptors. Medullary chromaffin cells contain a small amount of 5-HT due to SERT-mediated uptake and express 5-HT1A receptors which inhibit secretion. The atypical mechanism of the 5-HT1A receptors and interaction with SERT fine tune this autocrine pathway to control stress-evoked catecholamine secretion. Receptor-independent signaling by SERT/intracellular 5-HT modulates the amount and kinetics of transmitter release from single vesicle fusion events. SERT might also influence stress-evoked upregulation of tyrosine hydroxylase transcription. Transient signaling via 5-HT3 receptors during embryonic development can limit the number of chromaffin cells found in the mature adrenal gland. Together, this emerging evidence suggests that the adrenal medulla is a peripheral hub for serotonergic control of the sympathoadrenal stress response.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Animais , Humanos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Aldosterona/metabolismo , Hidrocortisona , Glândulas Suprarrenais , Mamíferos
5.
Purinergic Signal ; 20(2): 109-113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36941507

RESUMO

María Teresa Miras Portugal devoted most of her scientific life to the study of purinergic signalling. In an important part of her work, she used a model system: the chromaffin cells of the adrenal medulla. It was in these cells that she identified diadenosine polyphosphates, from which she proceeded to the study of adrenomedullary purinome: nucleotide synthesis and degradation, adenosine transport, nucleotide uptake into chromaffin granules, exocytotic release of nucleotides and autocrine regulation of chromaffin cell function via purinoceptors. This short review will focus on the current state of knowledge of the purinoceptors of adrenal chromaffin cells, a subject to which María Teresa made seminal contributions and which she continued to study until the end of her scientific life.


Assuntos
Medula Suprarrenal , Células Cromafins , Portugal , Medula Suprarrenal/metabolismo , Receptores Purinérgicos/metabolismo , Nucleotídeos/metabolismo
6.
Pflugers Arch ; 476(1): 123-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37775569

RESUMO

Intracellular Ca2+ ([Ca2+]i) signaling and catecholamine (CA) exocytosis from adrenal chromaffin cells (CCs) differ between mammalian species. These differences partly result from the different contributions of Ca2+-induced Ca2+-release (CICR) from internal stores, which boosts intracellular Ca2+ signals. Transient inhibition of the sarcoendoplasmic reticulum (SERCA) Ca2+ pump with cyclopiazonic acid (CPA) reduces CICR. Recently, Martínez-Ramírez et al. found that CPA had contrasting effects on catecholamine secretion and intracellular Ca2+ signals in mouse and bovine CCs, where it enhanced and inhibited exocytosis, respectively. After CPA withdrawal, exocytosis diminished in mouse CCs and increased in bovine CCs. These differences can be explained if mouse CCs have weak CICR and strong Ca2+ uptake, and the reverse is true for bovine CCs. Surprisingly, CPA slightly reduced the amplitude of Ca2+ signals in both mouse and bovine CCs. Here we examined the effects of CPA on stimulated CA exocytosis and Ca2+ signaling in rat CCs and investigated if it alters differently the responses of CCs from normotensive (WKY) or hypertensive (SHR) rats, which differ in the gain of CICR. Our results demonstrate that CPA application strongly inhibits voltage-gated exocytosis and Ca2+ transients in rat CCs, regardless of strain (SHR or WKY). Thus, despite the greater phylogenetic distance from the most recent common ancestors, suppression of endoplasmic reticulum (ER) Ca2+ uptake through CPA inhibits the CA secretion in rat CCs more similarly to bovine than mouse CCs, unveiling divergent evolutionary relationships in the mechanism of CA exocytosis of CCs between rodents. Agents that inhibit the SERCA pump, such as CPA, suppress catecholamine secretion equally well in WKY and SHR CCs and are not potential therapeutic agents for hypertension. Rat CCs display Ca2+ signals of varying widths. Some even show early and late Ca2+ components. Narrowing the Ca2+ transients by CPA and ryanodine suggests that the late component is mainly due to CICR. Simultaneous recordings of Ca2+ signaling and amperometry in CCs revealed the existence of a robust and predictable correlation between the kinetics of the whole-cell intracellular Ca2+ signal and the rate of exocytosis at the single-cell level.


Assuntos
Células Cromafins , Hipertensão , Ratos , Animais , Bovinos , Camundongos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Catecolaminas , Filogenia , Cálcio/metabolismo , Células Cromafins/metabolismo , Sinalização do Cálcio , Exocitose , Mamíferos/metabolismo
7.
J Histochem Cytochem ; 72(1): 41-60, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158780

RESUMO

The present study investigated the localization and the adenosine 5'-triphosphate (ATP)-degrading function of the plasma membrane-bound ecto-nucleotidase, ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), in the rat adrenal medulla. The effect of ATP degradation product, adenosine 5'-diphosphate (ADP), on carbachol (CCh)-induced intracellular Ca2+ ([Ca2+]i) responses in adrenal chromaffin cells was examined using calcium imaging. NTPDase2-immunoreactive cells were distributed between chromaffin cells. NTPDase2-immunoreactive cells were immunoreactive for glial fibrillary acidic protein and S100B, suggesting that they were sustentacular cells. NTPDase2-immunoreactive cells surrounded chromaffin cells immunoreactive for vesicular nucleotide transporter and P2Y12 ADP-selective purinoceptors. In ATP bioluminescence assays using adrenal medullary slices, ATP was rapidly degraded and its degradation was attenuated by the NTPDase inhibitors sodium polyoxotungstate (POM-1) and 6-N, N-diethyl-d-ß,γ-dibromomethylene ATP (ARL67156). ADP inhibited CCh-induced [Ca2+]i increases of chromaffin cells in adrenal medullary slices. The inhibition of CCh-induced [Ca2+]i increases by ADP was blocked by the P2Y12 purinoceptor antagonist AZD1283. CCh-induced [Ca2+]i increases were also inhibited by the P2Y1, P2Y12, and P2Y13 purinoceptor agonist 2-methylthioadenosine diphosphate trisodium (2MeSADP), in combination with the P2Y1 purinoceptor antagonist MRS2179. These results suggest that sustentacular cells express NTPDase2 to degrade ATP released from adrenal chromaffin cells, and ADP modulates the excitability of chromaffin cells via P2Y12 purinoceptors to regulate catecholamine release during preganglionic sympathetic stimuli. (J Histochem Cytochem 72: 41-60, 2024).


Assuntos
Adenosina Trifosfatases , Medula Suprarrenal , Células Cromafins , Animais , Ratos , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Medula Suprarrenal/metabolismo , Cálcio/metabolismo , Células Cromafins/metabolismo , Difosfatos/metabolismo , Adenosina Trifosfatases/metabolismo
8.
Ther Adv Endocrinol Metab ; 14: 20420188231207544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916027

RESUMO

This article aims to review current concepts in diagnosing and managing pheochromocytoma and paraganglioma (PPGL). Personalized genetic testing is vital, as 40-60% of tumors are linked to a known mutation. Tumor DNA should be sampled first. Next-generation sequencing is the best and most cost-effective choice and also helps with the expansion of current knowledge. Recent advancements have also led to the increased incorporation of regulatory RNA, metabolome markers, and the NETest in PPGL workup. PPGL presentation is highly volatile and nonspecific due to its multifactorial etiology. Symptoms mainly derive from catecholamine (CMN) excess or mass effect, primarily affecting the cardiovascular system. However, paroxysmal nature, hypertension, and the classic triad are no longer perceived as telltale signs. Identifying high-risk subjects and diagnosing patients at the correct time by using appropriate personalized methods are essential. Free plasma/urine catecholamine metabolites must be first-line examinations using liquid chromatography with tandem mass spectrometry as the gold standard analytical method. Reference intervals should be personalized according to demographics and comorbidity. The same applies to result interpretation. Threefold increase from the upper limit is highly suggestive of PPGL. Computed tomography (CT) is preferred for pheochromocytoma due to better cost-effectiveness and spatial resolution. Unenhanced attenuation of >10HU in non-contrast CT is indicative. The choice of extra-adrenal tumor imaging is based on location. Functional imaging with positron emission tomography/computed tomography and radionuclide administration improves diagnostic accuracy, especially in extra-adrenal/malignant or familial cases. Surgery is the mainstay treatment when feasible. Preoperative α-adrenergic blockade reduces surgical morbidity. Aggressive metastatic PPGL benefits from systemic chemotherapy, while milder cases can be managed with radionuclides. Short-term postoperative follow-up evaluates the adequacy of resection. Long-term follow-up assesses the risk of recurrence or metastasis. Asymptomatic carriers and their families can benefit from surveillance, with intervals depending on the specific gene mutation. Trials primarily focusing on targeted therapy and radionuclides are currently active. A multidisciplinary approach, correct timing, and personalization are key for successful PPGL management.

9.
Cureus ; 15(10): e47120, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021916

RESUMO

In this case, a Caucasian woman was incidentally found to have a left adrenal gland incidentaloma a decade ago. Initial tests indicated a non-functional lipid-poor adenoma, but ongoing surveillance revealed irregularities in biochemical testing for pheochromocytoma. The patient was concurrently taking an SNRI, known to elevate biochemical markers artificially. Given the adenoma's growth and mild biochemical abnormalities, laparoscopic surgery was performed, and the tumor was found to be a 2.4 cm × 1.8 cm pheochromocytoma. Following the procedure, hormone levels normalized, and the patient experienced relief from symptoms. This case underscores the rarity of pheochromocytomas, emphasizing the importance of accurate diagnosis and effective management. Imaging techniques, notably computed tomography (CT) and magnetic resonance imaging (MRI), played a crucial role in localization, particularly through contrast-enhanced methods. Key characteristics like Hounsfield density, enhancement patterns, and washout behavior aided in distinguishing diverse adrenal masses. For cases where imaging had limitations, complementary techniques such as 23I-metaiodobenzylguanidine (MIBG) scintigraphy, specialized MR sequences, and GA-DOTATATE scans provided supplementary diagnostic insights, collectively contributing to a comprehensive clinical understanding. Despite advancements, challenges persist in differentiating specific adrenal tumors, highlighting the need for continued research and refined imaging methodologies.

10.
Bull Exp Biol Med ; 175(4): 549-556, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37776400

RESUMO

Regulation of morphogenetic processes during postnatal development of the rat adrenal medulla was studied. Termination of the adrenal medulla growth was found to be associated with decreased chromaffin cell proliferation, activation of canonical Wnt-signaling pathway, and enhanced expression of Sonic Hedgehog ligand. Analysis of transcription factors associated with pluripotency revealed increased percentage of Oct4-expressing cells by the end of medulla growth and no signs of Sox2 expression. All the cells demonstrating activation of Wnt-signaling and expression of Oct4 and Sonic Hedgehog were found to be highly differentiated chromaffin cells actively producing tyrosine hydroxylase. These findings allow considering the formation of the cell pools for dedifferentiation as a putative mechanism for physiological regeneration of the adrenal medulla.


Assuntos
Medula Suprarrenal , Células Cromafins , Ratos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Medula Suprarrenal/metabolismo , Células Cromafins/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Front Endocrinol (Lausanne) ; 14: 1235243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600698

RESUMO

Aim: We seek a simple and reliable tool to predict malignant behavior of pheochromocytoma and paraganglioma (PPGL). Methods: This single-center prospective cohort study assessed size of primary PPGLs on preoperative cross-sectional imaging and prospectively scored specimens using the Pheochromocytoma of the Adrenal Gland Scaled Score (PASS). Multiplication of PASS points with maximum lesion diameter (in mm) yielded the SIZEPASS criterion. Local recurrence, metastasis or death from disease were surrogates defining malignancy. Results: 76 consecutive PPGL patients, whereof 58 with pheochromocytoma and 51 female, were diagnosed at a mean age of 52.0 ± 15.2 years. 11 lesions (14.5%) exhibited malignant features at a median follow-up (FU) of 49 months (range 4-172 mo). Median FU of the remaining cohort was 139 months (range 120-226 mo). SIZEPASS classified malignancy with an area under the curve (AUC) of 0.97 (95%CI 0.93-1.01; p<0.0001). Across PPGL, SIZEPASS >1000 outperformed all known predictors of malignancy, with sensitivity 91%, specificity 94%, and accuracy 93%, and an odds ratio of 72 fold (95%CI 9-571; P<0.001). It retained an accuracy >90% in cohorts defined by location (adrenal, extra-adrenal) or mutation status. Conclusions: The SIZEPASS>1000 criterion is a lesion-based, clinically available, simple and effective tool to predict malignant behavior of PPGLs independently of age, sex, location or mutation status.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Glândulas Suprarrenais
12.
Endocrine ; 82(3): 638-645, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37596456

RESUMO

OBJECTIVE: Endocan and vascular endothelial growth factor (VEGF) are markers expressed in various cancer types that are highly vascular, and they have prognostic significance for these cancers. In this study, we aimed to show the expression of endocan and VEGF in pheochromocytoma tumor tissues and to evaluate their correlations with histopathological parameters. MATERIAL AND METHODS: Thirty-eight patients who had been operated for pheochromocytoma were included in the study. As the control group, 28 subjects whose specimens contained normal adrenal medulla tissue were included. The formalin-fixed paraffin-embedded specimens of pheochromocytoma patients were evaluated for Pheochromocytoma of the Adrenal gland Scaled Score (PASS). Sections were then stained for immunohistochemical analysis. The degree of endocan and VEGF positivity was determined by the proportion of stained cells on a negative to strong scale. RESULTS: Endocan (p < 0.001) and VEGF (p = 0.004) expressions were found to be significantly higher in the pheochromocytoma group than in the control group. In the pheochromocytoma group, total PASS score (r = 0.714; p < 0.001) and most of the PASS score components were positively correlated with the level of endocan expression. Median Ki-67 index (p = 0.010), total PASS score (p < 0.001), tumor cell spindling (p = 0.048), and nuclear pleomorphism (p = 0.030) were higher in pheochromocytoma with VEGF expression than in those without. CONCLUSION: If our findings are supported by studies with a larger sample size, we think that endocan has the potential to be used both as a tumor marker and in predicting malignancy potential in patients with pheochromocytoma, and that the detection of VEGF expression in these tumors is also associated with an increase in malignancy potential.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Neoplasias das Glândulas Suprarrenais/patologia , Feocromocitoma/diagnóstico , Prognóstico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
13.
J Clin Med ; 12(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240708

RESUMO

PURPOSE: Residual adrenocortical function, RAF, has recently been demonstrated in one-third of patients with autoimmune Addison's disease (AAD). Here, we set out to explore any influence of RAF on the levels of plasma metanephrines and any changes following stimulation with cosyntropin. METHODS: We included 50 patients with verified RAF and 20 patients without RAF who served as controls upon cosyntropin stimulation testing. The patients had abstained from glucocorticoid and fludrocortisone replacement > 18 and 24 h, respectively, prior to morning blood sampling. The samples were obtained before and 30 and 60 min after cosyntropin stimulation and analyzed for serum cortisol, plasma metanephrine (MN), and normetanephrine (NMN) by liquid-chromatography tandem-mass pectrometry (LC-MS/MS). RESULTS: Among the 70 patients with AAD, MN was detectable in 33%, 25%, and 26% at baseline, 30 min, and 60 min after cosyntropin stimulation, respectively. Patients with RAF were more likely to have detectable MN at baseline (p = 0.035) and at the time of 60 min (p = 0.048) compared to patients without RAF. There was a positive correlation between detectable MN and the level of cortisol at all time points (p = 0.02, p = 0.04, p < 0.001). No difference was noted for NMN levels, which remained within the normal reference ranges. CONCLUSION: Even very small amounts of endogenous cortisol production affect MN levels in patients with AAD.

14.
Pflugers Arch ; 475(6): 667-690, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36884064

RESUMO

This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.


Assuntos
Medula Suprarrenal , Células Cromafins , Animais , Cálcio/metabolismo , Células Cromafins/metabolismo , Medula Suprarrenal/metabolismo , Catecolaminas/metabolismo , Epinefrina , Exocitose/fisiologia
15.
Brain Struct Funct ; 228(3-4): 907-920, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995433

RESUMO

The development and survival of dopaminergic neurons are influenced by the fibroblast growth factor (FGF) pathway. Anosmin-1 (A1) is an extracellular matrix protein that acts as a major regulator of this signaling pathway, controlling FGF diffusion, and receptor interaction and shuttling. In particular, previous work showed that A1 overexpression results in more dopaminergic neurons in the olfactory bulb. Prompted by those intriguing results, in this study, we investigated the effects of A1 overexpression on different populations of catecholaminergic neurons in the central (CNS) and the peripheral nervous systems (PNS). We found that A1 overexpression increases the number of dopaminergic substantia nigra pars compacta (SNpc) neurons and alters the striosome/matrix organization of the striatum. Interestingly, these numerical and morphological changes in the nigrostriatal pathway of A1-mice did not confer an altered susceptibility to experimental MPTP-parkinsonism with respect to wild-type controls. Moreover, the study of the effects of A1 overexpression was extended to different dopaminergic tissues associated with the PNS, detecting a significant reduction in the number of dopaminergic chemosensitive carotid body glomus cells in A1-mice. Overall, our work shows that A1 regulates the development and survival of dopaminergic neurons in different nuclei of the mammalian nervous system.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/patologia , Substância Negra/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Camundongos Endogâmicos C57BL , Mamíferos
16.
Physiol Genomics ; 55(4): 155-167, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36847440

RESUMO

Hibernation is a natural model of extreme physiology in a mammal. Throughout winter, small hibernators repeatedly undergo rapid, dramatic swings in body temperature, perfusion, and oxygen delivery. To gain insight into the molecular mechanisms that support homeostasis despite the numerous challenges posed by this dynamic physiology, we collected 13-lined ground squirrel adrenal glands from at least five individuals representing six key timepoints across the year using body temperature telemetry. Differentially expressed genes were identified using RNA-seq, revealing both strong seasonal and torpor-arousal cycle effects on gene expression. Two novel findings emerge from this study. First, transcripts encoding multiple genes involved in steroidogenesis decreased seasonally. Taken together with morphometric analyses, the data are consistent with preservation of mineralocorticoids but suppression of glucocorticoid and androgen output throughout winter hibernation. Second, a temporally orchestrated, serial gene expression program unfolds across the brief arousal periods. This program initiates during early rewarming with the transient activation of a set of immediate early response (IER) genes, comprised of both transcription factors and the RNA degradation proteins that assure their rapid turnover. This pulse in turn activates a cellular stress response program to restore proteostasis comprised of protein turnover, synthesis, and folding machinery. These and other data support a general model for gene expression across the torpor-arousal cycle that is facilitated in synchrony with whole body temperature shifts; induction of the immediate early response upon rewarming activates a proteostasis program followed by a restored tissue-specific gene expression profile enabling renewal, repair, and survival of the torpid state.NEW & NOTEWORTHY This pioneer study of adrenal gland gene expression dynamics in hibernating ground squirrels leverages the power of RNA-seq on multiple precisely timed samples to demonstrate: 1) steroidogenesis is seasonally reorganized to preserve aldosterone at the expense of glucocorticoids and androgens throughout winter hibernation; 2) a serial gene expression program unfolds during each short arousal whereby immediate early response genes induce the gene expression machinery that restores proteostasis and the cell-specific expression profile before torpor reentry.


Assuntos
Hibernação , Torpor , Humanos , Animais , Hibernação/genética , Torpor/genética , Mamíferos/genética , Expressão Gênica , Sciuridae/fisiologia
17.
Neurosci Lett ; 800: 137129, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36796621

RESUMO

Disturbances that threaten homeostasis elicit activation of the sympathetic nervous system (SNS) and the adrenal medulla. The effectors discharge as a unit to drive global and immediate changes in whole-body physiology. Descending sympathetic information is conveyed to the adrenal medulla via preganglionic splanchnic fibers. These fibers pass into the gland and synapse onto chromaffin cells, which synthesize, store, and secrete catecholamines and vasoactive peptides. While the importance of the sympatho-adrenal branch of the autonomic nervous system has been appreciated for many decades, the mechanisms underlying transmission between presynaptic splanchnic neurons and postsynaptic chromaffin cells have remained obscure. In contrast to chromaffin cells, which have enjoyed sustained attention as a model system for exocytosis, even the Ca2+ sensors that are expressed within splanchnic terminals have not yet been identified. This study shows that a ubiquitous Ca2+-binding protein, synaptotagmin-7 (Syt7), is expressed within the fibers that innervate the adrenal medulla, and that its absence can alter synaptic transmission in the preganglionic terminals of chromaffin cells. The prevailing impact in synapses that lack Syt7 is a decrease in synaptic strength and neuronal short-term plasticity. Evoked excitatory postsynaptic currents (EPSCs) in Syt7 KO preganglionic terminals are smaller in amplitude than in wild-type synapses stimulated in an identical manner. Splanchnic inputs also display robust short-term presynaptic facilitation, which is compromised in the absence of Syt7. These data reveal, for the first time, a role for any synaptotagmin at the splanchnic-chromaffin cell synapse. They also suggest that Syt7 has actions at synaptic terminals that are conserved across central and peripheral branches of the nervous system.


Assuntos
Medula Suprarrenal , Células Cromafins , Acetilcolina/metabolismo , Sinaptotagminas/metabolismo , Nervos Esplâncnicos/metabolismo , Células Cromafins/metabolismo , Medula Suprarrenal/metabolismo , Sinapses/fisiologia
18.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769098

RESUMO

Dichlorodiphenyltrichloroethane (DDT) is the most widespread persistent pollutant with endocrine-disrupting properties. DDT has been shown to disrupt secretory and morphogenetic processes in the adrenal cortex. The present investigation aimed to evaluate transcriptional regulation of postnatal growth of the adrenal medulla and formation of the pools necessary for self-renewal of medullary cells in rats that developed under low-dose exposure to DDT. The study was performed using male Wistar rats exposed to low doses of o,p'-DDT during prenatal and postnatal development. Light microscopy and histomorphometry revealed diminished medulla growth in the DDT-exposed rats. Evaluation of Ki-67 expression in chromaffin cells found later activation of proliferation indicative of retarded growth of the adrenal medulla. All DDT-exposed rats exhibited a gradual decrease in tyrosine hydroxylase production by adrenal chromaffin cells. Immunohistochemical evaluation of nuclear ß-catenin, transcription factor Oct4, and ligand of sonic hedgehog revealed increased expression of all factors after termination of growth in the control rats. The DDT-exposed rats demonstrated diminished increases in Oct4 and sonic hedgehog expression and lower levels of canonical Wnt signaling activation. Thus, developmental exposure to the endocrine disruptor o,p'-DDT alters the transcriptional regulation of morphogenetic processes in the adrenal medulla and evokes a slowdown in its growth and in the formation of a reserve pool of cells capable of dedifferentiation and proliferation that maintain cellular homeostasis in adult adrenals.


Assuntos
Medula Suprarrenal , DDT , Gravidez , Feminino , Ratos , Animais , Masculino , DDT/toxicidade , Ratos Wistar , Proteínas Hedgehog/genética
19.
Rev Endocr Metab Disord ; 24(1): 49-56, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36637675

RESUMO

Diagnosis of pheochromocytoma or paraganglioma (PPGL) in pregnancy has been associated historically with high rates of materno-fetal morbidity and mortality. Recent evidence suggests outcomes are improved by recognition of PPGL before or during pregnancy and appropriate medical management with alpha-blockade. Whether antepartum surgery (before the third trimester) is required remains controversial and open to case-based merits. Women with PPGL in pregnancy are more commonly delivered by Caesarean section, although vaginal delivery appears to be safe in selected cases. At least some PPGLs express the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) which may explain their dramatic manifestation in pregnancy. PPGLs in pregnancy are often associated with heritable syndromes, and genetic counselling and testing should be offered routinely in this setting. Since optimal outcomes are only achieved by early recognition of PPGL in (or ideally before) pregnancy, it is incumbent for clinicians to be aware of this diagnosis in a pregnant woman with hypertension occurring before 20 weeks' gestation, and acute and/or refractory hypertension particularly if paroxysmal and accompanied by sweating, palpitations and/or headaches. All women with a past history of PPGL and/or heritable PPGL syndrome should be carefully assessed for the presence of residual or recurrent disease before considering pregnancy.


Assuntos
Neoplasias das Glândulas Suprarrenais , Hipertensão , Paraganglioma , Feocromocitoma , Gravidez , Humanos , Feminino , Feocromocitoma/diagnóstico , Feocromocitoma/genética , Feocromocitoma/terapia , Cesárea , Paraganglioma/diagnóstico , Paraganglioma/genética , Paraganglioma/terapia , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/terapia
20.
Mol Med Rep ; 27(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36601769

RESUMO

The presence of allergic rhinitis (AR) is an increased risk factor for the occurrence of bronchial asthma (BA). Nerve growth factor (NGF), in addition to its key role in the development and differentiation of neurons, may also be an important inflammatory factor in AR and BA. However, the pathogenesis of the progression of AR to BA remains to be elucidated. The present study aimed to investigate the ability of NGF to mediate nasobronchial interactions and explore possible underlying molecular mechanisms. In the present study, an AR mouse model was established and histology of nasal mucosa tissue injury was determined. The level of phenylethanolamine N­methyl transferase in adrenal medulla was determined by immunofluorescence. Primary adrenal medullary chromaffin cells (AMCCs) were isolated and cultured from the adrenal medulla of mice. The expression levels of synaptophysin (SYP), STAT1, JAK1, p38 and ERK in NGF­treated and untreated AMCCs were detected by reverse­transcription­quantitative PCR and western blotting. The epinephrine (EPI) and norepinephrine (NE) concentrations were measured by ELISA. It was found that the expression of SYP in AMCCs was enhanced in the presence of NGF, whereas, the concentration of EPI decreased significantly under the same conditions. Furthermore, NGF mediated the phenotypic and functional changes of AMCCs, resulting in decreased EPI secretion via JAK1/STAT1, p38 and ERK signaling. In conclusion, these findings could provide novel evidence for the role of NGF in regulating neuroendocrine mechanisms.


Assuntos
Asma , Células Cromafins , Rinite Alérgica , Ratos , Animais , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Ratos Sprague-Dawley , Epinefrina/farmacologia , Asma/metabolismo , Rinite Alérgica/metabolismo , Células Cromafins/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...