Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
PeerJ ; 12: e17390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881858

RESUMO

Wild boar (Sus scrofa), an abundant species across Europe, is often subjected to management in agro-ecosystems in order to control population size, or to scare them away from agricultural fields to safeguard crop yields. Wild boar management can benefit from a better understanding on changes in its space use across the diel cycle (i.e., diel space use) in relation to variable hunting pressures or other factors. Here, we estimate wild boar diel space use in an agro-ecosystem in central Belgium during four consecutive "growing seasons" (i.e., April-September). To achieve this, we fit generalized additive mixed models (GAMMs) to camera trap data of wild boar aggregated over 1-h periods. Our results reveal that wild boar are predominantly nocturnal in all of the hunting management zones in Meerdaal, with activity peaks around sunrise and sunset. Hunting events in our study area tend to take place around sunrise and sunset, while non-lethal human activities occur during sunlight hours. Our GAMM reveals that wild boar use different areas throughout the diel cycle. During the day, wild boar utilized areas in the centre of the forest, possibly to avoid human activities during daytime. During the night, they foraged near (or in) agricultural fields. A post hoc comparison of space use maps of wild boar in Meerdaal revealed that their diurnal and nocturnal space use were uncorrelated. We did not find sufficient evidence to prove that wild boar spatiotemporally avoid hunters. Finally, our work reveals the potential of GAMMs to model variation in space across 24-h periods from camera trap data, an application that will be useful to address a range of ecological questions. However, to test the robustness of this approach we advise that it should be compared against telemetry-based methods to derive diel space use.


Assuntos
Ritmo Circadiano , Sus scrofa , Animais , Bélgica , Ritmo Circadiano/fisiologia , Ecossistema , Estações do Ano , Agricultura/métodos
2.
Exp Appl Acarol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922518

RESUMO

Viticulture is characterized by substantial pesticide applications, impacting natural enemies. New pest control strategies and management of plant diversity into agrosystems acting as reservoirs of natural enemies are assumed to limit pesticide use. Various studies support this hypothesis but gaps exist on the effect of diversification on Phytoseiidae mites, generalist predators reported as prevalent and efficient natural enemies in vineyards. This study focuses on the effect of cover crop management (no cover crop, spontaneous cover crops with or without agroforestry) and grape variety (resistant cv. Artaban and cv. Syrah) on predatory mites and prey communities, in a newly planted experimental vineyard in South-East France. Samplings were carried out three times a year on vine, cover crops, and co-planted trees. Phytoseiidae, Tydeiidae, Eriophyidae mites and thrips were characterized. Nine Phytoseiidae species were identified on vine, the main ones being Kampimodromus aberrans, Typhlodromus exhilaratus, Phytoseius finitimus and Euseius gallicus. Kampimodromus aberrans was prevalent on the cv. Syrah, highlighting a strong effect of variety. The low unexpected effect of system management observed outcome could be due to several factors, such as the experimental plot size or the influence of vine stress on Phytoseiidae communities in vines with cover crops. All phytoseiid species present on vine were identifed at least once on cover crops and co-planted trees, suggesting their potential role as reservoirs. Further studies should be performed investigating the evolution of communities in this newly-planted experimental system, as well as potential differences in trophic network interactions.

3.
Sci Rep ; 14(1): 14420, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909065

RESUMO

Diffuse light is produced by clouds and aerosols in the atmosphere. Exploring the effects of diffuse light on ecosystem productivity is important for understanding the terrestrial carbon (CO2) cycle. Here, 2 years of gross ecosystem primary productivity (GEP) from a (winter) wheat cropland in China was assessed using eddy covariance technology to explore the effects of diffuse photosynthetic active radiance (PAR) on wheat GEP. Wheat GEP increased significantly and positively along with diffuse PAR. In addition, wheat GEP was significantly affected by total PAR, air temperature, and vapor press deficit in different diffuse PAR fraction (fDIF) change stages. Because significant autocorrelations existed among the controlling factors, a path analysis was used to quantify the effects of diffuse light on GEP. Diffuse PAR was the primary and secondary importance factors affecting GEP with direct path coefficients of 0.54 and 0.48, respectively, in different fDIF change stages. A multilayer canopy model revealed that the middle and lower canopy levels intercepted more light when diffuse PAR increased. This resulted in the photosynthetic enhancement of middle and lower canopy levels, which contributed approximately 65% and 35%, respectively, to the increase in photosynthesis for the entire canopy (~ 30.5%). Overall, our study provided new evidence regarding the importance of diffuse light for CO2 uptake in agroecosystems, which is important for predicting the responses of ecosystem CO2 budgets to future climate-related light changes.


Assuntos
Ecossistema , Fotossíntese , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , China , Luz , Estações do Ano , Temperatura
4.
Sci Total Environ ; 933: 173065, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723969

RESUMO

Arbuscular mycorrhizal fungi (AMF) increase the ability of plants to obtain nitrogen (N) from the soil, and thus can affect emissions of nitrous oxide (N2O), a long-lived potent greenhouse gas. However, the mechanisms underlying the effects of AMF on N2O emissions are still poorly understood, particularly in agroecosystems with different forms of N fertilizer inputs. Utilizing a mesocosm experiment in field, we examined the effects of AMF on N2O emissions via their influence on maize root traits and denitrifying microorganisms under ammonia and nitrate fertilizer input using 15N isotope tracer. Here we show that the presence of AMF alone or both maize roots and AMF increased maize biomass and their 15N uptake, root length, root surface area, and root volume, but led to a reduction in N2O emissions under both N input forms. Random forest model showed that root length and surface area were the most important predictors of N2O emissions. Additionally, the presence of AMF reduced the (nirK + nirS)/nosZ ratio by increasing the relative abundance of nirS-Bradyrhizobium and Rubrivivax with ammonia input, but reducing nosZ-Azospirillum, Cupriavidus and Rhodopseudomonas under both fertilizer input. Further, N2O emissions were significantly and positively correlated with the nosZ-type Azospirillum, Cupriavidus and Rhodopseudomonas, but negatively correlated with the nirS-type Bradyrhizobium and Rubrivivax. These results indicate that AMF reduce N2O emissions by increasing root length to explore N nutrients and altering the community composition of denitrifiers, suggesting that effective management of N fertilizer forms interacting with the rhizosphere microbiome may help mitigate N2O emissions under future N input scenarios.


Assuntos
Desnitrificação , Micorrizas , Óxido Nitroso , Raízes de Plantas , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Óxido Nitroso/análise , Raízes de Plantas/microbiologia , Solo/química , Zea mays , Fertilizantes , Poluentes Atmosféricos/análise
5.
J Econ Entomol ; 117(3): 907-917, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38634599

RESUMO

The number, timing, and fitness of colonizing parasitoids in fields of ephemeral crops often depend on factors external to the fields. We investigated cereal aphid parasitism in 23 winter wheat fields using sentinel plants infested with bird cherry-oat aphids, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), and we investigated the effect of parasitoids on cereal aphid population growth using exclusion and parasitoid-accessible cages infested with bird cherry-oat aphids. Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae), Aphelinus nigritus (Howard) (Hymenoptera: Aphelinidae), and Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae), in decreasing order of abundance, parasitized R. padi on sentinel plants. The mean percent parasitism in parasitoid-accessible cages was 5.2% in autumn and 35.0% in spring. Aphid population intensity was greater in complete exclusion than in parasitoid-accessible cages. Measures of landscape composition and configuration were quantified, and aphid parasitism in autumn by L. testaceipes and A. nigritus was positively associated with % landcover by summer crops and patch density. Parasitism by both species was negatively associated with contagion and % woodlands. Parasitism during spring was positively associated with % grassland and fractal dimension and negatively associated with % canola. The number of braconid mummies per sentinel plant was positively correlated to the number of braconid mummies on wheat stems from parasitoid-accessible cages. Results indicate that cereal aphid mortality caused by parasitoids and their ability to exert effective biological control is related to landscape structure. Comparing this study to an earlier study in the same agroecosystem demonstrated temporal stability of the landscape influence on aphid parasitism by L. testaceipes in winter wheat.


Assuntos
Afídeos , Estações do Ano , Triticum , Vespas , Afídeos/parasitologia , Animais , Triticum/parasitologia , Vespas/fisiologia , Interações Hospedeiro-Parasita , Controle Biológico de Vetores
7.
Sci Total Environ ; 927: 172308, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599396

RESUMO

Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.


Assuntos
Ecotoxicologia , Poluentes Ambientais , Microplásticos , Bifenil Polibromatos , Humanos , Monitoramento Ambiental , Retardadores de Chama
8.
Microorganisms ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38674611

RESUMO

Arbuscular mycorrhizal fungi (AMF) and rhizobium play a significant role in plant symbiosis. However, their influence on the rhizosphere soil microbiome associated with nutrient acquisition and soil health is not well defined in the drylands of Montana (MT), USA. This study investigated the effect of microbial inoculants as seed treatment on pea yield, nutrient uptake, potential microbial functions, and rhizosphere soil microbial communities using high-throughput sequencing of 16S and ITS rRNA genes. The experiment was conducted under two contrasting dryland conditions with four treatments: control, single inoculation with AMF or Rhizobium, and dual inoculations of AMF and Rhizobium (AMF+Rhizobium). Our findings revealed that microbial inoculation efficacy was site-specific. AMF+Rhizobium synergistically increased grain yield at Sidney dryland field site (DFS) 2, while at Froid site, DFS 1, AMF improved plant resilience to acidic soil but contributed a marginal yield under non-nutrient limiting conditions. Across dryland sites, the plants' microbial dependency on AMF+Rhizobium (12%) was higher than single inoculations of AMF (8%) or Rhizobium (4%) alone. Variations in microbial community structure and composition indicate a site-specific response to AMF and AMF+Rhizobium inoculants. Overall, site-specific factors significantly influenced plant nutrient uptake, microbial community dynamics, and functional potential. It underscores the need for tailored management strategies that consider site-specific characteristics to optimize benefits from microbial inoculation.

9.
Water Environ Res ; 96(3): e11010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433361

RESUMO

The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.


Assuntos
Tartarugas , Animais , Biomarcadores Ambientais , Águas Residuárias , Ecossistema , Rios , Anfíbios , Saúde Ambiental , Água , América do Sul
10.
BMC Microbiol ; 24(1): 92, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500045

RESUMO

BACKGROUND: The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS: The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION: Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.


Assuntos
Microbiota , Resiliência Psicológica , Solo/química , Zea mays , Fungos/genética , Agricultura/métodos , Bactérias/genética , Microbiologia do Solo
12.
Environ Res ; 248: 118395, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307185

RESUMO

The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.


Assuntos
Antibacterianos , Solo , Animais , Humanos , Antibacterianos/farmacologia , Genes Bacterianos , Bactérias , Resistência Microbiana a Medicamentos/genética , Proliferação de Células , Microbiologia do Solo , Esterco/análise
13.
Anim Front ; 14(1): 5-12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38369998
14.
Sci Total Environ ; 918: 170763, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336072

RESUMO

It is widely recognized that applications of plastic films result in plastic pollution in agroecosystems. However, there is limited knowledge on the release and occurrence of additives beyond phthalates in agricultural soil. In this study, the rates of release and biodegradation of various additives, including phthalates, bisphenols, organophosphate esters, phenolic antioxidants, and ultraviolet absorbents from mulching films in soil were quantified by laboratory incubation. The rates of release and biodegradation ranged from 0.069 d-1 to 5.893 d-1 and from 1.43 × 10-3 d-1 to 0.600 d-1, respectively. Both of these rates were affected by temperature, flooding, and the properties of additives, films, and soils. An estimated 4000 metric tons of these additives were released into soil annually in China exclusively. The total concentrations of these additives in 80 agricultural soils varied between 228 and 3455 µg kg-1, with phenolic antioxidants, phthalates, and bisphenols accounting for 54.1%, 25.2%, and 17.9% of the total concentrations, respectively. A preliminary risk assessment suggested that the current levels of these additives could potentially present moderate hazards to the soil ecosystem.


Assuntos
Ácidos Ftálicos , Poluentes do Solo , Solo , Ecossistema , Plásticos , Poluentes do Solo/análise , Agricultura , China
15.
Heliyon ; 10(1): e23523, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173494

RESUMO

Earthworms play a crucial role in the invertebrate community of soil by contributing to the belowground biomass and biogeochemical cycle. Environmental stresses, such as human activities and land use changes, have been found to negatively affect their abundance and diversity. To investigate the impact of agricultural land use and pastures on earthworms' genetic diversity in the Northern Zagros Mountains, we used COI molecular marker and DNA barcoding approaches. We collected earthworm specimens from four farmland sites and six pastures and assessed the abundance and species composition of earthworm communities across the two land uses using quadrat sampling. Using the barcoding method, we identified 13 molecular operational taxonomic units (MOTUs) among the captured earthworms. Our results showed that the number of total MOTUs, density, and earthworm communities differed significantly between the two land uses. We also found that pastures had more abundant earthworms, while farmlands had greater diversity. The diversity of OTUs in the Lumbricidae family was dominant in the agricultural system. Overall, the population of invasive earthworm species in cultivation systems is influenced by chemical inputs and organic materials from plant residues, cover crops, manure, or organic fertilizers. Given the rapid rate of land use change worldwide, especially in Iran, it is crucial to understand the impact of disturbances on earthworms.

16.
Glob Chang Biol ; 30(1): e17101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273560

RESUMO

Soil organic carbon (SOC) plays an essential role in mediating community structure and metabolic activities of belowground biota. Unraveling the evolution of belowground communities and their feedback mechanisms on SOC dynamics helps embed the ecology of soil microbiome into carbon cycling, which serves to improve biodiversity conservation and carbon management strategy under global change. Here, croplands with a SOC gradient were used to understand how belowground metabolisms and SOC decomposition were linked to the diversity, composition, and co-occurrence networks of belowground communities encompassing archaea, bacteria, fungi, protists, and invertebrates. As SOC decreased, the diversity of prokaryotes and eukaryotes also decreased, but their network complexity showed contrasting patterns: prokaryotes increased due to intensified niche overlap, while that of eukaryotes decreased possibly because of greater dispersal limitation owing to the breakdown of macroaggregates. Despite the decrease in biodiversity and SOC stocks, the belowground metabolic capacity was enhanced as indicated by increased enzyme activity and decreased enzymatic stoichiometric imbalance. This could, in turn, expedite carbon loss through respiration, particularly in the slow-cycling pool. The enhanced belowground metabolic capacity was dominantly driven by greater multitrophic network complexity and particularly negative (competitive and predator-prey) associations, which fostered the stability of the belowground metacommunity. Interestingly, soil abiotic conditions including pH, aeration, and nutrient stocks, exhibited a less significant role. Overall, this study reveals a greater need for soil C resources across multitrophic levels to maintain metabolic functionality as declining SOC results in biodiversity loss. Our researchers highlight the importance of integrating belowground biological processes into models of SOC turnover, to improve agroecosystem functioning and carbon management in face of intensifying anthropogenic land-use and climate change.


Assuntos
Carbono , Solo , Solo/química , Biodiversidade , Bactérias , Archaea
17.
Sci Total Environ ; 912: 169128, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070562

RESUMO

Estimating lateral carbon fluxes in agroecosystems presents challenges due to intricate anthropogenic and biophysical interactions. We used a modeling technique to enhance our comprehension of the determinants influencing lateral carbon fluxes and their significance in agroecosystem carbon budgets. The SWAT-C model was refined by incorporating a dynamic dissolved inorganic carbon (DIC) module, enhancing our ability to accurately quantify total lateral carbon fluxes. This improved model was calibrated using observed data on riverine particulate organic carbon (POC) and dissolved organic carbon (DOC) fluxes, as well as net ecosystem exchange (NEE) data monitored by a flux tower situated in a representative agricultural watershed, the Tuckahoe Watershed (TW) of the Chesapeake Bay's coastal plain. We assessed the losses of POC, DOC, and DIC across five primary rotation types: C (continuous carbon), CS (corn-soybean), CSS (corn-soybean-soybean), CWS (corn-wheat-soybean), and CWSCS (corn-wheat-soybean-corn-soybean). Our study revealed notable variations in the average annual fluxes of POC (ranging between 152 and 198 kg ha-1), DOC (74-85 kg ha-1), and DIC (93-156 kg ha-1) across the five rotation types. The primary influencing factor for annual POC fluxes was identified as sediment yield. While both annual DOC and DIC fluxes displayed a marked correlation with surface runoff across all crop rotation schemes, soil respiration also significantly influenced annual DIC fluxes. Total lateral carbon fluxes (POC + DOC+DIC) constituted roughly 11 % of both net ecosystem production (NEP) and NEE, yet they represented a striking 95 % of net biome production (NBP) in the TW's agroecosystem. Grain yield carbon accounted for 80 % of both NEP and NEE and was nearly seven times that of NBP. Our findings suggest that introducing soybeans into cornfields tends to reduce NEP, NEE, and also NBP. Conversely, integrating winter wheat into the corn-soybean rotation significantly boosted NEP, NEE, and NBP values, with NBP even surpassing the levels in continuous corn cultivation.

18.
Pest Manag Sci ; 80(3): 1446-1453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946692

RESUMO

BACKGROUND: Soil seedbanks have been recognized as one of the crucial components of agricultural ecosystems. However, studies on the shift in structure and biodiversity of soil seedbanks in herbicide-resistant crop systems are limited, and a functional trait perspective of the soil seedbank is often overlooked. RESULTS: A 6 years experiment was conducted to investigate the roles of region, crop system, and weed management strategy on species richness, functional trait diversity, and composition of the weed seedbank. Species richness was different across the interaction of region and crop system, while functional trait diversity only showed difference across regions. Species and functional trait compositions were affected by the interaction of region and crop system. Specifically, the compositional difference among crop systems was mainly determined by the significant heterogeneity of group dispersion. CONCLUSION: Growers and practitioners should consider weed functional traits in developing lasting agricultural management strategies. Long-term weed research should draw attention to the impact of transgenic crop systems and specific management tactics on weed dispersal, functional composition, and resistance evolution of weed species in such agroecosystems. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Herbicidas , Estados Unidos , Herbicidas/farmacologia , Controle de Plantas Daninhas , Banco de Sementes , Plantas Daninhas , Ecossistema , Produtos Agrícolas , Resistência a Herbicidas , Solo
19.
J Sci Food Agric ; 104(3): 1420-1430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800371

RESUMO

BACKGROUND: The Huang-Huai-Hai Plain (3HP) is the main agricultural area in China. Although climate change (CC) and crop management (CM) are considered factors affecting the winter wheat net primary production (NPP) in this region, their effects remain unclear. In the present study, we evaluated the relative contributions of CC and CM to winter wheat aboveground NPP (ANPP) in the 3HP and the relationships between climatic factors and ANPP using the first-order difference method from 2000 to 2020. RESULTS: CM had a greater influence on the ANPP of winter wheat than did CC. However, the relative contribution of CM to ANPP gradually decreased in humid and dry sub-humid regions with the development of winter wheat. Furthermore, in areas characterized by low temperatures and limited precipitation, CC became the dominant factor contributing to ANPP, indicating that varieties resilient to drought and cold should be selected in these regions. Minimum and average temperatures were the dominant factors driving spatiotemporal variations in ANPP during the early stage of winter wheat growth, whereas maximum temperature constrained growth throughout the winter wheat growth cycle. When winter wheat entered the vigorous growth stage, precipitation and solar radiation replaced temperature as the driving factors influencing winter wheat growth. CONCLUSION: The results of the present study provide guidance for optimizing winter wheat crop management in the 3HP. © 2023 Society of Chemical Industry.


Assuntos
Mudança Climática , Triticum , Agricultura , Temperatura , Temperatura Baixa , China
20.
Environ Pollut ; 341: 122831, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37913977

RESUMO

Systemic insecticides are one of the causes of Odonata declines in paddy fields. Since rising temperatures associated with global warming can contribute to strengthen pesticide toxicity, insecticide exposures under increasing temperatures may accelerate the decline of Odonata species in the future. However, the combined effects of multiple stressors on Odonata diversity and abundance within ecosystems under various environmental conditions and species interactions are little known. Here, we evaluate the combined effects of the insecticide fipronil and warming on the abundance of Odonata nymphs in experimental paddies. We show that the stand-alone effect of the insecticide exposure caused a significant decrease in abundance of the Odonata community, while nymphs decreased synergistically in the combined treatments with temperature rise in paddy water. However, impacts of each stressor alone were different among species. This study provides experimental evidence that warming could accelerate a reduction in abundance of the Odonata community exposed to insecticides (synergistic effect), although the strength of that effect might vary with the community composition in targeted habitats, due mainly to different susceptibilities among species to each stressor. Community-based monitoring in actual fields is deemed necessary for a realistic evaluation of the combined effects of multiple stressors on biodiversity.


Assuntos
Inseticidas , Odonatos , Animais , Inseticidas/análise , Ecossistema , Neonicotinoides/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...