Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Med ; 17(6): 1170-1185, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747585

RESUMO

OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.


Assuntos
Antineoplásicos , Receptores do Fator de Necrose Tumoral , Camundongos , Animais , Receptores do Fator de Necrose Tumoral/fisiologia , Receptores OX40 , Glicoproteínas de Membrana , Ligantes , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia
2.
Cell Rep Med ; 4(8): 101130, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490914

RESUMO

Signal regulatory protein (SIRPα) is an immune inhibitory receptor expressed by myeloid cells to inhibit immune cell phagocytosis, migration, and activation. Despite the progress of SIRPα and CD47 antagonist antibodies to promote anti-cancer immunity, it is not yet known whether SIRPα receptor agonism could restrain excessive autoimmune tissue inflammation. Here, we report that neutrophil- and monocyte-associated genes including SIRPA are increased in inflamed tissue biopsies from patients with rheumatoid arthritis and inflammatory bowel diseases, and elevated SIRPA is associated with treatment-refractory ulcerative colitis. We next identify an agonistic anti-SIRPα antibody that exhibits potent anti-inflammatory effects in reducing neutrophil and monocyte chemotaxis and tissue infiltration. In preclinical models of arthritis and colitis, anti-SIRPα agonistic antibody ameliorates autoimmune joint inflammation and inflammatory colitis by reducing neutrophils and monocytes in tissues. Our work provides a proof of concept for SIRPα receptor agonism for suppressing excessive innate immune activation and chronic inflammatory disease treatment.


Assuntos
Colite , Neoplasias , Humanos , Fagocitose , Neoplasias/tratamento farmacológico , Neutrófilos/metabolismo , Inflamação/patologia , Colite/metabolismo
4.
Cell Rep ; 42(2): 112040, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36701231

RESUMO

Junctional adhesion molecule-like protein (JAML) serves as a co-stimulatory molecule in γδ T cells. While it has recently been described as a cancer immunotherapy target in mice, its potential to cause toxicity, specific mode of action with regard to its cellular targets, and whether it can be targeted in humans remain unknown. Here, we show that JAML is induced by T cell receptor engagement, reveal that this induction is linked to cis-regulatory interactions between the CD3D and JAML gene loci. When compared with other immunotherapy targets plagued by low target specificity and end-organ toxicity, we find JAML to be mostly restricted to and highly expressed by tissue-resident memory CD8+ T cells in multiple cancer types. By delineating the key cellular targets and functional consequences of agonistic anti-JAML therapy in a murine melanoma model, we show its specific mode of action and the reason for its synergistic effects with anti-PD-1.


Assuntos
Moléculas de Adesão Celular , Neoplasias , Humanos , Animais , Camundongos , Moléculas de Adesão Juncional , Moléculas de Adesão Celular/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Linfócitos do Interstício Tumoral/metabolismo
5.
Frontiers of Medicine ; (4): 1170-1185, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010819

RESUMO

OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.


Assuntos
Camundongos , Animais , Receptores do Fator de Necrose Tumoral/fisiologia , Receptores OX40 , Glicoproteínas de Membrana , Ligantes , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia
6.
FEBS Open Bio ; 12(12): 2166-2178, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36176235

RESUMO

CD137 (4-1BB, TNFRSF9), an inducible T-cell costimulatory receptor, is expressed on activated T cells, activated NK cells, Treg cells, and several innate immune cells, including DCs, monocytes, neutrophils, mast cells, and eosinophils. In animal models and clinical trials, anti-CD137 agonistic monoclonal antibodies have shown anti-tumor potential, but balancing the efficacy and toxicity of anti-CD137 agonistic monoclonal antibodies is a considerable hindrance for clinical applications. Here, we describe a novel fully human CD137 agonistic antibody (PE0116) generated from immunized harbor H2L2 human transgenic mice. PE0116 is a ligand blocker, which is also the case for Utomilumab (one of the leading CD137 agonistic drugs); PE0116 partially overlaps with Urelumab's recognized epitope. In vitro, PE0116 activates NF-κB signaling, significantly promotes T-cell proliferation, and increases cytokine secretion in the presence of cross-linking. Importantly, PE0116 possesses robust anti-tumor activity in the MC38 tumor model. In vivo, PE0116 exhibits a good safety profile and has typical pharmacokinetic characteristics of an IgG antibody in preclinical studies of non-human primates. In summary, PE0116 is a promising anti-CD137 antibody with a good safety profile in preclinical studies.


Assuntos
Neoplasias , Primatas , Animais , Camundongos , Humanos , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Células Matadoras Naturais , Linfócitos T Reguladores
7.
Front Immunol ; 13: 940674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911742

RESUMO

The clinical use of anti-CD40 agonist monoclonal antibodies (mAbs) is aimed at recruiting the immune system to fight the tumor cells. This approach has been demonstrated to be effective in various preclinical models. However, human CD40 Abs displayed only modest antitumor activity in cancer patients, characterized by low efficacy and dose-limiting toxicity. While recent studies highlight the importance of engineering the Fc region of human CD40 mAbs to optimize their agonistic potency, toxicity remains the main limiting factor, restricting clinical application to suboptimal doses. Here, we discuss the current challenges in realizing the full potential of CD40 mAbs in clinical practice, and describe novel approaches designed to circumvent the systemic toxicity associated with CD40 agonism.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Antígenos CD40 , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Antígenos CD40/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias/terapia
8.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887165

RESUMO

BACKGROUND: Atrophy of the vocal folds and the accompanying glottic insufficiency affect the quality of life. Although growth factors have been used to treat muscle atrophy, their effectiveness is limited by their short half-life. METHODS: In total, 15 rabbits and 24 rats were used for the study. The right recurrent laryngeal nerves of all animals were transected. One month following nerve transection, PBS (PBS group), rHGF (HGF group), or a c-Met agonistic antibody (c-Met group) was injected into the paralyzed vocal folds. The larynges of the rabbits were harvested from each group for histologic examination and subjected to PCR analysis. RESULTS: Cross-sectional areas (CSAs) of thyroarytenoid muscles were evaluated. The c-Met group had increased CSAs compared to the PBS and HGF groups, but there were no significant differences compared to normal controls. The expression levels of myogenesis-related genes were evaluated three weeks after the injection. The expression levels of myosin heavy chain IIa were significantly increased in the PBS group, while the expression levels of MyoD were increased in the c-Met group. CONCLUSIONS: The c-Met agonistic antibody showed promise for promoting muscle regeneration in a vocal fold palsy model.


Assuntos
Paralisia das Pregas Vocais , Prega Vocal , Animais , Músculos Laríngeos , Atrofia Muscular/metabolismo , Qualidade de Vida , Coelhos , Ratos , Paralisia das Pregas Vocais/metabolismo , Paralisia das Pregas Vocais/patologia , Paralisia das Pregas Vocais/terapia , Prega Vocal/metabolismo
9.
Cancer Immunol Immunother ; 71(4): 967-978, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988585

RESUMO

Human epidermal growth factor receptor type 2 (HER2)-positive breast cancer that is treated with anti-HER2/neu monoclonal antibody (mAb) is not free from late recurrences. Addition of anti-4-1BB mAb to anti-HER2/neu mAb has been demonstrated to strengthen the cytotoxic antitumor response. Our study expands on this by revealing the influence of anti-4-1BB mAb addition on the immune memory of anti-HER2/neu mAb. We designed murine breast cancer models by implanting TUBO and TUBO-P2J cell lines in mice, which were then treated with anti-HER2/neu and/or anti-4-1BB mAb. After complete surgical and/or chemical regression of the tumor, the mice were rechallenged with a second injection of cancer cells. Notably, anti-HER2/neu and anti-4-1BB mAb combination therapy had a synergistic antitumor effect at the initial treatment. However, the combination therapy did not evoke immune memory, allowing the tumors to thrive at rechallenge with reduced CD44+ expression in CD8+ T cells. Immune memory was also impaired when anti-4-1BB mAb was administered to naive CD8+ T cells but was sustained when this was administered to activated CD8+ T cells. In an attempt to resist the loss of immune memory, we controlled the dose of anti-4-1BB mAb to optimize the stimulation of activated CD8+ T cells. Immune memory was achieved with the dose regulation of anti-4-1BB mAb to 1 mg/kg in our model. Our study demonstrates the importance in understanding the adaptive immune mechanism of anti-HER2/neu and anti-4-1BB mAb combination therapy and suggests a dose optimization strategy is necessary to ensure development of successful immune memory.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Mamárias Experimentais , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Feminino , Memória Imunológica , Neoplasias Mamárias Experimentais/patologia , Camundongos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
10.
Front Pharmacol ; 13: 1120954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686715
11.
Front Cell Dev Biol ; 9: 692982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277638

RESUMO

Immunotherapy explores several strategies to enhance the host immune system's ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti-programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte-associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control. It is well known that costimulatory and coinhibitory pathways are critical regulators in the activation of T cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory molecules also plays an important role in T-cell activation and antitumor response. Therefore, molecules driven to costimulatory pathways constitute promising targets in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors on lymphocytes surface may transduce signals that control the survival, proliferation, differentiation, and effector functions of these immune cells. Among the members of the tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical studies have been carried out targeting these molecules, with agonist monoclonal antibodies, and preclinical studies exploring their ligands and other experimental approaches. In this review, we discuss functional aspects of 4-1BB and OX40 costimulation, as well as the progress of its application in immunotherapies.

12.
Glia ; 69(5): 1126-1139, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314333

RESUMO

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on myeloid-derived cell types. The extracellular immunoglobulin-like domain of TREM2 binds anionic ligands including Apolipoprotein E and Amyloid-ß. The transmembrane domain interacts with its adaptor protein DAP12/TYROBP that is responsible for propagation of downstream signaling upon ligand interaction. Several sequence variants of TREM2 have been linked to different neurodegenerative diseases including Alzheimer's disease. Here, we generated HEK 293 Flp-In cell lines stably expressing human TREM2 and DAP12 using a bicistronic construct with a T2A linker sequence allowing initial expression of both proteins in stoichiometric amounts. Cell biological and biochemical analyses revealed transport of TREM2 to the cell surface, and canonical sequential proteolytic processing and shedding of TREM2 (sTREM2). The functionality of this cell system was demonstrated by detection of phosphorylated spleen tyrosine kinase (SYK) upon stimulation of TREM2 with the anionic membrane lipid phosphatidylserine or anti-TREM2 antibodies. Using this cell model, we demonstrated impaired signaling of disease associated TREM2 variants. We also identified a monoclonal antibody against the stalk region of TREM2 with agonistic activity. Activation of TREM2-DAP12 signaling with the monoclonal antibody and the partial loss of function of disease associated variants were recapitulated in induced pluripotent stem cell derived microglia. Thus, this reporter cell model represents a suitable experimental system to investigate signaling of TREM2 variants, and for the identification of ligands and compounds that modulate TREM2-DAP12 signaling. MAIN POINTS: Disease associated variants impair the signaling activity of TREM2 by distinct mechanisms. Targeting the stalk region of TREM2 with bivalent antibodies activates TREM2 signaling.


Assuntos
Doença de Alzheimer , Microglia , Anticorpos Monoclonais , Proteínas de Transporte , Células HEK293 , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Células Mieloides , Receptores Imunológicos/genética
13.
J Cell Mol Med ; 24(19): 11158-11169, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822114

RESUMO

The prediction of prognosis in patients with immunoglobulin A nephropathy (IgAN) is challenging. We investigated the correlation between urinary cMet (ucMet) levels and clinical parameters and examined the effects of cMet agonistic antibody (cMet Ab) in an in vitro IgAN model. Patients diagnosed with IgAN (n = 194) were divided into three groups representing undetectable (Group 1), below-median (Group 2) and above-median (Group 3) levels of ucMet/creatinine (ucMet/Cr). Stained kidney biopsy samples were graded according to cMet intensity. Primary-cultured human mesangial cells were stimulated with recombinant tumour necrosis factor (TNF)-α and treated with cMet Ab. Our results showed that ucMet/Cr levels positively correlated with proteinuria (P < .001). During the follow-up, patients in Group 3 showed a significantly lower probability of complete remission (CR; uPCr < 300 mg/g) than those in groups 1 and 2, after adjusting for blood pressure, estimated glomerular filtration rate, and proteinuria, which influence clinical prognosis (HR 0.60, P = .038); moreover, ucMet/Cr levels were also associated with glomerular cMet expression. After TNF-α treatment, the proliferation of mesangial cells and increased interleukin-8 and intercellular adhesion molecule-1 expression were markedly reduced by cMet Ab in vitro. In conclusion, ucMet/Cr levels significantly correlated with proteinuria, glomerular cMet expression, and the probability of CR. Further, cMet Ab treatment alleviated the inflammation and proliferation of mesangial cells. Hence, ucMet could serve as a clinically significant marker for treating IgAN.


Assuntos
Glomerulonefrite por IGA/urina , Proteínas Proto-Oncogênicas c-met/urina , Adulto , Biomarcadores/urina , Creatinina/urina , Feminino , Glomerulonefrite por IGA/complicações , Humanos , Rim/patologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Prognóstico , Proteinúria/complicações , Indução de Remissão
14.
J Cell Mol Med ; 24(10): 5640-5651, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239661

RESUMO

Acute kidney injury (AKI) is a very common complication with high morbidity and mortality rates and no fundamental treatment. In this study, we investigated whether the hepatocyte growth factor (HGF)/cMet pathway is associated with the development of AKI and how the administration of a cMet agonistic antibody (Ab) affects an AKI model. In the analysis using human blood samples, cMet and HGF levels were found to be significantly increased in the AKI group, regardless of underlying renal function. The administration of a cMet agonistic Ab improved the functional and histological changes after bilateral ischaemia-reperfusion injury. TUNEL-positive cells and Bax/Bcl-2 ratio were also reduced by cMet agonistic Ab treatment. In addition, cMet agonistic Ab treatment significantly increased the levels of PI3K, Akt and mTOR. Furthermore, after 24 hours of hypoxia induction in human proximal tubular epithelial cells, treatment with the cMet agonistic Ab also showed dose-dependent antiapoptotic effects similar to those of the recombinant HGF treatment. Even when the HGF axis was blocked with a HGF-blocking Ab, the cMet agonistic Ab showed an independent dose-dependent antiapoptotic effect. In conclusion, cMet expression is associated with the occurrence of AKI. cMet agonistic Ab treatment attenuates the severity of AKI through the PI3K/Akt/mTOR pathway and improves apoptosis. cMet agonistic Ab may have important significance for the treatment of AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Idoso , Animais , Ciclo Celular/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/etiologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
15.
Cancer Biol Ther ; 21(6): 549-559, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32192391

RESUMO

c-Met is a well-characterized oncogene that is associated with poor prognosis in many solid tumor types. While responses to c-Met inhibitors have been observed in clinical trials, activity appears to be limited to those with MET gene amplifications or mutations. We developed a c-Met targeted antibody-drug conjugate (ADC) with preclinical activity in the absence of MET gene amplification or mutation, and activity even in the context of moderate protein expression. The ADC utilized a high-affinity c-Met antibody (P3D12), that induced c-Met degradation with minimal activation of c-Met signaling, or mitogenic effect. P3D12 was conjugated to the tubulin inhibitor toxin MMAF via a cleavable linker (vc-MMAF). P3D12-vc-MMAF demonstrated potent in vitro activity in c-Met protein-expressing cell lines regardless of MET gene amplification or mutation status, and retained activity in cell lines with medium-low c-Met protein expression. In contrast, the c-Met tyrosine kinase inhibitor (TKI) PHA-665752 slowed tumor cell growth in vitro only in the context of MET gene amplification or very high protein expression. This differential activity was even more marked in vivo. P3D12-vc-MMAF demonstrated robust inhibition of tumor growth in the MET gene amplified MKN-45 xenograft model, and similar results in H1975, which expresses moderate levels of wild type c-Met without genomic amplification. By comparison, the c-Met TKI, PHA-665752, demonstrated modest tumor growth inhibition in MKN-45, and no inhibition at all in H1975. Taken together, these data suggest that P3D12-vc-MMAF may have a superior clinical profile in treating c-Met positive malignancies in contrast to c-Met pathway inhibitors.


Assuntos
Amplificação de Genes , Imunoconjugados/farmacologia , Indóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/imunologia , Neoplasias Gástricas/tratamento farmacológico , Sulfonas/farmacologia , Animais , Anticorpos Monoclonais/química , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Oligopeptídeos/química , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Immunol Immunother ; 69(6): 939-950, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32078015

RESUMO

With the great success of anti-CTLA-4 and anti-PD-1 therapeutics in cancer immunotherapy, tumor necrosis factor receptor superfamily members have been recognized as ideal targets to provide co-stimulatory signals in combination with immune checkpoint blocking antibodies. Among these is OX40 (CD134), a co-stimulatory molecule expressed by activated immune cells. Recently, several anti-OX40 agonistic monoclonal antibodies, pogalizumab as the most advanced, have entered early phase clinical trials. Using a yeast platform and multiple screening methods, we identified a fully human anti-OX40 antibody (IBI101) with distinct modes of action. Unlike pogalizumab, IBI101 partially blocks the binding of OX40 to its ligand OX40L and exhibits both FcγR-dependent and independent agonistic activities in NF-κB luciferase reporter assays. IBI101 also promotes T cell activation and proliferation in vitro. These unique properties partially explain the more potent anti-tumor activity of IBI101 than that of pogalizumab in humanized NOG mice bearing LoVo tumors. In addition, IBI101 shows efficacious anti-tumor activity in mice when administrated alone or in combination with anti-PD-1 antibodies. In human OX40 knock-in mice bearing MC38 colon carcinoma, IBI101 treatment induces tumor antigen-specific CD8+ T-cell responses, decreases immunosuppressive regulatory T cells in tumor, and enhances the immune response to PD-1 inhibition. Preclinical studies of IBI101 in non-human primates demonstrate typical pharmacokinetic characteristics of an IgG antibody and no drug-related toxicity. Collectively, IBI101 has desirable preclinical attributes which support its clinical development for cancer treatment.


Assuntos
Imunoterapia/métodos , Receptores OX40/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos
17.
Am J Physiol Renal Physiol ; 318(3): F647-F659, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31984788

RESUMO

CD148 is a transmembrane protein tyrosine phosphatase (PTP) that is expressed in the renal vasculature, including the glomerulus. Previous studies have shown that CD148 plays a role in the negative regulation of growth factor signals (including epidermal growth factor and vascular endothelial growth factor), suppressing cell proliferation and transformation. However, the role of CD148 in kidney disease remains unknown. Here, we generated an agonistic anti-CD148 antibody and evaluated its effects in murine diabetic nephropathy (DN). Monoclonal antibodies (mAbs) against the mouse CD148 ectodomain sequence were generated by immunizing CD148 knockout (CD148KO) mice. The mAbs that increased CD148 activity were selected by biological (proliferation) and biochemical (PTP activity) assays. The mAb (18E1) that showed strong agonistic activity was injected (10 mg/kg ip) in streptozotocin-induced wild-type and CD148KO diabetic mice for 6 wk, and the renal phenotype was then assessed. The effects of 18E1 mAb in podocyte growth factor signals were also assessed in culture. Compared with control IgG, 18E1 mAb significantly decreased albuminuria and mesangial expansion without altering hyperglycemia and blood pressure in wild-type diabetic mice. Immunohistochemical evaluation showed that 18E1 mAb significantly prevented the reduction of podocyte number and nephrin expression and decreased glomerular fibronectin expression and renal macrophage infiltration. The 18E1 mAb showed no effects in CD148KO diabetic mice. Furthermore, we demonstrated that 18E1 mAb reduces podocyte epidermal growth factor receptor signals in culture and in diabetic mice. These findings suggest that agonistic anti-CD148 mAb attenuates DN in mice, in part by reducing epidermal growth factor receptor signals in podocytes. This antibody may be used for the treatment of early DN.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Nefropatias Diabéticas/terapia , Albuminúria , Animais , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Receptores ErbB/agonistas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina G/uso terapêutico , Camundongos , Camundongos Knockout , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/imunologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Transdução de Sinais
18.
Front Immunol ; 11: 606518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414788

RESUMO

Radioprotective 105 (RP105) (also termed CD180) is an orphan and unconventional Toll-like receptor (TLR) that lacks an intracellular signaling domain. The agonistic anti-RP105 monoclonal antibody (mAb) can cross-link RP105 on B cells, resulting in the proliferation and activation of B cells. Anti-RP105 mAb also has a potent adjuvant effect, providing higher levels of antigen-specific antibodies compared to alum. However, adjuvanticity is required for the covalent link between anti-RP105 mAb and the antigen. This is a possible obstacle to immunization due to the link between anti-RP105 mAb and some antigens, especially multi-transmembrane proteins. We have previously succeeded in inducing rapid and potent recombinant mAbs in mice using antibody gene-based delivery. To simplify the covalent link between anti-RP105 mAb and antigens, we generated genetic constructs of recombinant anti-RP105 mAb (αRP105) bound to the transmembrane domain of the IgG-B cell receptor (TM) (αRP105-TM), which could enable the anti-RP105 mAb to link the antigen via the cell membrane. We confirmed the expression of αRP105-TM and the antigen hemagglutinin, which is a membrane protein of the influenza virus, on the same cell. We also found that αRP105-TM could activate splenic B cells, including both mature and immature cells, depending on the cell surface RP105 in vitro. To evaluate the adjuvanticity of αRP105-TM, we conducted DNA immunization in mice with the plasmids encoding αRP105-TM and hemagglutinin, followed by challenge with an infection of a lethal dose of an influenza virus. We then obtained partially but significantly hemagglutinin-specific antibodies and observed protective effects against a lethal dose of influenza virus infection. The current αRP105-TM might provide adjuvanticity for a vaccine via a simple preparation of the expression plasmids encoding αRP105-TM and of that encoding the target antigen.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Monoclonais/farmacologia , Antígenos CD/metabolismo , Linfócitos B/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Técnicas de Transferência de Genes , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/farmacologia , Vacinas contra Influenza/farmacologia , Infecções por Orthomyxoviridae/prevenção & controle , Baço/efeitos dos fármacos , Adjuvantes Imunológicos/genética , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Hibridomas , Imunização , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Ativação Linfocitária/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Ratos , Receptores de IgG/genética , Receptores de IgG/imunologia , Baço/imunologia , Baço/metabolismo , Vacinas de DNA/farmacologia
19.
Adv Exp Med Biol ; 1189: 313-326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31758539

RESUMO

Great success of immune checkpoint blockade represented by anti-PD-1 monoclonal antibodies (mAbs) has changed a landscape of cancer immunotherapy. There is no doubt about an importance of co-signal molecules as one of the most promising targets in anti-cancer drugs. However, it should be noted that the proportion of patients who have objective and durable responses to immune checkpoint blockade remains less than 30% in majority of cancers. Thus, in addition to refine the usage of existing drugs for checkpoint blockade, identification and characterization of novel checkpoint molecules other than CTLA-4 and PD-1 is a highly anticipated research subject. In addition, agonists of stimulatory co-signal molecules have a potential to further improve anti-tumor effects, rendering them attractive in research and drug development. In this chapter, functions of co-signal molecules in anti-tumor immunity in terms of pre-clinical animal models as well as clinical trials are described.


Assuntos
Antígeno CTLA-4/imunologia , Imunoterapia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Animais , Anticorpos Monoclonais , Humanos
20.
Neurobiol Dis ; 132: 104590, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470106

RESUMO

While Brain-derived Neurotrophic Factor (BDNF) has long been implicated in treating neurological diseases, recombinant BDNF protein has failed in multiple clinical trials. In addition to its unstable and adhesive nature, BDNF can activate p75NTR, a receptor mediating cellular functions opposite to those of TrkB. We have now identified TrkB agonistic antibodies (TrkB-agoAbs) with several properties superior to BDNF: They exhibit blood half-life of days instead of hours, diffuse centimeters in neural tissues instead millimeters, and bind and activate TrkB, but not p75NTR. In addition, TrkB-agoAbs elicit much longer TrkB activation, reduced TrkB internalization and less intracellular degradation, compared with BDNF. More importantly, some of these TrkB-agoAbs bind TrkB epitopes distinct from that by BDNF, and work cooperatively with endogenous BDNF. Unlike BDNF, the TrkB-agoAbs exhibit a half-life of days/weeks and diffused readily in nerve tissues. We tested one of TrkB-agoAbs further and showed that it enhanced motoneuron survival in the spinal-root avulsion model for motoneuron degeneration in vivo. Thus, TrkB-agoAbs are promising drug candidates for the treatment of neural injury.


Assuntos
Anticorpos Monoclonais/farmacologia , Neurônios Motores/efeitos dos fármacos , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia , Receptor trkB/agonistas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Neurônios Motores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...