Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Methods Mol Biol ; 2565: 35-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36205885

RESUMO

Immunocytochemistry enables the detection and localization of proteins in cells that are acutely dissociated or in culture. There are advantages and disadvantages to the use of cultured cells for immunocytochemistry. One of the advantages is that cultured cells can be used for one or more weeks after the dissociation of cells, whereas one of the disadvantages is that the properties of cells in culture might change under artificial conditions. On the other hand, acutely dissociated cells are expected to have the original properties of cells because almost all procedures before fixation, except for enzymatic digestion, are carried out at low temperatures. Here, we describe how adrenal medullary cells of small animals are acutely dissociated for immunostaining.


Assuntos
Medula Suprarrenal , Células Cromafins , Células Endócrinas , Animais , Células Cultivadas , Imuno-Histoquímica
2.
Pflugers Arch ; 472(7): 911-922, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32472332

RESUMO

TWIK-related acid-sensitive K+ (TASK) channels contribute to the resting membrane potential in various kinds of cells, such as brain neurons, smooth muscle cells, and endocrine cells. Loss-of-function mutations at multiple sites in the KCNK3 gene encoding for TASK1 channels are one of the causes of pulmonary arterial hypertension in humans, whereas a mutation at only one site is reported for TASK3 channels, resulting in a syndrome of mental retardation, hypotonia, and facial dysmorphism. TASK channels are subject to regulation by G protein-coupled receptors (GPCRs). Two mechanisms have been proposed for the GPCR-mediated inhibition of TASK channels: a change in gating and channel endocytosis. The most feasible mechanism for altered gating is diacylglycerol binding to a site in the C-terminus, which is shared by TASK1 and TASK3. The inhibition of channel function by endocytosis requires the presence of a tyrosine residue subjected to phosphorylation by the non-receptor tyrosine kinase Src and a dileucine motif in the C-terminus of TASK1. Therefore, homomeric TASK1 and heteromeric TASK1-TASK3 channels, but not homomeric TASK3, are internalized by GPCR stimulation. Tyrosine phosphorylation by Src is expected to result in a conformational change in the C-terminus, allowing for AP-2, an adaptor protein for clathrin, to bind to the dileucine motif. It is likely that a raft membrane domain is a platform where TASK1 is located and the signaling molecules protein kinase C, Pyk2, and Src are recruited in sequence in response to GPCR stimulation.


Assuntos
Canalopatias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Transporte Proteico/fisiologia , Animais , Humanos , Fosforilação/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
3.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-168595

RESUMO

OBJECTIVE: Adrenal medullary chromaffin cells are known to release analgesic substances such as opioides and catecholamines. Transplantation of them is a novel method that challenges current approaches in treating chronic pain. The transplantation of xenogeneic chromaffin cells into the central nervous system(CNS) supply antinociception in animals. In this study, we investigated the analgesic effects of rat adrenal medullary chromaffin cells transplanted into the CNS of the mouse. To study the antinociceptive efficacy of transplanted chromaffin cells, the survival of rat adrenal medullary chromaffin cells transplanted into the CNS of mouse was determined. METHODS: The adrenal medullary chromaffin cells isolated from rat were transplanted into the striatum of mouse. These cells were confirmed of the release of Met-enkephalin and Leu-enkephalin by HPLC, and immunoblots for tyrosine hydroxylase(TH). Two weeks after transplantation, we performed immunohistochemistry for TH to determine the survival of implanted cells and assessed pain sensitivity at the same time. RESULTS: The isolated rat adrenal medullary chromaffin cells were positive for anti-TH antibody and released Met-enkephalin and Leu-enkephalin more than rat endothelial cells. Transplanted rat chromaffin cells were stained with anti-TH antibody in striatum of mouse after 2 weeks. Pain sensitivity was reduced on the chromaffin cell-transplanted mouse compared to endothelial cell-transplanted mouse by the hot plate test. CONCLUSION: These results suggest that the rat chromaffin cells were suitably transplanted into the CNS of mouse. This approach could be used as a therapy for reducing of chronic pain induced by cancer or neuronal injury.


Assuntos
Animais , Camundongos , Ratos , Catecolaminas , Células Cromafins , Cromatografia Líquida de Alta Pressão , Dor Crônica , Células Endoteliais , Encefalina Leucina , Encefalina Metionina , Encefalinas , Imuno-Histoquímica , Neurônios , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...