Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(8): 107550, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002682

RESUMO

The PKC-related kinases (PRKs, also termed PKNs) are important in cell migration, cancer, hepatitis C infection, and nutrient sensing. They belong to a group of protein kinases called AGC kinases that share common features like a C-terminal extension to the catalytic domain comprising a hydrophobic motif. PRKs are regulated by N-terminal domains, a pseudosubstrate sequence, Rho-binding domains, and a C2 domain involved in inhibition and dimerization, while Rho and lipids are activators. We investigated the allosteric regulation of PRK2 and its interaction with its upstream kinase PDK1 using a chemical biology approach. We confirmed the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF)-mediated docking interaction of PRK2 with PDK1 and showed that this interaction can be modulated allosterically. We showed that the polypeptide PIFtide and a small compound binding to the PIF-pocket of PRK2 were allosteric activators, by displacing the pseudosubstrate PKL region from the active site. In addition, a small compound binding to the PIF-pocket allosterically inhibited the catalytic activity of PRK2. Together, we confirmed the docking interaction and allostery between PRK2 and PDK1 and described an allosteric communication between the PIF-pocket and the active site of PRK2, both modulating the conformation of the ATP-binding site and the pseudosubstrate PKL-binding site. Our study highlights the allosteric modulation of the activity and the conformation of PRK2 in addition to the existence of at least two different complexes between PRK2 and its upstream kinase PDK1. Finally, the study highlights the potential for developing allosteric drugs to modulate PRK2 kinase conformations and catalytic activity.


Assuntos
Proteína Quinase C , Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Regulação Alostérica , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Domínio Catalítico , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/química , Ligação Proteica
2.
Biochem J ; 480(19): 1503-1532, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792325

RESUMO

The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling. This review presents two accepted molecular mechanisms that determine the precise and timely phosphorylation of different substrates by PDK1. The first mechanism involves the colocalization of PDK1 with Akt/PKB in the presence of PIP3. The second mechanism involves the regulated docking interaction between the hydrophobic motif (HM) of substrates and the PIF-pocket of PDK1. This interaction, in trans, is equivalent to the molecular mechanism that governs the activity of AGC kinases through their HMs intramolecularly. PDK1 has been instrumental in illustrating the bi-directional allosteric communication between the PIF-pocket and the ATP-binding site and the potential of the system for drug discovery. PDK1's interaction with substrates is not solely regulated by the substrates themselves. Recent research indicates that full-length PDK1 can adopt various conformations based on the positioning of the PH domain relative to the catalytic domain. These distinct conformations of full-length PDK1 can influence the interaction and phosphorylation of substrates. Finally, we critically discuss recent findings proposing that PIP3 can directly regulate the activity of PDK1, which contradicts extensive in vitro and in vivo studies conducted over the years.


Assuntos
Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Sítios de Ligação , Fosfatidilinositol 3-Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
3.
AoB Plants ; 15(4): plad053, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37608926

RESUMO

Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.

4.
Plant J ; 114(5): 1037-1058, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092344

RESUMO

Plant metabolism is finely orchestrated to allow the occurrence of complementary and sometimes opposite metabolic pathways. In part this is achieved by the allosteric regulation of enzymes, which has been a cornerstone of plant research for many decades. The completion of the Arabidopsis genome and the development of the associated toolkits for Arabidopsis research moved the focus of many researchers to other fields. This is reflected by the increasing number of high-throughput proteomic studies, mainly focused on post-translational modifications. However, follow-up 'classical' biochemical studies to assess the functions and upstream signaling pathways responsible for such modifications have been scarce. In this work, we review the basic concepts of allosteric regulation of enzymes involved in plant carbon metabolism, comprising photosynthesis and photorespiration, starch and sucrose synthesis, glycolysis and gluconeogenesis, the oxidative pentose phosphate pathway and the tricarboxylic acid cycle. Additionally, we revisit the latest results on the allosteric control of the enzymes involved in these pathways. To conclude, we elaborate on the current methods for studying protein-metabolite interactions, which we consider will become crucial for discoveries in the future.


Assuntos
Arabidopsis , Carbono , Carbono/metabolismo , Arabidopsis/metabolismo , Proteômica , Fotossíntese , Via de Pentose Fosfato , Processamento de Proteína Pós-Traducional
5.
Plant Mol Biol ; 108(4-5): 307-323, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35006475

RESUMO

KEY MESSAGE: This review outlines research performed in the last two decades on the structural, kinetic, regulatory and evolutionary aspects of ADP-glucose pyrophosphorylase, the regulatory enzyme for starch biosynthesis. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the pathway of glycogen and starch synthesis in bacteria and plants, respectively. Plant ADP-Glc PPase is a heterotetramer allosterically regulated by metabolites and post-translational modifications. In this review, we focus on the three-dimensional structure of the plant enzyme, the amino acids that bind the regulatory molecules, and the regions involved in transmitting the allosteric signal to the catalytic site. We provide a model for the evolution of the small and large subunits, which produce heterotetramers with distinct catalytic and regulatory properties. Additionally, we review the various post-translational modifications observed in ADP-Glc PPases from different species and tissues. Finally, we discuss the subcellular localization of the enzyme found in grain endosperm from grasses, such as maize and rice. Overall, this work brings together research performed in the last two decades to better understand the multiple mechanisms involved in the regulation of ADP-Glc PPase. The rational modification of this enzyme could improve the yield and resilience of economically important crops, which is particularly important in the current scenario of climate change and food shortage.


Assuntos
Evolução Molecular , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/fisiologia , Plantas/enzimologia , Regulação Alostérica , Glucose-1-Fosfato Adenililtransferase/genética , Modelos Moleculares , Conformação Proteica , Amido/biossíntese , Amido/química
6.
Heliyon ; 7(11): e08464, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34888425

RESUMO

The photosynthetic phosphoenolpyruvate carboxylase isozyme from C4 plants (PEPC-C4) has a complex allosteric regulation, involving positive cooperativity in binding the substrate phosphoenolpyruvate as well as positive and negative allosteric effectors. Besides the proposed R- and T-states, previous kinetic results suggested functionally relevant different R-states of the maize enzyme (ZmPEPC-C4) elicited by PEP or its two kinds of activators, glucose 6-phosphate or glycine. To detect these different R-state conformations, we used as conformational probes the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS), near-UV circular dichroism (CD) spectroscopy, and limited proteolysis by trypsin. Phosphoenolpyruvate and malate binding caused distinct concentration-dependent fluorescence changes of ZmPEPC-C4/ANS, suggesting that they elicited conformational states different from that of the free enzyme, while glucose 6-phosphate or glycine binding did not produce fluorescence changes. Differences were also observed in the near UV CD spectra of the enzyme, free or complexed with its substrate or allosteric effectors. Additionally, differences in the trypsin-digestion fragmentation patterns, as well as in the susceptibility of the free and complexed enzyme to digestion and digestion-provoked loss of activity, provided evidence of several ZmPEPC-C4 conformations in solution elicited by the substrate and the allosteric effectors. Using the already reported ZmPEPC-C4 crystal structures and bioinformatics methods, we predicted that the most probable trypsin-cleavage sites are located in superficial flexible regions, which seems relevant for the protein dynamics underlying the function and allosteric regulation of this enzyme. Together, our findings agree with previous kinetic results, shed light on this enzyme's complex allosteric regulation, and place ZmPEPC-C4 in the growing list of allosteric enzymes possessing an ensemble of closely related R-state conformations.

7.
Life Sci ; 261: 118455, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32956662

RESUMO

Diabetic nephropathy (DN) is a chronic complication of diabetes mellitus (DM) with approximately 30-40% of patients with DM developing nephropathy, and it is the leading cause of end-stage renal diseases and diabetic morbidity. The pathogenesis of DN is primarily associated with irregularities in the metabolism of glucose and lipid leading to hyperglycemia-induced oxidative stress, which has been a major target together with blood pressure regulation in the control of DN progression. However, the regulation of 5' adenosine monophosphate-activated protein kinase (AMPK), a highly conserved protein kinase for maintaining energy balance and cellular growth and repair has been implicated in the development of DM and its complications. Therefore, targeting AMPK pathway has been explored as a therapeutic strategy for the treatment of diabetes and its complication, although most of the mechanisms have not been fully elucidated. In this review, we discuss the structure of AMPK relevant to understanding its allosteric regulation and its role in the pathogenesis and progression of DN. We also identify therapeutic agents that modulate AMPK and its downstream targets with their specific mechanisms of action in the treatment of DN.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação Alostérica/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Descoberta de Drogas , Transdução de Sinais/efeitos dos fármacos , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Humanos , Terapia de Alvo Molecular
8.
Biochem J ; 476(20): 2939-2952, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31548269

RESUMO

ATP-dependent phosphoenolpyruvate carboxykinases (PEPCKs, EC 4.1.1.49) from C4 and CAM plants have been widely studied due to their crucial role in photosynthetic CO2 fixation. However, our knowledge on the structural, kinetic and regulatory properties of the enzymes from C3 species is still limited. In this work, we report the recombinant production and biochemical characterization of two PEPCKs identified in Arabidopsis thaliana: AthPEPCK1 and AthPEPCK2. We found that both enzymes exhibited high affinity for oxaloacetate and ATP, reinforcing their role as decarboxylases. We employed a high-throughput screening for putative allosteric regulators using differential scanning fluorometry and confirmed their effect on enzyme activity by performing enzyme kinetics. AthPEPCK1 and AthPEPCK2 are allosterically modulated by key intermediates of plant metabolism, namely succinate, fumarate, citrate and α-ketoglutarate. Interestingly, malate activated and glucose 6-phosphate inhibited AthPEPCK1 but had no effect on AthPEPCK2. Overall, our results demonstrate that the enzymes involved in the critical metabolic node constituted by phosphoenolpyruvate are targets of fine allosteric regulation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Ácido Cítrico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorometria/métodos , Fumaratos/metabolismo , Cinética , Malatos/metabolismo , Manganês/metabolismo , Ácido Oxaloacético/metabolismo , Fotossíntese , Ligação Proteica , Proteínas Recombinantes/metabolismo , Ácido Succínico/metabolismo , Temperatura de Transição
9.
Front Plant Sci ; 9: 1498, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459778

RESUMO

The ADP-glucose pyrophosphorylase from wheat endosperm controls starch synthesis in seeds and has unique regulatory properties compared to others from this family. It comprises two types of subunits, but despite its importance little is known about their roles. Here, we synthesized de novo the wheat endosperm ADP-glucose pyrophosphorylase small (S) and large (L) subunit genes, heterologously expressed them in Escherichia coli, and kinetically characterized the recombinant proteins. To understand their distinct roles, we co-expressed them with well characterized subunits from the potato tuber enzyme to obtain hybrids with one S subunit from one source and an L subunit from the other. After kinetic analyses of these hybrids, we concluded that the unusual insensitivity to activation of the wheat endosperm enzyme is caused by a pre-activation of the L subunit. In addition, the heat stability and sensitivity to phosphate are given by the S subunit.

10.
Biochimie ; 128-129: 209-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27591700

RESUMO

We have proposed an allosteric ATP inhibition mechanism of Pfk-2 determining the structure of different forms of the enzyme together with a kinetic enzyme analysis. Here we complement the mechanism by using hybrid oligomers of the homodimeric enzyme to get insights about the allosteric communication pathways between the same sites or different ones located in different subunits. Kinetic analysis of the hybrid enzymes indicate that homotropic interactions between allosteric sites for ATP or between substrate sites for fructose-6-P have a minor effect on the enzymatic inhibition induced by ATP. In fact, the sigmoid response for fructose-6-P observed at elevated ATP concentrations can be eliminated even though the enzymatic inhibition is still operative. Nevertheless, leverage coupling analysis supports heterotropic interactions between the allosteric ATP and fructose-6-P binding occurring between and within each subunit.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Frutosefosfatos/metabolismo , Fosfofrutoquinase-2/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Simulação por Computador , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Frutosefosfatos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Mutação , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato
11.
Front Microbiol ; 7: 830, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313571

RESUMO

Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions.

12.
Proteins ; 84(5): 580-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26850381

RESUMO

The Na(+) /Ca(2+) exchanger provides a major Ca(2+) extrusion pathway in excitable cells and plays a key role in the control of intracellular Ca(2+) concentrations. In Canis familiaris, Na(+) /Ca(2+) exchanger (NCX) activity is regulated by the binding of Ca(2+) to two cytosolic Ca(2+) -binding domains, CBD1 and CBD2, such that Ca(2+) -binding activates the exchanger. Despite its physiological importance, little is known about the exchanger's global structure, and the mechanism of allosteric Ca(2+) -regulation remains unclear. It was found previously that for NCX in the absence of Ca(2+) the two domains CBD1 and CBD2 of the cytosolic loop are flexibly linked, while after Ca(2+) -binding they adopt a rigid arrangement that is slightly tilted. A realistic model for the mechanism of the exchanger's allosteric regulation should not only address this property, but also it should explain the distinctive behavior of Drosophila melanogaster's sodium/calcium exchanger, CALX, for which Ca(2+) -binding to CBD1 inhibits Ca(2+) exchange. Here, NMR spin relaxation and residual dipolar couplings were used to show that Ca(2+) modulates CBD1 and CBD2 interdomain flexibility of CALX in an analogous way as for NCX. A mechanistic model for the allosteric Ca(2+) regulation of the Na(+) /Ca(2+) exchanger is proposed. In this model, the intracellular loop acts as an entropic spring whose strength is modulated by Ca(2+) -binding to CBD1 controlling ion transport across the plasma membrane.


Assuntos
Cálcio/metabolismo , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Cães , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA