Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 173: 104180, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218166

RESUMO

Winged parthenogenetic aphids are mainly responsible for migration and dispersal. Aphid alarm pheromone (E)-ß-Farnesene (EBF) has dual effects on repelling and stimulating wing differentiation in aphids. Previous studies have shown that the odorant coreceptor SmisOrco is involved in the perception of EBF by S. miscanthi; however, its EBF-specific odorant receptor (OR) and the difference between winged and wingless aphids remain unclear. In this study, the Xenopus oocyte expression system and RNAi technology were used to detect the transmission of EBF signals, and it was found that the olfactory receptor SmisOR5 is an EBF-specific OR in S. miscanthi and is specifically highly expressed in the antennae of winged aphids. Furthermore, when OR5 was silenced with dsRNA, the repellent effect of EBF was weakened, and aphids showed more active aimless movements. Therefore, as a specific OR for EBF, the high expression level of SmisOR5 in winged aphids suggests a molecular basis for its high sensitivity to EBF. This study advances our understanding of the molecular mechanisms of aphid EBF perception and provides novel ideas for effective management and prevention of the migration of winged aphids.


Assuntos
Afídeos , Proteínas de Insetos , Receptores Odorantes , Animais , Afídeos/metabolismo , Afídeos/genética , Afídeos/fisiologia , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sesquiterpenos/metabolismo , Asas de Animais/metabolismo , Feromônios/metabolismo , Antenas de Artrópodes/metabolismo , Interferência de RNA
2.
Insect Sci ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317948

RESUMO

The rise of biological invasions threatens biodiversity and food security, with the vespid family, including Vespa soror, being of particular concern. Our study focused on the alarm pheromone components of V. soror. By using gas chromatography-mass spectrometry (GC-MS) chemical analyses, electroantennograms, and field bioassays, we identified 5 compounds-2-pentanol, 3-methyl-1-butanol, 2-heptanol, 2-nonanol (2-N), and isopentyl acetate (IPA)-in hornet sting venom that elicited defensive behavior from hornets. IPA and 2-N also serve as alarm pheromone components in multiple honey bee species that are important prey for V. soror. This shared chemical signaling may allow cross-detection by each species on the other's alarm cues. While it should be advantageous for bees to detect V. soror alarm pheromone, the benefits to V. soror of using IPA and 2-N are unclear. V. soror may manipulate bee behavior, potentially distracting defenders, because they mark victim bee colonies by rubbing their abdomens, which contain their sting glands, at bee hive entrances. Our findings pose new evolutionary questions about the role of manipulation in the arms races.

3.
J Agric Food Chem ; 72(31): 17317-17327, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39067067

RESUMO

With high aphid-repellent activity but low stability, (E)-ß-farnesene (EßF), the major component of the aphid alarm pheromone, can be used as a synergist to insecticides. Some EßF analogues possess both good aphid-repellent activity and stability, but the synergistic effect and related mechanism are still unclear. Therefore, this study investigated the synergistic effect and underlying mechanism of the EßF and its analogue against the aphid Myzus persicae. The results indicated that EßF and the analogue showed significantly synergistic effects to different insecticides, with synergism ratios from 1.524 to 3.446. Mechanistic studies revealed that EßF and the analogue exhibited effective repellent activity, significantly upregulated target OBP genes by 161 to 731%, increased aphid mobility, and thereby enhanced contact with insecticides. This research suggests that the EßF analogue represents a novel synergist for insecticides, with the potential for further application in aphid control owing to its enhanced bioactivity and the possibility of reducing insecticide doses.


Assuntos
Afídeos , Sinergismo Farmacológico , Inseticidas , Sesquiterpenos , Afídeos/efeitos dos fármacos , Animais , Inseticidas/química , Inseticidas/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Prunus persica/química , Prunus persica/parasitologia , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia
4.
Insect Sci ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747084

RESUMO

Distressed western carpenter ants, Camponotus modoc, produce alarm pheromone and substrate-borne vibrations. The alarm pheromone attracts nestmates but the effects of vibratory signals, or of bimodal pheromonal and vibratory signals, are not known. Worker ants of two Camponotus congeners reportedly stand still ("freeze") or run fast in response to engineered drumming vibrations inputted on plastic, but many responses to ant-produced vibratory signals on wood have not yet been investigated. Generally, orientating toward signalers under vertebrate predator attack seems maladaptive and not beneficial to ant colonies. We tested the hypotheses (1) that vibratory alarm signals cause freezing, rapid running but not attraction of nestmates, and (2) that bimodal alarm signals modulate responses to monomodal alarm signals, thereby possibly reducing predation risk. Laser Doppler vibrometry recordings revealed that the ants' vibratory signals readily propagate through ant nest lamellae, and thus quickly inform nest mates of perceived threats. With a speaker modified to record and deliver vibratory signals, we obtained drumming signals of distressed ants on a Douglas fir veneer, and bioassayed signal effects on ants in an arena with a suspended veneer floor. In response playback of vibratory signals, ants ran rapidly, or froze, but did not approach the vibratory signals. Exposed to alarm pheromone, ants frequently visited the pheromone source. However, concurrently exposed to both alarm pheromone and vibratory signals, ants visited the pheromone source less often but spent more time "frozen." The ants' modulated responses to bimodal signals seem adaptive but the reproductive fitness benefits are still to be quantified.

5.
Curr Biol ; 34(7): 1377-1389.e7, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38423017

RESUMO

Escaping from danger is one of the most fundamental survival behaviors for animals. Most freshwater fishes display olfactory alarm reactions in which an injured fish releases putative alarm substances from the skin to notify its shoaling company about the presence of danger. Here, we identified two small compounds in zebrafish skin extract, designated as ostariopterin and daniol sulfate. Ostariopterin is a pterin derivative commonly produced in many freshwater fishes belonging to the Ostariophysi superorder. Daniol sulfate is a novel sulfated bile alcohol specifically present in the Danio species, including zebrafish. Ostariopterin and daniol sulfate activate distinct glomeruli in the olfactory bulb. Zebrafish display robust alarm reactions, composed of darting, freezing, and bottom dwelling, only when they are concomitantly stimulated with ostariopterin and daniol sulfate. These results demonstrate that the fish alarm reaction is driven through a coincidence detection mechanism of the two compounds along the olfactory neural circuitry.


Assuntos
Cyprinidae , Perciformes , Animais , Peixe-Zebra/fisiologia , Olfato , Bulbo Olfatório , Sulfatos
6.
Neuroscience ; 521: 123-133, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121380

RESUMO

In rats, a mixture of hexanal and 4-methylpentanal is a main component of the alarm pheromone. When detected by the main olfactory system (MOS) and the vomeronasal system, respectively, they activate the anterior part of the bed nucleus of the stria terminalis (BNSTa). Therefore, the information from the two olfactory systems is expected to be integrated before being transmitted to the BNSTa. To specify the integration site, we examined Fos expression in 16 brain regions in response to water (n = 10), hexanal (n = 9), 4-methylpentanal (n = 9), the mixture (n = 9), or the alarm pheromone (n = 9) in male rats. The posteroventral part of the medial amygdala showed increased Fos expression to hexanal and 4-methylpentanal. The expression was further increased by the mixture. Therefore, this region is suggested as the integration site. In addition, the BNSTa, paraventricular nucleus of the hypothalamus, and anteroventral, anterodorsal, and posterodorsal parts of the medial amygdala were suggested to be located downstream of the integrated site because only the mixture increased Fos expression. We suggest that the posterolateral part of the cortical amygdala is upstream of the integration site in the MOS because all stimuli increased Fos expression. The posterior part of the bed nucleus of the stria terminalis and posteromedial part of the cortical amygdala were suggested as being located upstream in the vomeronasal system because 4-methylpentanal and the mixture increased Fos expression. These results provide information about the neural pathway underlying the alarm pheromone effects.


Assuntos
Encéfalo , Feromônios , Ratos , Masculino , Animais , Feromônios/metabolismo , Encéfalo/metabolismo , Tonsila do Cerebelo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
7.
Insect Mol Biol ; 32(3): 229-239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36533988

RESUMO

Farnesyl/geranylgeranyl diphosphate synthases (FPPS/GGPPS) as the short-chain prenyltransferases catalyse the formation of the acyclic precursors (E)-FPP and (E)-GGPP for isoprenoid biosynthesis. Here, we first cloned the cDNAs encoding FPPS and GGPPS in the vetch aphid Megoura viciae (designated as MvFPPS and MvGGPPS). They had an open reading frame of 1185 and 930 bp in length, encoding 395 and 309 amino acids, with a theoretical isoelectric point of 6.52 and 6.21, respectively. Sequence alignment and phylogenetic analysis showed that MvFPPS and MvGGPPS shared the conserved aspartate-rich motifs characterized by all prenyltransferases identified to date and were clustered with their homologues in two large clades. RNA interference (RNAi) combined with gas chromatography/mass spectrometry (GC-MS) analysis showed that both MvFPPS and MvGGPPS were involved in the biosynthesis of alarm pheromone. Spatiotemporal expression profiling showed that the expression of MvFPPS and MvGGPPS was significantly higher in embryos than in other tissues. RNAi and GC-MS performed specifically in embryos corroborated the function of MvFPPS and MvGGPPS. In vitro, enzymatic activity assay and product analysis demonstrated that MvFPPS could catalysed the formation of (E)-FPP using DMAPP or (E)-GPP as the allylic cosubstrates in the presence of IPP, while MvGGPPS could only use (E)-GPP or (E)-FPP as cosubstrates. Functional interaction analysis using RNAi revealed that MvGGPPS exerts unidirectional functional compensation for MvFPPS. Moreover, it can regulate the biosynthesis of alarm pheromone by imposing a negative feedback regulation on MvFPPS. Our study helps to understand the molecular regulatory mechanism of terpenoid biosynthesis in the aphid.


Assuntos
Afídeos , Geraniltranstransferase , Animais , Geraniltranstransferase/genética , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Afídeos/metabolismo , Feromônios , Filogenia
8.
Insects ; 13(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421958

RESUMO

Aphid alarm pheromones, as important semiochemicals, not only mediate behavioral response of aphids, but can also act as kairomones to attract their natural enemies. The sesquiterpene (E)-ß-farnesene (EßF), the major alarm pheromone component of most aphid species, has been shown to have a kairomonal effect on the predators of aphids, but other alarm pheromone components, especially the monoterpenes and analogs, are rarely investigated. Here, two EßF analogs were successfully synthesized via the nucleophilic substitution reaction, and we then examined the kairomonal effects of four alarm pheromone components and two EßF analogs on the aphid parasitoid, Diaeretiella rapae. In olfactory bioassays, D. rapae females generally showed no significant behavioral response to these alarm pheromone components and analogs under low concentrations (0.1 µg/µL). Nevertheless, their olfactory response to these compounds gradually enhanced with increasing concentrations. Among the four pheromone components, EßF showed the highest attractive activity, but the parasitoid preferred blends over single compounds. Moreover, the response time decreased as the concentration increased. We confirmed the kairomonal effect of monoterpene alarm pheromone components and their blends, in addition to EßF, on the natural enemies of aphids. This is the first report that the blend of alarm pheromone components and their analogs has a stronger kairomonal effect than do the single components on the natural enemies of aphids. This study contributes to our understanding of the mechanisms involved in the regulation of parasitoid behaviors by kairomones and provides a promising opportunity for designing kairomones for the aphid parasitoid to mediate aphid populations in the field.

9.
Insects ; 13(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35621804

RESUMO

Most animals must defend themselves in order to survive. Defensive behaviour includes detecting predators or intruders, avoiding them by staying low-key or escaping or deterring them away by means of aggressive behaviour, i.e., attacking them. Responses vary across insect species, ranging from individual responses to coordinated group attacks in group-living species. Among different modalities of sensory perception, insects predominantly use the sense of smell to detect predators, intruders, and other threats. Furthermore, social insects, such as honeybees and ants, communicate about danger by means of alarm pheromones. In this review, we focus on how olfaction is put to use by insects in defensive behaviour. We review the knowledge of how chemical signals such as the alarm pheromone are processed in the insect brain. We further discuss future studies for understanding defensive behaviour and the role of olfaction.

10.
Int J Biol Macromol ; 206: 759-767, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35307458

RESUMO

Odorant-binding proteins (OBPs) play essential roles in the functioning of insect peripheral olfactory systems. To fully understand the olfactory roles of OBPs in Halyomorpha halys, an important invasive pest found worldwide, we studied the expression and functional characterization of five OBP-associated genes from H. halys that are clustered in the genome. The tissue distribution of the OBP gene cluster suggests that these genes were enriched in nymph and adult antennae, indicating their possible involvement in the chemosensory process. The different expression levels of the five OBPs in nymph and adult antennae suggest that this gene cluster is regulated independently. Ligand-binding experiments have shown similar specificities of these five OBPs towards several organic compounds, including the alarm pheromone of H. halys (trans-2-decenal), the aggregation pheromone of Plautia stali (methyl (2E, 4E, 6Z)-decatrienoate), and plant volatile compounds (e.g., cis-3-hexenyl benzoate and ß-ionone). In particular, trans-2-dodecenal, an alarm pheromone analog, exhibited high affinity to the five OBP proteins and alarm pheromone activity towards H. halys. Thus, this OBP cluster may mediate the response of stink bugs to the both the alarm pheromone and host-related volatiles and could be an interesting target to design novel olfactory regulators for the management of H. halys infestations.


Assuntos
Heterópteros , Controle de Insetos , Animais , Heterópteros/genética , Ninfa , Odorantes , Feromônios/genética
11.
Curr Biol ; 32(5): 951-962.e7, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35065682

RESUMO

(E)-ß-farnesene (EBF) is an important chemical cue mediating interactions between plants, aphids, and natural enemies. This chemical has two origins, being secreted by aphid as an alarm pheromone and also produced by the attacked plants as a semiochemical attracting natural enemies. Despite the important role of this volatile chemical, little is known on the molecular mechanisms mediating the attraction of natural enemies to EBF. Here, we first verified that the larvae and adults of aphid predator hoverfly Eupeodes corollae detect and are attracted to EBF. Then, we found a neuron housed in type III basiconic sensilla of adult antenna responding to EBF. We further verified that in both adults and larvae odorant receptor EcorOR3 and odorant-binding protein EcorOBP15 mediate detection of EBF and structurally similar volatiles. Finally, we provide evidence that larvae of E. corollae may use aphid-derived EBF for prey location in the short-range, whereas adults could detect plant-derived EBF to find attacked plants from longer distances. Thus, while dissecting the molecular basis for attraction to EBF produced by two different sources, our results may find potential applications in integrated aphid management approaches.


Assuntos
Afídeos , Dípteros , Sesquiterpenos , Animais , Afídeos/fisiologia , Larva/metabolismo , Feromônios/metabolismo , Sesquiterpenos/metabolismo
12.
Annu Rev Entomol ; 67: 65-81, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995085

RESUMO

Aphid cornicles are abdominal appendages that secrete an array of volatile and nonvolatile compounds with diverse ecological functions. The emission of alarm pheromones yields altruistic benefits for clone-mates in the aphid colony, which is essentially a superorganism with a collective fate. Secreted droplets also contain unsaturated triglycerides, fast-drying adhesives that can be lethal when smeared on natural enemies but more often impede their foraging efficiency. The longest cornicles have evolved in aphids that feed in exposed locations and are likely used to scent-mark colony intruders. Reduced cornicles are associated with reliance on alternative defenses, such as the secretion of protective waxes or myrmecophily. Root-feeding and gall-forming lifestyles provide protected feeding sites and are associated with an absence of cornicles. In some eusocial gall-formers, soldier morphs become repositories of cornicle secretion used to defend the gall, either as menopausal apterae that defend dispersing alatae or as sterile first instars that dispatch predators with their stylets and use cornicle secretions as a construction material for gall repair. Collectively, the evidence is consistent with an adaptive radiation of derived cornicle functions molded by the ecological lifestyle of the aphid lineage.


Assuntos
Afídeos , Animais , Feromônios
13.
Front Insect Sci ; 2: 821145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468759

RESUMO

Volatile compounds provide important olfactory cues for honey bees (Apis mellifera L.), which are essential for their ecology, behavior, and social communication. In the external environment bees locate food sources by the use of floral scents, while inside the hive, pheromones such as the queen mandibular pheromone (QMP) and alarm pheromones serve important functions in regulating colony life and inducing aggressive responses against intruders and parasites. Widely reported alterations of various behaviors in- and outside the hive following exposure to pesticides could therefore be associated with a disturbance of odor sensitivity. In the present study, we tested the effects of neonicotinoid pesticides at field concentrations on the ability of honey bees to perceive volatiles at the very periphery of the olfactory system. Bee colonies were subjected to treatments during the summer with either Imidacloprid or Thiacloprid at sublethal concentrations. Antennal responses to apple (Malus domestica L.) flower volatiles were studied by GC-coupled electro-antennographic detection (GC-EAD), and a range of volatiles, a substitute of the QMP, and the alarm pheromone 2-heptanone were tested by electroantennography (EAG). Short-term and long-term effects of the neonicotinoid treatments were investigated on bees collected in the autumn and again in the following spring. Treatment with Thiacloprid induced changes in antennal responses to specific flower VOCs, with differing short- and long-term effects. In the short term, increased antennal responses were observed for benzyl-alcohol and 1-hexanol, which are common flower volatiles but also constituents of the honey bee sting gland secretions. The treatment with Thiacloprid also affected antennal responses to the QMP and the mandibular alarm pheromone 2-heptanone. In the short term, a faster signal degeneration of the response signal to the positive control citral was recorded in the antennae of bees exposed to Thiacloprid or Imidacloprid. Finally, we observed season-related differences in the antennal responses to multiple VOCs. Altogether, our results suggest that volatile-specific alterations of antennal responses may contribute to explaining several behavioral changes previously observed in neonicotinoid-exposed bees. Treatment effects were generally more prominent in the short term, suggesting that adverse effects of neonicotinoid exposure may not persist across generations.

14.
J Insect Physiol ; 135: 104311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34592309

RESUMO

In New Zealand's ancient Fuscospora spp. or beech forests, two invasive Vespula social wasps Vespula vulgaris (L.) and Vespula germanica (F.) have become significant problems, adversely affecting native birds and invertebrate biodiversity. The nature of chemical communication in these two species is poorly understood, and this work was undertaken to identify the behaviourally active compounds in the venom of the common wasp, Vespula vulgaris (L.). Venom was removed from the stings of both workers and females and analyzed by coupled gas chromatography/electroantennographic detection (GC/EAD) and gas chromatography/mass spectrometry (GC/MS). Two compounds were present in the venom that consistently elicited EAD responses from the antennae of males and workers. Mass spectrometry analysis and syntheses of candidate structures revealed the structures to be N-(3-methylbutyl)acetamide (MBA) and N-(3-methylbutyl)butanamide (MBB). Gyne venom contains significantly larger amounts of MBA and MBB than worker venom. When these two compounds were tested in the field individually or as binary blends in combination with the known food odour (honeydew volatiles), only N-(3-methylbutyl)butanamide or blends containing this compound showed a strong repellent effect on workers to honeydew volatiles at all doses tested. This is the first report of the occurrence of N-(3-methylbutyl)butanamide in nature and the third amide to be identified in the venom of any social wasp. In addition, this work is the first to report the chemical analysis of the venom of V. vulgaris gyne. The repellency effect observed in this study of the venom compound suggests that our definition and understanding of the function of the alarm pheromone need to be reassessed.


Assuntos
Amidas/química , Peçonhas/química , Vespas , Animais , Feminino , Espécies Introduzidas , Masculino , Nova Zelândia , Odorantes , Feromônios/química , Vespas/química , Vespas/classificação
15.
J Chem Ecol ; 47(8-9): 740-746, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34347235

RESUMO

Aphids are destructive pests, and alarm pheromones play a key role in their chemical ecology. Here, we conducted a detailed analysis of terpenoids in the vetch aphid, Megoura viciae, and its host plant Pisum sativum using gas chromatography/mass spectrometry. Four major components, (-)-ß-pinene (49.74%), (E)-ß-farnesene (32.64%), (-)-α-pinene (9.42%) and ( +)-limonene (5.24%), along with trace amounts of ( +)-sabinene, camphene and α-terpineol) (3.14%) were found in the aphid. In contrast, few terpenoids were found in the host plant, consisting mainly of squalene (66.13%) and its analog 2,3-epoxysqualene (31.59%). Quantitative analysis of the four major terpenes in different developmental stages of the aphid showed that amounts of the monoterpenes increased with increasing stage, while the sesquiterpene amount peaked in the 3rd instar. (-)-ß-Pinene was the most abundant terpene at all developmental stages. Behavioral assays using a three-compartment olfactometer revealed that the repellency of single compounds varied in a concentration-dependent manner, but two mixtures [(-)-α-pinene: (-)-ß-pinene: (E)-ß-farnesene: ( +)-limonene = 1:44.4:6.5:2.2 or 1:18.4:1.3:0.8], were repellent at all concentrations tested. Our results suggest that (-)-α-pinene and (-)-ß-pinene are the major active components of the alarm pheromone of M. viciae, but that mixtures play a key role in the alarm response. Our study contributes to the understanding of the chemical ecology of aphids and may help design new control strategies against this aphid pest.


Assuntos
Afídeos/fisiologia , Feromônios/química , Pisum sativum/química , Terpenos/química , Animais , Afídeos/química , Afídeos/crescimento & desenvolvimento , Comportamento Animal/efeitos dos fármacos , Monoterpenos Bicíclicos/isolamento & purificação , Monoterpenos Bicíclicos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Controle de Insetos/métodos , Estágios do Ciclo de Vida , Pisum sativum/metabolismo , Pisum sativum/parasitologia , Feromônios/análise , Feromônios/farmacologia , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Terpenos/análise , Terpenos/farmacologia
16.
Physiol Behav ; 240: 113526, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246665

RESUMO

Early-life stress (ELS) has been shown to result in a diverse array of long-lasting impacts; for example, increasing vulnerability to disease or building 'resilience' in adulthood. Previously, zebrafish (Danio rerio) have been used to understand the mechanisms by which ELS induces different behavioral phenotypes in adults, with alterations in both learning and anxiety observed in exposed individuals. Here, we subjected zebrafish larvae to chronic unpredictable early-life stress (CUELS) for 7 or 14 days, to investigate the impact on boldness towards a new environment and novel object, and stress-reactivity. We observed that 7 days of CUELS resulted in increased time spent in the top of a novel tank (indicating boldness) but did not alter approach to a novel object. Although CUELS did not affect stress-reactivity in terms of cortisol levels, decreased anxiety-like response to conspecific alarm substance (CAS) was observed in both ELS groups (7 and 14 days of CUELS). Therefore, for the first time, we observe a potential negative effect of CUELS by dampening the behavioral stress response following exposure to CAS. Overall, these data support the use of zebrafish as a translational model to study the broad range of ELS-induced permanent changes in behavior. It could also be used to investigate the mechanisms underlying both the positive and the negative effects of early-life adversity.


Assuntos
Experiências Adversas da Infância , Adulto , Animais , Ansiedade , Comportamento Animal , Humanos , Peixe-Zebra
17.
Neuropharmacology ; 196: 108681, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34175323

RESUMO

Acute stressors are recurrent in multiple species' lives and can facilitate or impair cognition. The use of zebrafish (Danio rerio) as a translational species to understand the mechanisms by which stress induces different behavioral phenotypes has been widely studied. Two acute stressors are recognized when using this species: (1) conspecific alarm substance (CAS); and (2) net chasing. Here, we tested if CAS or net chasing would affect working memory and cognitive flexibility by testing performance in the FMP Y-maze after exposure to stress. We observed that CAS altered zebrafish behavioral phenotypes by increasing repetitive behavior; meanwhile, animals showed different patterns of repetitive behavior when exposed to net chasing, depending on the chasing direction. Because D1 receptors were previously studied as a potential mechanism underlying stress responses in different species, here, we pretreated fish with a D1/D5 agonist (SKF-38393) to assess whether this system plays a role in repetitive behavior in the FMP Y-maze. The pretreatment with D1/D5 agonist significantly decreased repetitive behavior in CAS exposed animals, and cortisol levels for both stressed groups, suggesting that the dopaminergic system plays an important role in zebrafish stress-related responses.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Hidrocortisona/metabolismo , Memória de Curto Prazo/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Estresse Psicológico/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/efeitos dos fármacos , Feromônios , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D5/agonistas , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia , Peixe-Zebra
18.
Oecologia ; 196(3): 667-677, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34173057

RESUMO

Chemical communication plays an important role in mammalian life history decisions. Animals send and receive information based on body odour secretions. Odour cues provide important social information on identity, kinship, sex, group membership or genetic quality. Recent findings show, that rodents alarm their conspecifics with danger-dependent body odours after encountering a predator. In this study, we aim to identify the chemistry of alarm pheromones (AP) in the bank vole, a common boreal rodent. Furthermore, the vole foraging efficiency under perceived fear was measured in a set of field experiments in large outdoor enclosures. During the analysis of bank vole odour by gas chromatography-mass spectrometry, we identified that 1-octanol, 2-octanone, and one unknown compound as the most likely candidates to function as alarm signals. These compounds were independent of the vole's sex. In a field experiment, voles were foraging less, i.e. they were more afraid in the AP odour foraging trays during the first day, as the odour was fresh, than in the second day. This verified the short lasting effect of volatile APs. Our results clarified the chemistry of alarming body odour compounds in mammals, and enhanced our understanding of the ecological role of AP and chemical communication in mammals.


Assuntos
Arvicolinae , Feromônios , Animais , Sinais (Psicologia) , Medo , Odorantes
19.
Epilepsy Behav ; 121(Pt A): 108078, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111768

RESUMO

OBJECTIVE: In our canine scent detection research involving a specific volatile organic compound (VOC) associated with human epileptic seizure, we began to suspect involvement of the primitive neural networks associated with production of a previously undescribed human alarm pheromone as the origin of our seizure scent. We hypothesized that if we presented fear-scented sweat to our canine seizure scent detection team, and they identified the fear scent as their seizure scent, then that would suggest that they are identical compounds. METHODS: Following consent and approval, sweat samples taken from volunteers associated with the Brooke Gordon Comprehensive Epilepsy Center at Denver Health were processed by the Canine Assistants (CA) service dog team that had been imprinted to recognize the unique seizure scent from our previous study. In part one, sweat samples were collected from subjects, who had no prior history of epilepsy or seizures, under two different testing environments: watching a scary movie (It) and a neutral/comedy movie (Airplane!). In part two, a larger follow-up study utilizing fear sweat, exercise sweat, epilepsy sweat, and other distractor scents were provided in a multiple choice paradigm to better understand the inter-rater reliability of the canine responses. RESULTS: In part one, our canine seizure scent detection team identified fear-scented sweat samples as their seizure scent in 4 of 5 study participants. There was almost perfect agreement of seizure scent detection during fear scent trials between the canine seizure scent detectors with a kappa value of 0.814 (95% CI: 0.668-0.960). In part two, (utilizing eleven different subjects) our canine scent detection team identified samples of either fear or seizure sweat with a sensitivity of 82% and a specificity of 100% (no false positives) from among the multiple choices offered. Additionally, there was 92% agreement between the members of the canine scent detection team. SIGNIFICANCE: While this hypothesis testing study is small and deserves replication, it confirms that the Canine Assistants seizure scent detection team consistently and accurately identified fear-scented sweat as their seizure scent, implying that the VOC, menthone, is common to both conditions. This further implies that human seizure propagation and fear network circuitry may share a common anatomy, and that menthone may not only be an early seizure biomarker, but a newly described human alarm pheromone.


Assuntos
Epilepsia , Olfato , Animais , Cães , Epilepsia/diagnóstico , Medo , Seguimentos , Reprodutibilidade dos Testes
20.
Pathogens ; 10(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071926

RESUMO

The purpose of this study was to evaluate fire ant venom alkaloids and an alarm pheromone analog against several plant pathogens, including Botrytis cinerea, Fusarium oxysporum, Phytophthora nicotianae, P. cryptogea, Pseudomonas syringae, Phytopythium citrinum, Rhizoctonia solani, Sclerotonia rolfsii, Xanthomonas axonopodis, and X. campestris. All pathogens were tested against red imported fire ant venom alkaloid extract and alarm pheromone compound for growth inhibition in in vitro assay. The venom alkaloid extract inhibited fungal and oomycete pathogens. Neither of the treatments were effective against bacterial pathogens. Three soilborne pathogens, P. nicotianae, R. solani, F. oxysporum, and one foliar pathogen, B. cinerea were selected for further in-vivo assays on impatiens (Impatiens walleriana 'Super Elfin XP violet'). Total plant and root weight were higher in venom alkaloid treated plants compared to an inoculated control. The venom alkaloid treatment reduced damping-off, root rot severity, and pathogen recovery in soilborne pathogen inoculated plants. Similarly, venom alkaloid reduced Botrytis blight. However, higher venom rates caused foliar phytotoxicity on plants. Therefore, additional work is needed to evaluate rates of venom alkaloids or formulations to eliminate negative impacts on plants. Overall, these results suggest that red imported fire ant venom alkaloids may provide a basis for new products to control soilborne and foliar plant pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA