Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39408416

RESUMO

Water repellency has significant potential in applications like self-cleaning coatings, anti-staining textiles, and electronics. This study introduces a novel nanocomposite system incorporating functionalized Al2O3 and CeO2 nanoparticles within a polyurethane matrix to achieve hydrophobic and UV-blocking properties. The nanoparticles were functionalized using an octadecyl phosphonic acid solution and characterized by FTIR and XPS, confirming non-covalent functionalization. Spin-coated polyurethane coatings with functionalized and non-functionalized Al2O3, CeO2, and binary Al2O3-CeO2 nanoparticles were analyzed. The three-layered Al2O3-CeO2-ODPA binary system achieved a contact angle of 166.4° and 85% transmittance in the visible range. Incorporating this binary functionalized system into a 0.4% w/v polyurethane solution resulted in a nanocomposite with 75% visible transmittance, 60% at 365 nm UV, and a 147.7° contact angle after three layers. These findings suggest that ODPA-functionalized nanoparticles, when combined with a polymer matrix, offer a promising approach to developing advanced hydrophobic and UV-protective coatings with potential applications across various industrial sectors.

2.
Plant Physiol Biochem ; 159: 335-346, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33429191

RESUMO

Aluminum oxide (Al2O3) nanoparticles (NPs) are among the nanoparticles most used industrially, but their impacts on living organisms are widely unknown. We evaluated the effects of 50-1000 mg L-1 Al2O3 NPs on the growth, metabolism of lignin and its monomeric composition in soybean plants. Al2O3 NPs did not affect the length of roots and stems. However, at the microscopic level, Al2O3 NPs altered the root surface inducing the formation of cracks near to root apexes and damage to the root cap. The results suggest that Al2O3 NPs were internalized and accumulated into the cytosol and cell wall of roots, probably interacting with organelles such as mitochondria. At the metabolic level, Al2O3 NPs increased soluble and cell wall-bound peroxidase activities in roots and stems but reduced phenylalanine ammonia-lyase activity in stems. Increased lignin contents were also detected in roots and stems. The Al2O3 NPs increased the p-hydroxyphenyl monomer levels in stems but reduced them in roots. The total phenolic content increased in roots and stems; cell wall-esterified p-coumaric and ferulic acids increased in roots, while the content of p-coumaric acid decreased in stems. In roots, the content of ionic aluminum (Al+3) was extremely low, corresponding to 0.0000252% of the aluminum applied in the nanoparticulate form. This finding suggests that all adverse effects observed were due to the Al2O3 NPs only. Altogether, these findings suggest that the structure and properties of the soybean cell wall were altered by the Al2O3 NPs, probably to reduce its uptake and phytotoxicity.


Assuntos
Óxido de Alumínio , Parede Celular , Glycine max , Lignina , Nanopartículas , Óxido de Alumínio/toxicidade , Parede Celular/efeitos dos fármacos , Lignina/química , Lignina/metabolismo , Nanopartículas/toxicidade , Glycine max/efeitos dos fármacos
3.
Materials (Basel) ; 13(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033379

RESUMO

The effect of α-Al2O3 nanoparticles (up to 5 wt.%) on the physical, mechanical, and thermal properties, as well as on the microstructural evolution of a dense magnesia refractory is studied. Sintering temperatures at 1300, 1500, and 1600 °C are used. The physical properties of interest were bulk density and apparent porosity, which were evaluated by the Archimedes method. Thermal properties were examined by differential scanning calorimetry. The mechanical behavior was studied by cold crushing strength and microhardness tests. Finally, the microstructure and mineralogical qualitative characteristics were studied by scanning electron microscopy and X-ray diffraction, respectively. Increasing the sintering temperature resulted in improved density and reduced apparent porosity. However, as the α-Al2O3 nanoparticle content increased, the density and microhardness decreased. Microstructural observations showed that the presence of α-Al2O3 nanoparticles in the magnesia matrix induced the magnesium-aluminate spinel formation (MgAl2O4), which improved the mechanical resistance most significantly at 1500 °C.

4.
Braz. dent. sci ; 23(3): 1-12, 2020. ilus, tab
Artigo em Inglês | BBO - Odontologia, LILACS | ID: biblio-1116334

RESUMO

Objetivo: Este estudo teve como objetivo avaliar a resistência ao desgaste de dentes em acrílico para próteses contendo nanopartículas de dióxido de silício (nano-SiO2 ) e dióxido de alumínio (nanoAl2 O3 ). Material e Métodos: O material em polimetilmetacrilato (PMMA) foi utilizado para fabricar 84 amostras (n=10) contendo nano-SiO2 e nano-Al2 O3 nas concentrações 0,1% em peso, 0,3% em peso e 0,5% em peso de pó acrílico. Uma máquina de teste de desgaste de dois corpos e um microscópio digital foram usados para medir as mudanças na perda de peso e rugosidade da superfície, respectivamente. Testes de ANOVA a um fator e testes de comparações múltiplas de Tukey foram utilizados para análise dos dados (α = 0,05). Resultados: O material modificado com nano-SiO2 demonstrou um aumento significativo na perda de peso em comparação com o material acrílico artificial convencional (p ˂ 0,05) enquanto o material modificado com nano-Al2 O3 demonstrou aumento não significativo na perda de peso, exceto no subgrupo 0,5% (p < 0,05). Não há diferenças significativas em relação à alteração da rugosidade após a simulação de desgaste entre todos os grupos testados (p > 0,05). Conclusão: As nanopartículas de nano-Al2 O3 exibem menos efeito negativo que o nanoSiO2 , podendo ser usado com cautela, se necessário. (AU)


Objective: This study aimed to evaluate the wear resistance of acrylic denture teeth containing silicon dioxide (nano-SiO2 ) and aluminum dioxide (nano-Al2 O3 ) nanoparticles. Material and Methods: Poly methyl methacrylate (PMMA) denture tooth material was used to denture tooth material was used to fabricate 84 specimens (n=10) containing nano-SiO2 and nano-Al2 O3 in concentrations 0.1wt%, 0.3wt%, and 0.5wt% of acrylic powder. A two-body wear testing machine and digital microscope were used to measure the changes in weight loss and surface roughness respectively. One-way ANOVA and pair-wise Tukey's post-hoc tests were used for data analysis (α = 0.05). Results: Nano-SiO2 modified teeth material demonstrated a significant increase in weight loss in comparison conventional artificial acrylic teeth material (p ˂ 0.05) while nanoAl2 O3 modified teeth material demonstrated non-significant increase in weight loss except for 0.5% subgroup (p ˂ 0.05). There is no significant differences regarding roughness change after wear simulation among all tested groups (p > 0.05). Conclusion: Nano-Al2 O3 nanoparticles exhibit less negative effect than nano-SiO2 so; it could be used with caution if necessary. (AU)


Assuntos
Prótese Dentária , Polimetil Metacrilato , Nanopartículas Metálicas , Desgaste dos Dentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA