Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chem Biol Interact ; 391: 110896, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301882

RESUMO

Aldo-keto reductase-7A (AKR7A) subfamily belongs to the AKR superfamily and is associated with detoxification of aldehydes and ketones by reducing them to the corresponding alcohols. So far five members of ARK7A subfamily are identified: two human members-AKR7A2 and AKR7A3, two rat members-AKR7A1 and AKR7A4, and one mouse member-AKR7A5, which are implicated in several diseases including neurodegenerative diseases and cancer. AKR7A members share similar crystal structures and protein functional domains, but have different substrate specificity, inducibility and biological functions. This review will summarize the research progress of AKR7A members in substrate specificity, tissue distribution, inducibility, crystal structure and biological function. The significance of AKR7A members in the occurrence and development of diseases will also be discussed.


Assuntos
Aldeído Redutase , Fígado , Ratos , Camundongos , Animais , Humanos , Aldo-Ceto Redutases/metabolismo , Fígado/metabolismo , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/metabolismo , Especificidade por Substrato
2.
Metabolites ; 13(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999222

RESUMO

Hydroxytyrosol (HT) is a phenolic substance primarily present in olive leaves and olive oil. Numerous studies have shown its advantages for human health, making HT a potentially active natural component with significant added value. Determining strategies for its low-cost manufacturing by metabolic engineering in microbial factories is hence still of interest. The objective of our study was to assess and improve HT production in a one-liter bioreactor utilizing genetically modified Escherichia coli strains that had previously undergone fed-batch testing. Firstly, we compared the induction temperatures in small-scale whole-cell biocatalysis studies and then examined the optimal temperature in a large volume bioreactor. By lowering the induction temperature, we were able to double the yield of HT produced thereby, reaching 82% when utilizing tyrosine or L-DOPA as substrates. Hence, without the need to further modify our original strains, we were able to increase the HT yield.

3.
IUCrJ ; 10(Pt 4): 437-447, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261425

RESUMO

The Fe2+-dependent E. coli enzyme FucO catalyzes the reversible interconversion of short-chain (S)-lactaldehyde and (S)-1,2-propanediol, using NADH and NAD+ as cofactors, respectively. Laboratory-directed evolution experiments have been carried out previously using phenylacetaldehyde as the substrate for screening catalytic activity with bulky substrates, which are very poorly reduced by wild-type FucO. These experiments identified the N151G/L259V double mutant (dubbed DA1472) as the most active variant with this substrate via a two-step evolutionary pathway, in which each step consisted of one point mutation. Here the crystal structures of DA1472 and its parent D93 (L259V) are reported, showing that these amino acid substitutions provide more space in the active site, though they do not cause changes in the main-chain conformation. The catalytic activity of DA1472 with the physiological substrate (S)-lactaldehyde and a series of substituted phenylacetaldehyde derivatives were systematically quantified and compared with that of wild-type as well as with the corresponding point-mutation variants (N151G and L259V). There is a 9000-fold increase in activity, when expressed as kcat/KM values, for DA1472 compared with wild-type FucO for the phenylacetaldehyde substrate. The crystal structure of DA1472 complexed with a non-reactive analog of this substrate (3,4-dimethoxyphenylacetamide) suggests the mode of binding of the bulky group of the new substrate. These combined structure-function studies therefore explain the dramatic increase in catalytic activity of the DA1472 variant for bulky aldehyde substrates. The structure comparisons also suggest why the active site in which Fe2+ is replaced by Zn2+ is not able to support catalysis.


Assuntos
Aldeído Redutase , Escherichia coli , Aldeído Redutase/química , Escherichia coli/genética , Especificidade por Substrato , Cinética , Domínio Catalítico
4.
J Fish Biol ; 103(3): 529-543, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37266950

RESUMO

Aldehyde reductase (ALR) plays key roles in the detoxification of toxic aldehyde. In this study, the authors cloned the swamp eel ALR gene using rapid amplification of cDNA ends-PCR (RACE-PCR). The recombinant protein (rALR) was expressed in Escherichia coli and purified using a Ni2+ -NTA chelating column. The rALR protein exhibited efficient reductive activity towards several aldehydes, ketones and S-nitrosoglutathione (GSNO). A spot assay suggested that the recombinant E. coli strain expressing rALR showed better resistance to formaldehyde, sodium nitrite and GSNO stress, suggesting that swamp eel ALR is crucial for redox homeostasis in vivo. Consequently, the authors investigated the effect of rALR on the oxidative parameters of the liver in swamp eels challenged with Aeromonas hydrophila. The hepatic glutathione (GSH) content significantly increased, and the hepatic NO content and levels of reactive oxygen species and reactive nitrogen species significantly decreased when rALR was administered. In addition, the mRNA expression of hepatic Alr, HO1 and Nrf2 was significantly upregulated, whereas the expression levels of NF-κB, IL-1ß and NOS1 were significantly downregulated in the rALR-administered group. Collectively, these results suggest that ALR is involved in the response to nitrosative stress by regulating GSH/NO levels in the swamp eel.


Assuntos
Estresse Nitrosativo , Smegmamorpha , Animais , Escherichia coli/genética , Smegmamorpha/genética , Aldeído Redutase , Glutationa
5.
Biochem Cell Biol ; 100(5): 413-424, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858481

RESUMO

Aldo-keto reductase family 1 member A (AKR1A) is an NADPH-dependent aldehyde reductase widely expressed in mammalian tissues. In this study, induced differentiation of MC3T3-E1 preosteoblasts was found to increase AKR1A gene expression concomitantly increased NOx- (nitrite + nitrate), increased glucose uptake, increased [NAD(P)+]/[NAD(P)H] and lactate production but decreased reactive oxygen species (ROS) without changes in endothelial nitric oxide synthase (eNOS) expression in differentiated osteoblasts (OBs). A study using gain- and loss-of-function MC3T3-E1 cells indicated that AKR1A is essential for modulating OB differentiation and gene expression of collagen 1 A1, receptor activator of nuclear factor kappa-B ligand, and osteoprotegerin in OBs. Immunofluorescence microscopy also revealed that changes in AKR1A expression altered extracellular collagen formation in differentiated OBs. Consistently, analyses of alkaline phosphatase activity and calcium deposits of matrix mineralization by Alizarin Red S staining verified that AKR1A is involved in the regulation of OB differentiation and bone matrix formation. In addition, AKR1A gene alterations affected the levels of NOx-, eNOS expression, glucose uptake, [NAD(P)+]/[NAD(P)H] dinucleotide redox couples, lactate production, and ROS in differentiated OBs. Herein, we report that AKR1A-mediated denitrosylation may play a role in the regulation of lactate metabolism as well as redox homeostasis in cells, providing an efficient way to quickly gain energy and to significantly reduce oxidative stress for OB differentiation.


Assuntos
Aldeído Redutase , Osteoprotegerina , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldeído Redutase/farmacologia , Aldo-Ceto Redutases/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Colágeno , Glucose/metabolismo , Ácido Láctico/metabolismo , Ligantes , Mamíferos/metabolismo , NAD/metabolismo , NAD/farmacologia , NADP/metabolismo , NADP/farmacologia , Nitratos/metabolismo , Nitratos/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/farmacologia , Nitritos/metabolismo , Nitritos/farmacologia , Osteoblastos/metabolismo , Osteoprotegerina/metabolismo , Osteoprotegerina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
Front Bioeng Biotechnol ; 10: 880277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646884

RESUMO

Aromatic aldehydes, including 4-hydroxybenzaldehyde (4-HB aldehyde), protocatechuic (PC) aldehyde, and vanillin, are used as important flavors, fragrances, and pharmaceutical precursors and have several biological and therapeutic effects. Production of aromatic aldehydes in microbial hosts poses a challenge due to its rapid and endogenous reduction to alcohols. To address this hurdle, prospecting of the genome of Corynebacterium glutamicum yielded 27 candidate proteins that were used in comprehensive screening with a 4-hydroxybenzyl (4-HB) alcohol-producing strain. We identified that NCgl0324 has aromatic aldehyde reductase activity and contributed to 4-HB aldehyde reduction in vivo since the NCgl0324 deletion strain HB-Δ0324 produced 1.36 g/L of 4-HB aldehyde, that is, about 188% more than its parental strain. To demonstrate that NCgl0324 knockout can also improve production of PC aldehyde and vanillin, first, a basal MA303 strain that produces protocatechuate was engineered from 4-hydroxybenzoate-synthesizing C. glutamicum APS963, followed by deletion of NCgl0324 to generate PV-Δ0324. The PC aldehyde/alcohol or vanillin/vanillyl alcohol biosynthetic pathways, respectively, were able to be expanded from protocatechuate upon introduction of carboxylic acid reductase (CAR) and catechol O-methyltransferase encoded by a mutated comt m gene. In shake flask culture, the resulting NCgl0324 deletion strains PV-IΔ0324 and PV-IYΔ0324 were shown to produce 1.18 g/L PC aldehyde and 0.31 g/L vanillin, respectively. Thus, modulation of the identified NCgl0324 gene was shown to have the potential to boost production of valuable aromatic aldehydes and alcohols.

7.
Microorganisms ; 10(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630298

RESUMO

Furfural and hydroxy-methyl-furfural (HMF) are produced by lignocellulosic biomass during heat or acid pretreatment and are toxic to yeast. Aldehyde reductase is the main enzyme to reduce furfural and HMF. To improve the conversion efficiency of lignocellulosic biomass into ethanol, we constructed Saccharomyces cerevisiae with overexpression of aldehyde reductase (encoded by ari1). The gene of aldehyde reductase (encoded by ari1) was cloned via polymerase chain reaction (PCR) and ligated with the expression vector pGAPZαC. Western blot coupled with anti-His tag confirmed overexpression of the ari1 gene. The growth curves of the wild and ari1-overexpressed strain in the YPD medium were found to be almost identical. Compare to the ari1-overexpressed strain, the wild strain showed a longer doubling time and lag phase in the presence of 20 mM furfural and 60 mM HMF, respectively. The real-time PCR results showed that furfural was much more potent than HMF in stimulating ari1 expression, but the cell growth patterns showed that 60 mM HMF was more toxic to yeast than 20 mM furfural. S. cerevisiae with ari1 overexpression appeared to confer higher tolerance to aldehyde inhibitors, thereby increasing the growth rate and ethanol production capacity of S. cerevisiae in an aldehyde-containing environment.

8.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163804

RESUMO

NAD(H)/NADP(H)-dependent aldehyde/alcohol oxidoreductase (AAOR) participates in a wide range of physiologically important cellular processes by reducing aldehydes or oxidizing alcohols. Among AAOR substrates, furan aldehyde is highly toxic to microorganisms. To counteract the toxic effect of furan aldehyde, some bacteria have evolved AAOR that converts furan aldehyde into a less toxic alcohol. Based on biochemical and structural analyses, we identified Bacillus subtilis YugJ as an atypical AAOR that reduces furan aldehyde. YugJ displayed high substrate specificity toward 5-hydroxymethylfurfural (HMF), a furan aldehyde, in an NADPH- and Ni2+-dependent manner. YugJ folds into a two-domain structure consisting of a Rossmann-like domain and an α-helical domain. YugJ interacts with NADP and Ni2+ using the interdomain cleft of YugJ. A comparative analysis of three YugJ structures indicated that NADP(H) binding plays a key role in modulating the interdomain dynamics of YugJ. Noticeably, a nitrate ion was found in proximity to the nicotinamide ring of NADP in the YugJ structure, and the HMF-reducing activity of YugJ was inhibited by nitrate, providing insights into the substrate-binding mode of YugJ. These findings contribute to the characterization of the YugJ-mediated furan aldehyde reduction mechanism and to the rational design of improved furan aldehyde reductases for the biofuel industry.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Bacillus subtilis/enzimologia , Furaldeído/análogos & derivados , NADP/metabolismo , Níquel/metabolismo , Aldeído Redutase/genética , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Furaldeído/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Especificidade por Substrato
9.
Front Plant Sci ; 12: 721572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868107

RESUMO

Green leaf volatiles (GLVs), the common constituents of herbivore-infested plant volatiles (HIPVs), play an important role in plant defense and function as chemical cues to communicate with other individuals in nature. Reportedly, in addition to endogenous GLVs, the absorbance of airborne GLVs emitted by infested neighboring plants also play a major role in plant defense. For example, the exclusive accumulation of (Z)-3-hexenyl vicianoside in the HIPV-exposed tomato plants occurs by the glycosylation of airborne (Z)-3-hexenol (Z3HOL); however, it is unclear how plants process the other absorbed GLVs. This study demonstrates that tomato plants dominantly accumulated GLV-glycosides after exposure to green leaf alcohols [Z3HOL, (E)-2-hexenol, and n-hexanol] using non-targeted LC-MS analysis. Three types of green leaf alcohols were independently glycosylated without isomerization or saturation/desaturation. Airborne green leaf aldehydes and esters were also glycosylated, probably through converting aldehydes and esters into alcohols. Further, we validated these findings in Arabidopsis mutants- (Z)-3-hexenal (Z3HAL) reductase (chr) mutant that inhibits the conversion of Z3HAL to Z3HOL and the acetyl-CoA:(Z)-3-hexen-1-ol acetyltransferase (chat) mutant that impairs the conversion of Z3HOL to (Z)-3-hexenyl acetate. Exposure of the chr and chat mutants to Z3HAL accumulated lower and higher amounts of glycosides than their corresponding wild types (Col-0 and Ler), respectively. These findings suggest that plants process the exogenous GLVs by the reductase(s) and the esterase(s), and a part of the processed GLVs contribute to glycoside accumulation. Overall, the study provides insights into the understanding of the communication of the plants within their ecosystem, which could help develop strategies to protect the crops and maintain a balanced ecosystem.

10.
J Clin Transl Endocrinol ; 26: 100274, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34849350

RESUMO

A few patients with Hashimoto's thyroiditis or Graves' disease develop a multiform syndrome of the central nervous system (CNS) termed Hashimoto's encephalopathy or steroid-responsive encephalopathy associated with autoimmune thyroid disease (HE/SREAT). They have high levels of thyroid autoantibodies (TgAb, TPOAb and/or TSH-R-Ab) in blood and cerebrospinal fluid. Autoantibodies against alpha-enolase, aldehyde reductase-I (AKRIA) and/or dimethylargininase-I (DDAHI), proteins expressed in the CNS among other tissues, were detected in the blood and, when searched, in the cerebrospinal fluid of HE/SREAT patients. Recently, we reported that alpha-enolase, AKRIA and DDAHI share local sequence homology with each of the three autoantigens (TgAb, TPOAb, TSH-R-Ab), often in epitope-containing segments of the thyroid autoantigens. We hypothesized that there might be additional CNS-expressed proteins homologous to thyroid autoantigens, possibly overlapping known epitopes of the thyroid autoantigens. We used bioinformatic methods to address this hypothesis. Six, 27 and 47 of 46,809 CNS-expressed proteins share homology with TSH-R, Tg and TPO, respectively. The homologous regions often contain epitopes, and some match regions of thyroid autoantigens which have homology with alpha-enolase, AKRIA and/or DDAHI. Several of the aforementioned proteins are present in CNS areas that show abnormalities at neuroimaging in HE/SREAT patients. Furthermore, autoantibodies against some of the said six, 27 and 47 proteins were reported to be associated with a number of autoimmune diseases. Not only we validated our hypothesis, but we think that such a variety of potential CNS targets for thyroid Ab against epitopes contained in regions that have local homology with CNS proteins may explain the polymorphic phenotypes of HE/SREAT. Only when elevated amounts of these Ab are synthesized and trespass the blood-brain barrier, HE/SREAT appears. This might explain why HE/SREAT is so relatively rare.

11.
Future Med Chem ; 13(14): 1185-1201, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34148377

RESUMO

Aim: Indole is an important component of many drug molecules, and its conjugation with thiosemicarbazone moiety would be advantageous in finding lead compounds for the development of diabetic complications. Methodology: We have designed, synthesized and evaluated a series of 17 indole-thiosemicarbazones (3a-q) as aldose reductase (ALR2) and aldehyde reductase (ALR1) inhibitors. Results: After in vitro evaluation, all indole-thiosemicarbazones showed significant inhibition against both enzyme ALR1 and ALR2 with IC50 in range of 0.42-20.7 and 1.02-19.1 µM, respectively. The docking study was also carried out to consider the putative binding of molecules with the target enzymes. Conclusion: Compound 3f was found to be most active and selective for ALR2. The indole-thiosemicarbazones series described here has selective hits for diabetes-mellitus-associated complications.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Indóis/química , Tiossemicarbazonas/química , Aldeído Redutase/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Humanos , Imidazolidinas/química , Imidazolidinas/metabolismo , Simulação de Acoplamento Molecular , NADP/química , NADP/metabolismo , Relação Estrutura-Atividade , Tiossemicarbazonas/metabolismo
12.
BMC Chem ; 15(1): 28, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906691

RESUMO

In diabetes, increased accumulation of sorbitol has been associated with diabetic complications through polyol pathway. Aldose reductase (AR) is one of the key factors involved in reduction of glucose to sorbitol, thereby its inhibition is important for the management of diabetic complications. In the present study, a series of seven 4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetamide derivatives 3(a-g) were synthesized by the reaction of 5-(4-hydroxy-3-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2a) and 5-(4-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2b) with different amines. The synthesized compounds 3(a-g) were investigated for their in vitro aldehyde reductase (ALR1) and aldose reductase (ALR2) enzyme inhibitory potential. Compound 3c, 3d, 3e, and 3f showed ALR1 inhibition at lower micromolar concentration whereas all the compounds were more active than the standard inhibitor valproic acid. Most of the compounds were active against ALR2 but compound 3a and 3f showed higher inhibition than the standard drug sulindac. Overall, the most potent compound against aldose reductase was 3f with an inhibitory concentration of 0.12 ± 0.01 µM. In vitro results showed that vanillin derivatives exhibited better activity against both aldehyde reductase and aldose reductase. The molecular docking studies were carried out to investigate the binding affinities of synthesized derivatives with both ALR1 and ALR2. The binding site analysis of potent compounds revealed similar interactions as were found by cognate ligands within the active sites of enzymes.

13.
J Biosci Bioeng ; 131(1): 39-46, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32967812

RESUMO

Aldehydes are the main inhibitors generated during the pretreatment of lignocellulosic biomass, which can inhibit cell growth and disturb subsequent fermentation. Saccharomyces cerevisiae has the intrinsic ability to in situ detoxify aldehydes to their less toxic or nontoxic alcohols by numerous aldehyde dehydrogenases/reductases during the lag phase. Herein, we report that an uncharacterized open reading frame YMR152W from S. cerevisiae encodes a novel aldehyde reductase with catalytic functions for reduction of at least six aldehydes, including two furan aldehydes (furfural and 5-hydroxymethylfurfural), three aliphatic aldehydes (acetaldehyde, glycolaldehyde, and 3-methylbutanal), and an aromatic aldehyde (benzaldehyde) with NADH or NADPH as the co-factor. Particularly, Ymr152wp displayed the highest specific activity (190.86 U/mg), and the best catalytic rate constant (Kcat), catalytic efficiency (Kcat/Km), and affinity (Km) when acetaldehyde was used as the substrate with NADH as the co-factor. The optimum pH of Ymr152wp is acidic (pH 5.0-6.0), but this enzyme is more stable in alkaline conditions (pH 8.0). Metal ions, chemical protective additives, salts, and substrates could stimulate or inhibit enzyme activities of Ymr152wp in varying degrees. Ymr152wp was classified into the quinone oxidoreductase (QOR) subfamily of the medium-chain dehydrogenase/reductase (MDR) family based on the results of amino acid sequence analysis and phylogenetic analysis. Although Ymr152wp was grouped into the QOR family, no quinone reductase activity was observed using typical quinones (9,10-phenanthrenequinone, 1,2-naphthoquinone, and p-benzoquinone) as the substrates. This study provides guidelines for exploring more uncharacterized aldehyde reductases in S. cerevisiae for in situ detoxification of aldehyde inhibitors derived from lignocellulosic hydrolysis.


Assuntos
Aldeído Redutase/metabolismo , Aldeídos/metabolismo , Biomassa , Lignina/química , Saccharomyces cerevisiae/enzimologia , Aldeído Redutase/genética , Aldeídos/isolamento & purificação , Filogenia , Saccharomyces cerevisiae/genética
14.
Microorganisms ; 8(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086693

RESUMO

Recently, a putative alcohol dehydrogenase 3, termed EhADH3B of the Entamoeba histolytica isolate HM-1:IMSS was identified, which is expressed at higher levels in non-pathogenic than in pathogenic amoebae and whose overexpression reduces the virulence of pathogenic amoebae. In an in silico analysis performed in this study, we assigned EhADH3B to a four-member ADH3 family, with ehadh3b present as a duplicate (ehadh3ba/ehadh3bb). In long-term laboratory cultures a mutation was identified at position 496 of ehadh3ba, which codes for a stop codon, which was not the case for amoebae isolated from human stool samples. When using transfectants that overexpress or silence ehadh3bb, we found no or little effect on growth, size, erythrophagocytosis, motility, hemolytic or cysteine peptidase activity. Biochemical characterization of the recombinant EhADH3Bb revealed that this protein forms a dimer containing Ni2+ or Zn2+ as a co-factor and that the enzyme converts acetaldehyde and formaldehyde in the presence of NADPH. A catalytic activity based on alcohols as substrates was not detected. Based on the results, we postulate that EhADH3Bb can reduce free acetaldehyde released by hydrolysis from bifunctional acetaldehyde/alcohol dehydrogenase-bound thiohemiacetal and that it is involved in detoxification of toxic aldehydes produced by the host or the gut microbiota.

15.
Acta Crystallogr D Struct Biol ; 76(Pt 5): 472-483, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32355043

RESUMO

Aldo-keto reductases (AKRs) are NADPH/NADP+-dependent oxidoreductase enzymes that metabolize an aldehyde/ketone to the corresponding alcohol. AKR4C14 from rice exhibits a much higher efficiency in metabolizing malondialdehyde (MDA) than do the Arabidopsis enzymes AKR4C8 and AKR4C9, despite sharing greater than 60% amino-acid sequence identity. This study confirms the role of rice AKR4C14 in the detoxification of methylglyoxal and MDA, and demonstrates that the endogenous contents of both aldehydes in transgenic Arabidopsis ectopically expressing AKR4C14 are significantly lower than their levels in the wild type. The apo structure of indica rice AKR4C14 was also determined in the absence of the cofactor, revealing the stabilized open conformation. This is the first crystal structure in AKR subfamily 4C from rice to be observed in the apo form (without bound NADP+). The refined AKR4C14 structure reveals a stabilized open conformation of loop B, suggesting the initial phase prior to cofactor binding. Based on the X-ray crystal structure, the substrate- and cofactor-binding pockets of AKR4C14 are formed by loops A, B, C and ß1α1. Moreover, the residues Ser211 and Asn220 on loop B are proposed as the hinge residues that are responsible for conformational alteration while the cofactor binds. The open conformation of loop B is proposed to involve Phe216 pointing out from the cofactor-binding site and the opening of the safety belt. Structural comparison with other AKRs in subfamily 4C emphasizes the role of the substrate-channel wall, consisting of Trp24, Trp115, Tyr206, Phe216, Leu291 and Phe295, in substrate discrimination. In particular, Leu291 could contribute greatly to substrate selectivity, explaining the preference of AKR4C14 for its straight-chain aldehyde substrate.


Assuntos
Aldo-Ceto Redutases/química , Oryza/enzimologia , Proteínas de Plantas/química , Arabidopsis/enzimologia , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Aldeído Pirúvico/metabolismo
16.
Protein Expr Purif ; 171: 105625, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173567

RESUMO

Owing to its high-temperature tolerance, robustness, and wide use of carbon sources, Candida tropicalis is considered a good candidate microorganism for bioconversion of lignocellulose to ethanol. It also has the intrinsic ability to in situ detoxify aldehydes derived from lignocellulosic hydrolysis. However, the aldehyde reductases that catalyze this bioconversion in C. tropicalis remain unknown. Herein, we found that the uncharacterized open reading frame (ORF), CTRG_02797, from C. tropicalis encodes a novel and broad substrate-specificity aldehyde reductase that reduces at least seven aldehydes. This enzyme strictly depended on NADH rather than NADPH as the co-factor for catalyzing the reduction reaction. Its highest affinity (Km), maximum velocity (Vmax), catalytic rate constant (Kcat), and catalytic efficiency (Kcat/Km) were observed when reducing acetaldehyde (AA) and its enzyme activity was influenced by different concentrations of salts, metal ions, and chemical protective additives. Protein localization assay demonstrated that Ctrg_02797p was localized in the cytoplasm in C. tropicalis cells, which ensures an effective enzymatic reaction. Finally, Ctrg_02797p was grouped into the cinnamyl alcohol dehydrogenase (CADH) subfamily of the medium-chain dehydrogenase/reductase family. This research provides guidelines for exploring more uncharacterized genes with reduction activity for detoxifying aldehydes.


Assuntos
Aldeído Redutase/metabolismo , Candida tropicalis/enzimologia , Citoplasma/enzimologia , Proteínas Fúngicas/metabolismo , NADP/metabolismo , Fases de Leitura Aberta , Aldeído Redutase/genética , Candida tropicalis/genética , Citoplasma/genética , Proteínas Fúngicas/genética , NADP/genética
17.
Nat Prod Res ; 34(4): 558-562, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30388891

RESUMO

Methanol extract of Indigofera hirsuta, was evaluated for its antiradical potential and capacity in inhibiting lipoxygenase and aldose/aldehyde reductase enzymes. The ethyl acetate fraction derived from the methanol extract partition, showed the greatest antioxidant capacity, while the butanol was the strongest inhibitor of lipoxygenase enzyme. All fractions (diethyl ether, ethyl acetate, butanol and the aqueous residue) exhibited strong inhibition capacity of both aldose/aldehyde reductase enzymes, which comes in agreement with the ethnomedicinal plant utilization as an antidiabetic agent. LC-DAD-MS(ESI+) fraction analysis verified the findings above, leading to a conclusion regarding the biological activities attributed to the main compounds. Phytochemical analysis led to the identification of an indolic dimer, cinnamic acids, phenolics, flavonoid glycosides, a cyclic polyol, the rare sugar 1-methyl-ß-D-glucopyranoside and glycerol. Many of these compounds were isolated for the first time in Indigofera species while the indolic dimer was isolated for the first time in the Fabaceae family.


Assuntos
Antioxidantes/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Indigofera/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Aldeído Redutase/antagonistas & inibidores , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Flavonoides/análise , Glicosídeos/análise , Humanos , Inibidores de Lipoxigenase , Fenóis/análise , Fenóis/química , Compostos Fitoquímicos/isolamento & purificação , Componentes Aéreos da Planta/química
18.
Curr Comput Aided Drug Des ; 16(6): 707-717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31749429

RESUMO

BACKGROUND: Cancer is a well-known and well-studied disease. There are environmental as well as genetic factors that trigger cancer. All forms of cancer are associated with the deregulation of genes and proteins. Aldose reductase, Aldose Reductase like protein 1 and Aldehyde Reductase are homologous proteins that are overexpressed in different types of cancer. They are NADPHdependent oxidoreductases. The active site is conserved, thus there is very less substrate specificity among those proteins. In this study, novel molecules targeting the three proteins are designed. METHODS: LigBuilder V2 software is used to design novel molecules. Molecular docking is performed to study the binding affinity of each ligand towards the targets. Molecular Dynamics Simulation was done to check the stability of protein-ligand complexes in an aqueous environment. RESULTS: Six novel molecules have been designed. The six molecules studied are found to have better in silico affinity than tolrestat (known inhibitor). The designed molecules are predicted to be orally active. Finally, Molecular Dynamics Simulation showed that the protein-ligand complexes are stable in an aqueous environment. CONCLUSION: New molecules targeting Aldose reductase, Aldose Reductase like protein 1 and Aldehyde Reductase have been designed.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/química , Membro B10 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Membro B10 da Família 1 de alfa-Ceto Redutase/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Sítios de Ligação , Simulação por Computador , Cinética , Ligantes , Simulação de Acoplamento Molecular , Especificidade por Substrato
19.
Future Med Chem ; 11(23): 2989-3004, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659919

RESUMO

Aim: Targeting aldose reductase and oxidative stress with quinoxalin-2(1H)-one derivatives having a 1-hydroxypyrazole head as the bioisosteric replacement of carboxylic acid. Methodology & results: Aldose reductase inhibition, selectivity and antioxidant potency of all the synthesized compounds were evaluated, and binding modes were studied by molecular docking. Most of the derivatives showed potent and selective aldose reductase inhibition, and among them 13d was the most active (IC50 = 0.107 µM), suggesting success of the bioisosteric strategy. Phenolic 3,4-dihydroxyl compound 13f showed strong antioxidant ability even comparable to that of the well-known antioxidant Trolox. Conclusion: The present study identified the excellent bioisostere of the 1-hydroxypyrazole head group along with phenolic hydroxyl and vinyl spacer in C3 side chain on constructing quinoxalinone-based multifunctional aldose reductase inhibitors.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Antioxidantes/síntese química , Descoberta de Drogas/métodos , Inibidores Enzimáticos/síntese química , Quinoxalinas/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/química , Quinoxalinas/química , Quinoxalinas/farmacologia , Relação Estrutura-Atividade
20.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101612

RESUMO

Many aldehydes, such as furfural, are present in high quantities in lignocellulose lysates and are fermentation inhibitors, which makes biofuel production from this abundant carbon source extremely challenging. Cbei_3974 has recently been identified as an aldo-keto reductase responsible for partial furfural resistance in Clostridium beijerinckii Rational engineering of this enzyme could enhance the furfural tolerance of this organism, thereby improving biofuel yields. We report an extensive characterization of Cbei_3974 and a single-crystal X-ray structure of Cbei_3974 in complex with NADPH at a resolution of 1.75 Å. Docking studies identified residues involved in substrate binding, and an activity screen revealed the substrate tolerance of the enzyme. Hydride transfer, which is partially rate limiting under physiological conditions, occurs from the pro-R hydrogen of NADPH. Enzyme isotope labeling revealed a temperature-independent enzyme isotope effect of unity, indicating that the enzyme does not use dynamic coupling for catalysis and suggesting that the active site of the enzyme is optimally configured for catalysis with the substrate tested.IMPORTANCE Here we report the crystal structure and biophysical properties of an aldehyde reductase that can detoxify furfural, a common inhibitor of biofuel fermentation found in lignocellulose lysates. The data contained here will serve as a guide for protein engineers to develop improved enzyme variants that would impart furfural resistance to the microorganisms used in biofuel production and thus lead to enhanced biofuel yields from this sustainable resource.


Assuntos
Aldeído Redutase/química , Proteínas de Bactérias/química , Clostridium beijerinckii/química , Furaldeído/metabolismo , Aldeído Redutase/metabolismo , Proteínas de Bactérias/metabolismo , Clostridium beijerinckii/enzimologia , Inativação Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...