RESUMO
The one-dimensional cutting-stock problem (1D-CSP) consists of obtaining a set of items of different lengths from stocks of one or different lengths, where the minimization of waste is one of the main objectives to be achieved. This problem arises in several industries like wood, glass, and paper, among others similar. Different approaches have been designed to deal with this problem ranging from exact algorithms to hybrid methods of heuristics or metaheuristics. The African Buffalo Optimization (ABO) algorithm is used in this work to address the 1D-CSP. This algorithm has been recently introduced to solve combinatorial problems such as travel salesman and bin packing problems. A procedure was designed to improve the search by taking advantage of the location of the buffaloes just before it is needed to restart the herd, with the aim of not to losing the advance reached in the search. Different instances from the literature were used to test the algorithm. The results show that the developed method is competitive in waste minimization against other heuristics, metaheuristics, and hybrid approaches.
RESUMO
BACKGROUND: Tick-borne diseases (TBDs) are very important in relation to domestic ruminants, but their occurrence among wild ruminants, mainly in the African buffalo Syncerus caffer, remains little known. METHODS: Molecular diagnostic methods were applied to detect Anaplasma marginale, Anaplasma centrale, Anaplasma phagocytophilum, Ehrlichia ruminantium and Ehrlichia chaffeensis in 97 blood samples of African buffalo captured at the Marromeu Reserve in Mozambique. Molecular detection of agents belonging to the family Anaplasmataceae were based on conventional and qPCR assays based on msp5, groEL, 16S rRNA, msp2, pCS20 and vlpt genes. Phylogenetic reconstruction of new Anaplasma isolates detected in African buffalo was evaluated based on msp5, groEL and 16S rRNA genes. RESULTS: All the animals evaluated were negative for specific PCR assays for A. phagocytophilum, E. ruminantium and E. chaffeensis, but 70 animals were positive for A. marginale, showing 2.69 × 10(0) up to 2.00 × 10(5) msp1ß copies/µl. This result overcomes the conventional PCR for A. marginale based on msp5 gene that detected only 65 positive samples. Sequencing and phylogenetic analyses were performed for selected positive samples based on the genes msp5, groEL and 16S rRNA. Trees inferred using different methods separated the 29 msp5 sequences from buffalo in two distinct groups, assigned to A. centrale and A. marginale. The groEL sequences determined for African buffalo samples revealed to be more heterogeneous and inferred trees could not assign them to any species of Anaplasma despite being more related to A. marginale and A. centrale. The highly conserved 16S rRNA gene sequences suggested a close relationship of the new 16 sequences with A. centrale/A. marginale, A. platys and A. phagocytophilum. CONCLUSIONS: Our analysis suggests that different species of Anaplasma are simultaneously present in the African buffalo. To the best of our knowledge, this is the first study that diagnosed Anaplasma spp. in the African buffalo and inferred the taxonomic status of new isolates with different gene sequences. The small fragment of msp5 sequences revealed to be a good target for phylogenetic positioning of new Anaplasma spp. isolates.