Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783849

RESUMO

Environmental factors impact species richness differently across taxonomic groups, and understanding the geographic patterns and drivers influencing alpine plant richness remains limited. This study compiled global distribution data of 404 species of Gentiana, an alpine genus, and analyzed the relative effects of different environmental factors and several previously proposed models on the variation of Gentiana richness. By evaluating the effects of range size and regions on the relationships between Gentiana richness and environmental factors, we found that all tested environmental factors had weak effects on richness variation for all species and wide-ranging species, while habitat heterogeneity was the best predictor for narrow-ranging species. Habitat heterogeneity was the main driver of richness variation in Europe and Asia, but not in North America. The multiple regression model that included variables for energy, water, seasonality, habitat heterogeneity and past climate change had the highest explanatory power, but it still explained less than 50% of the variation in species richness for all Gentiana species at both global and regional scale, except for Europe. The limited explanatory power of environmental factors in explaining species richness patterns for all species, along with the variations observed among regions, suggest that other factors, such as evolutionary processes and biogeographic history may have also influenced the geographic patterns of Gentiana species richness. In conclusion, our results indicate a limited influence of climate factors on alpine species richness, while habitat heterogeneity, along with its impacts on speciation and dispersal, likely play significant roles in shaping the richness of alpine Gentiana species.

2.
Ecol Evol ; 14(5): e11393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38746547

RESUMO

Plants can adapt to environmental changes by adjusting their functional traits and biomass allocation. The size and number of flowers are functional traits related to plant reproduction. Life history theory predicts that there is a trade-off between flower size and number, and the trade-off can potentially explain the adaptability of plants. Elevation gradients in mountains provide a unique opportunity to test how plants will respond to climate change. In this study, we tried to better explain the adaptability of the alpine plant Gentiana lawrencei var. farreri in response to climate change. We measured the flower size and number, individual size, and reproductive allocation of G. lawrencei var. farreri during the flowering period along an elevation gradient from 3200 to 4000 m, and explored their relationships using linear mixed-effect models and the structural equation model. We found that with elevation increasing, individual size and flower number decreased and flower size increased, while reproductive allocation remained unchanged. Individual size positively affected flower number, but was not related to flower size; reproductive allocation positively affected flower size, but was not related to flower number; there is a clear trade-off between flower size and number. We also found that elevation decreased flower number indirectly via directly reducing individual size. In sum, this study suggests that G. lawrencei var. farreri can adapt to alpine environments by the synergies or trade-offs among individual size, reproductive allocation, flower size, and flower number. This study increases our understanding of the adaptation mechanisms of alpine plants to climate change in alpine environments.

3.
Appl Plant Sci ; 11(5): e11534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915437

RESUMO

Premise: Many plant communities across the world are undergoing changes due to climate change, human disturbance, and other threats. These community-level changes are often tracked with the use of permanent vegetative plots, but this approach is not always feasible. As an alternative, we propose using photogrammetry, specifically photograph-based digital surface models (DSMs) developed using structure-from-motion, to establish virtual permanent plots in plant communities where the use of permanent structures may not be possible. Methods: In 2021 and 2022, we took iPhone photographs to record species presence in 1-m2 plots distributed across alpine communities in the northeastern United States. We then compared field estimates of percent coverage with coverage estimated using DSMs. Results: Digital surface models can provide effective, minimally invasive, and permanent records of plant species presence and percent coverage, while also allowing managers to mark survey locations virtually for long-term monitoring. We found that percent coverage estimated from DSMs did not differ from field estimates for most species and substrates. Discussion: In order to continue surveying efforts in areas where permanent structures or other surveying methods are not feasible, photogrammetry and structure-from-motion methods can provide a low-cost approach that allows agencies to accurately survey and record sensitive plant communities through time.

4.
Sci Total Environ ; 894: 164980, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348712

RESUMO

Both warming and grazing already affect the reproductive phenology of alpine plants. However, their effects have mostly been studied in isolation, and their interaction is still unclear. In this study, an asymmetric warming (average + 1.2 °C during daytime and + 1.7 °C during nighttime and + 1.5 °C during summer and + 2.0 °C during winter) with moderate grazing experiment was conducted for four years to determine their individual and interactive effects on the onsets and durations of reproductive phenophases for fifteen alpine plant species on the Qinghai-Tibetan Plateau. Individual warming and grazing simultaneously advanced the average start dates and ending dates of budding, flowering and fruiting by 5.3-6.2 days, and further resulted in smaller effects on their durations for most plant species. The interactions between warming and grazing on them varied with plant species and year, which advanced by average 12.1 days for all plant species. The effects of grazing on the temperature sensitivity of the start dates of reproductive phenophases (average by -8.5 days °C-1) were greater than that of warming alone (average by -3.4 days °C-1) and warming with grazing (average by -5.5 days °C-1) for most of the alpine plant species. There were significant effects of the previous phenological events on subsequent reproductive phenophases. Therefore, our results suggested that both warming and grazing advanced reproductive phenophases through altered soil temperature and soil moisture and carry-over effects of previous phenological events on subsequent phenological events. Warming reduced the temperature sensitivity of the start dates of reproductive phenophases to grazing, suggesting that it depressed strength of selection pressure of grazing on the onsets of reproductive phenology in alpine plants.


Assuntos
Mudança Climática , Plantas , Temperatura , Estações do Ano , Solo
5.
Sci Total Environ ; 892: 164522, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37268148

RESUMO

Plant phenology is the bridge between climate change and ecosystem functions. Time coordination of interspecific and intraspecific phenology changes overlap or separate can be regarded as an important characteristic of species coexistence. To confirm the hypothesis that plant phenological niche promotes species coexistence, three key alpine plants, Kobresia humilis (sedge), Stipa purpurea (grass), and Astragalus laxmannii (forb) were investigated in this study in the Qinghai-Tibet Plateau. Phenological niches represented as the duration of green up-flowering, flowering-fruiting, and fruiting-withering by 2-day intervals for phenological dynamics of three key alpine plants from 1997 to 2016. We found the role of precipitation on regulating the phenological niches of alpine plants was highlighted in the context of climate warming. The response of the intraspecific phenological niche of the three species to temperature and precipitation is different, and the phenological niche of Kobresia humilis and Stipa purpurea was separate, especially in the green up-flowering. But the overlapping degree of interspecific phenological niche of the three species has continued to increase in the past 20 years, reducing possibility of species coexistence. Our findings have profound implications for understanding the adaptation strategies of key alpine plants to climate change in the dimension of phenological niche.


Assuntos
Carex (Planta) , Ecossistema , Mudança Climática , Plantas , Poaceae , Tibet , Temperatura , Estações do Ano
6.
Biol Lett ; 19(5): 20220560, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37161296

RESUMO

Camouflage has been reported as a defensive strategy in plants, while our understanding of the evolution of such defensive coloration is still limited. In the present study, we tested the hypothesis that camouflaged plants are shorter than non-camouflaged ones in the same habitat. Based on a species list from the subnival zone from the Hengduan Mountains, SW China and the herbarium collection, we measured the plant heights of 2915 individuals from 621 species (either camouflaged or not), with elevation information as a reference. We show that camouflaged plants were significantly shorter than non-camouflaged ones, though the effects of phylogeny and elevation were considered. Interestingly, a negative correlation between plant height and elevation was found in non-camouflaged plants, but not in camouflaged ones. These results revealed the correlation between defensive coloration and plant height. Camouflage may have evolved from shorter ancestors because they may suffer stronger selection and provide a more efficient defence.


Assuntos
Família , Humanos , China , Filogenia
7.
Mol Ecol ; 32(2): 492-503, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326301

RESUMO

Numerous high-elevation alpine plants of the Qinghai-Tibet Plateau (QTP) also have disjunct distribution in adjacent low-altitude mountains. The out-of-QTP versus into-the-QTP hypothesis of alpine plants provide strong evidence for the highly disputed assumption of the massive ice sheet developed in the central plateau during the Last Glacial Maximum (LGM). In this study, we sequenced the genomes of most known populations of Megadenia, a monospecific alpine genus of Brassicaceae distributed primarily in the QTP, though rarely found in adjacent low-elevation mountains of north China and Russia (NC-R). All sequenced samples clustered into four geographic genetic groups: one pair was in the QTP and another was in NC-R. The latter pair is nested within the former, and these findings support the out-of-QTP hypothesis. Dating the four genetic groups and niche distribution suggested that Megadenia migrated out of the QTP to adjacent regions during the LGM. The NC-R group showed a decrease in the effective population sizes. In addition, the genes with high genetic divergences in the QTP group were mainly involved in habitat adaptations during low-altitude colonization. These findings reject the hypothesis of development massive ice sheets, and support glacial survival of alpine plants within, as well as further migration out of, the QTP.


Assuntos
Brassicaceae , Tibet , Brassicaceae/genética , China , Ecossistema , Plantas , Genômica
8.
Ecol Evol ; 12(10): e9396, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36262264

RESUMO

A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.

9.
Plants (Basel) ; 11(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36235393

RESUMO

Alpine plants are exposed to demanding environmental conditions, such as high ultraviolet (UV) and photosynthetic radiation, extreme temperatures, drought, and nutrient deficiencies. Alpine plants adapt and acclimate to harsh conditions, developing several strategies, including biochemical, physiological, and optical responses. However, alpine plants' survival strategies are hardly researched due to time-consuming and complex experimental conditions, which are supported by scarce studies. Our study focused on the functional traits of the alpine plant Alchemilla monticola Opiz (hairy lady's mantle) growing at two different altitudes (1500, 2000 m a.s.l.) and two different UV exposures per altitude. Near-ambient (UV) and reduced (UV-) UV radiations were provided by using two sorts of UV absorbing filters; temperatures were monitored hourly. The experimental plots were located at Tegoska Gora, Karavanke, Slovenia. Functional traits: physiological, biochemical, and optical characteristics were recorded three times during the growing season. A. monticola showed high maximum photochemical efficiency at both altitudes throughout the season, which confirms good adaptation and acclimatization of the plant. Furthermore, significantly higher maximum photochemical efficiency at the subalpine altitude coincided with significantly higher UV absorbing compounds (UV AC) contents at the subalpine compared to the montane altitude in August. A. monticola manifested high UV AC contents throughout the season, with significantly increased synthesis of UV AC contents in the subalpine conditions in August and September. The stomatal conductance rate increased with altitude and was correlated mostly to a lower temperature. A. monticola leaves did not transmit any UV spectrum, which corresponded to high total UV AC contents. The leaf transmittance of the photosynthetic spectrum increased at the subalpine altitude, while the transmittance of the green and yellow spectra increased under the reduced UV radiation in the autumn. A. monticola's high photosynthetic spectrum transmittance at the subalpine altitude in the autumn might therefore be due to subalpine harsh environmental conditions, as well as plant ontogenetical phase.

10.
Front Plant Sci ; 13: 824461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498702

RESUMO

The altitudinal gradient is one of the driving factors leading to leaf trait variation. It is crucial to understand the response and adaptation strategies of plants to explore the variation of leaf traits and their scaling relationship along the altitudinal gradient. We measured six main leaf traits of 257 woody species at 26 altitudes ranging from 1,050 to 3,500 m within the eastern Qinghai-Tibet Plateau and analyzed the scaling relationships among leaf fresh weight, leaf dry weight, and leaf area. The results showed that leaf dry weight increased significantly with elevation, while leaf fresh weight and leaf area showed a unimodal change. Leaf dry weight and fresh weight showed an allometric relationship, and leaf fresh weight increased faster than leaf dry weight. The scaling exponent of leaf area and leaf fresh weight (or dry weight) was significantly greater than 1, indicating that there have increasing returns for pooled data. For α and normalization constants (ß), only ß of leaf area vs. leaf fresh weight (or dry weight) had significantly increased with altitude. All three paired traits had positive linear relationships between α and ß. Our findings suggest that plants adapt to altitudinal gradient by changing leaf area and biomass investment and coordinating scaling relationships among traits. But leaf traits variation had a minor effect on scaling exponent.

11.
Front Plant Sci ; 12: 582536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936123

RESUMO

The timing of germination has long been recognized as a key seedling survival strategy for plants in highly variable alpine environments. Seed dormancy and germination mechanisms are important factors that determining the timing of germination. To gain an understanding of how these mechanisms help to synchronize the germination event to the beginning of the growing season in two of the most popular Primula species (P. secundiflora and P. sikkimensis) in the Hengduan Mountains, Southwest China, we explored their seed dormancy and germination characteristics in the laboratory and their soil seed bank type in the field. Germination was first tested using fresh seeds at two alternating temperatures (15/5 and 25/15°C) and five constant temperatures (5, 10, 15, 20, and 25°C) in light and dark, and again after dry after-ripening at room temperature for 6 months. Germination tests were also conducted at a range of temperatures (5-30, 25/15, and 15/5°C) in light and dark for seeds dry cold stored at 4°C for 4 years, after which they were incubated under the above-mentioned incubation conditions after different periods (4 and 8 weeks) of cold stratification. Base temperatures (T b) and thermal times for 50% germination (θ 50) were calculated. Seeds were buried at the collection site to test persistence in the soil for 5 years. Dry storage improved germination significantly, as compared with fresh seeds, suggesting after-ripening released physiological dormancy (PD); however, it was not sufficient to break dormancy. Cold stratification released PD completely after dry storage, increasing final germination, and widening the temperature range from medium to both high and low; moreover, the T b and θ 50 for germination decreased. Fresh seeds had a light requirement for germination, facilitating formation of a persistent soil seed bank. Although the requirement reduced during treatments for dormancy release or at lower alternating temperatures (15/5°C), a high proportion of viable seeds did not germinate even after 5 years of burial, showing that the seeds of these two species could cycle back to dormancy if the conditions were unfavorable during spring. In this study, fresh seeds of the two Primula species exhibited type 3 non-deep physiological dormancy and required light for germination. After dormancy release, they had a low thermal requirement for germination control, as well as rapid seed germination in spring and at/near the soil surface from the soil seed bank. Such dormancy and germination mechanisms reflect a germination strategy of these two Primula species, adapted to the same alpine environments.

12.
AoB Plants ; 13(3): plab015, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34007436

RESUMO

Although plant species originated from Arctic regions commonly grow in alpine habitats at mid-latitudes, some populations of these species exist also in some specific habitats below the treeline. Local populations at lower elevations may have different origins, ploidy levels, mating systems and/or morphological traits from alpine populations, but comparative studies between alpine and low-elevation populations are scarce. We aimed to reveal the ecological and genetic differentiations between higher and lower populations of Vaccinium vitis-idaea in Hokkaido, northern Japan by comparing 22 populations growing in diverse environments. We analysed the ploidy level of individual populations using flow cytometry. Genetic differentiation among populations, and genetic diversity within populations were calculated using microsatellite markers. Fruit and seed production were recorded under natural conditions, and a pollination experiment was conducted to reveal the variations in mating system across populations. Furthermore, we compared shoot growth and leaf characteristics among populations. Most of the low-elevation populations were tetraploid, whereas all but one of the alpine populations were diploid. Tetraploid populations were clearly differentiated from diploid populations. Some tetraploid populations formed huge clonal patches but genetic diversity was higher in tetraploids than in diploids. Alpine diploids were self-incompatible and produced more seeds per fruit than tetraploid populations. In contrast, tetraploids showed high self-compatibility. Leaf size and foliar production were greater in tetraploid populations. Our results indicate that the genetic compositions of low-elevation tetraploid populations are different from those of alpine diploid populations. Most populations at lower elevations contained unique ecotypes suited to persistence in isolated situations. Local, low-elevation populations of typical alpine species maintain ecologically and genetically specific characteristics and could be valuable in terms of evolutionary and conservation biology. The present study demonstrates the biological importance of small and isolated populations at the edges of species distribution.

13.
Plant Biol (Stuttg) ; 23(1): 205-211, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33058499

RESUMO

Alpine rivers are, despite anthropogenic water flow regulation, still often highly dynamic ecosystems. Plant species occurring along these rivers are subject to ecological disturbance, mainly caused by seasonal flooding. Gypsophila repens typically grows at higher altitudes in the Alps, but also occurs at lower altitudes on gravel banks directly along the river and in heath forests at larger distances from the river. Populations on gravel banks are considered non-permanent and it is assumed that new individuals originate from seed periodically washed down from higher altitudes. Populations in heath forests are, in contrast, permanent and not regularly provided with seeds from higher altitudes through flooding. If the genetic structure of this plant species is strongly affected by gene flow via seed dispersal, then higher levels of genetic diversity in populations but less differentiation among populations on gravel banks than in heath forests can be expected. In this study, we analysed genetic diversity within and differentiation among 15 populations of G. repens from gravel banks and heath forests along the alpine River Isar using amplified fragment length polymorphisms (AFLP). Genetic diversity was, as assumed, slightly higher in gravel bank than in heath forest populations, but genetic differentiation was, in contrast to our expectations, comparable among populations in both habitat types. Our study provides evidence for increased genetic diversity under conditions of higher ecological disturbance and increased seed dispersal on gravel banks. Similar levels of genetic differentiation among populations in both habitat types can be attributed to the species' long lifetime, a permanent soil seed bank and gene flow by pollinators among different habitats/locations.


Assuntos
Caryophyllaceae/genética , Florestas , Variação Genética , Rios , Movimentos da Água , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados
14.
Curr Biol ; 31(2): 446-449.e4, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33220721

RESUMO

Color in nature mediates numerous among and within species interactions,1 and anthropogenic impacts have long had major influences on the color evolution of wild animals.2 An under-explored area is commercial harvesting, which in animals can exert a strong selection pressure on various traits, sometimes greater even than natural selection or other human activities.3,4 Natural populations of plants that are used by humans have likely also suffered strong pressure from harvesting, yet the potential for evolutionary change induced by humans has received surprisingly little attention.5 Here, we show that the leaf coloration of a herb used in traditional Chinese medicine (Fritillaria delavayi) varies among populations, with leaves matching their local backgrounds most closely. The degree of background matching correlates with estimates of harvest pressure, with plants being more cryptic in heavily collected populations. In a human search experiment, the time it took participants to find plants was greatly influenced by target concealment. These results point to humans as driving the evolution of camouflage in populations of this species through commercial harvesting, changing the phenotype of wild plants in an unexpected and dramatic way.


Assuntos
Mimetismo Biológico/fisiologia , Fritillaria/fisiologia , Plantas Medicinais/fisiologia , Cor , Medicina Tradicional Chinesa , Fitoterapia , Pigmentação/fisiologia , Folhas de Planta/fisiologia
15.
Plant Divers ; 42(3): 168-173, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32695949

RESUMO

Primula beesiana Forr. is an attractive wildflower endemically distributed in the wet habitats of subalpine/alpine regions of southwestern China. This study is an attempt to understand how this plant adapts to wet habitats and high altitudes. Specifically, we examined the effects of cold stratification, light, GA3, KNO3, and temperature on P. beesiana seed germination. KNO3 and GA3 increased germination percentage and germination rate compared to control treatments at 15/5 and 25/15 °C. Untreated seeds germinated well (> 80%) at higher temperatures (20, 25 and 28 °C), whereas at lower (5, 10 and 15 °C) and extremely high temperatures (30 and 32 °C) germination decreased significantly. However, after cold stratification (4-16 weeks), the germination percentage of P. beesiana seeds at low temperatures (5-15 °C) and the germination rate at high temperatures (30 °C) increased significantly, suggesting that P. beesiana has type 3 non-deep physiological dormancy. The base temperature and thermal time for germination decreased in seeds that were cold stratified for 16 weeks. Cold-stratified seeds incubated at fluctuating temperatures (especially at 15/5 °C) had significantly high germination percentages and germination rates in light, but not in dark, compared to the corresponding constant temperature (10 °C). Seeds had a strict light requirement at all temperatures, even after experiencing cold stratification; however, the combinations of cold stratification and fluctuating temperature increased germination when seeds were transferred from dark to light. Such dormancy/germination responses to light and temperature are likely mechanisms that ensure germination occurs only in spring and at/near the soil surface, thus avoiding seedling death by freezing, inundation and/or germination deep in the soil.

16.
Ecology ; 101(9): e03108, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32455489

RESUMO

Large-scale warming will alter multiple local climate factors in alpine tundra, yet very few experimental studies examine the combined yet distinct influences of earlier snowmelt, higher temperatures and altered soil moisture on alpine ecosystems. This limits our ability to predict responses to climate change by plant species and communities. To address this gap, we used infrared heaters and manual watering in a fully factorial experiment to determine the relative importance of these climate factors on plant flowering phenology, and response differences among plant functional groups. Heating advanced snowmelt and flower initiation, but exposed plants to colder early-spring conditions in the period prior to first flower, indicating that snowmelt timing, not temperature, advances flowering initiation in the alpine community. Flowering duration was largely conserved; heating did not extend average species flowering into the latter part of the growing season but instead flowering was completed earlier in heated plots. Although passive warming experiments have resulted in warming-induced soil drying suggested to advance flower senescence, supplemental water did not counteract the average species advance in flowering senescence caused by heating or extend flowering in unheated plots, and variation in soil moisture had inconsistent effects on flowering periods. Functional groups differed in sensitivity to earlier snowmelt, with flower initiation most advanced for early-season species and flowering duration lengthened only for graminoids and forbs. We conclude that earlier snowmelt, driven by increased radiative heating, is the most important factor altering alpine flowering phenology. Studies that only manipulate summer temperature will err in estimating the sensitivity of alpine flowering phenology to large-scale warming. The wholesale advance in flowering phenology with earlier snowmelt suggests that alpine communities will track warming, but only alpine forbs and graminoids appear able to take advantage of an extended snow-free season.


Assuntos
Ecossistema , Neve , Mudança Climática , Flores , Estações do Ano , Temperatura , Tundra
17.
Sci Total Environ ; 698: 133960, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493573

RESUMO

Disentangling the processes that drive plant community assembly is critical for understanding the patterns of plant diversity. We studied how different abiotic and biotic factors shape the interplay between the facets of alpine plant diversity, functional (FD), phylogenetic (PD) and taxonomic diversity (TD), in three different mountain ranges with contrasting evolutionary histories and climate conditions (Pyrenees and Mediterranean-type mountains in central Spain and Chilean Andes). We hypothesized that the causal links vary in strength and sign across regions. We used species inventories, functional trait data, and a phylogeny from 84 plant communities spread throughout three high-mountain alpine grasslands. Structural equation models were used to test our causal hypotheses on the relationships observed between the three diversity facets, and the abiotic (elevation, potential solar radiation and soil total nitrogen) and biotic factors (C-score). Despite our causal model presented a high variability in each mountain range, TD always decreased with increasing elevation (sum of direct and indirect effects). We also found some patterns suggesting that assembly processes could be climatically/biogeographically structured such as the negative relationship between FD and elevation found in Mediterranean mountains and the negative relationship between FD and TD found in both Spanish mountain ranges (independently of their different climates). A remarkable finding of this study is that ecological factors such as soil total nitrogen and elevation indirectly alter the relationships between the diversity facets. Our results suggest that diversity facets are simultaneously affected by different ecological and biogeographical/evolutionary processes, resulting in some general trends but also in parallel idiosyncratic patterns. Our findings highlight that although FD stand out by its explanatory power of community processes, TD and PD provide a complementary and necessary view that should not be disregarded in the attempt to globally explain community assembly processes.


Assuntos
Biodiversidade , Clima , Filogenia , Altitude , Chile , Mudança Climática , Ecologia , Monitoramento Ambiental , Plantas , Solo , Espanha
18.
Sci Total Environ ; 648: 754-771, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30134213

RESUMO

With 450,000 km2Kobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000-6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.

19.
Mitochondrial DNA B Resour ; 3(2): 725-727, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-33474299

RESUMO

Arabis alpina (A. alpina) is an arctic-alpine flowering plant in the family Brassicaceae, naturally growing in the tundra of arctic regions and in mountains at southern latitudes. In this study, we first report the assembly of the complete A. alpina mitochondrial (mt) genome using the next-generation sequencing technologies. The A. alpina mt circular genome is 323,159 bp in length and contains 33 protein-coding genes, 18 tRNA genes and 3 rRNA genes. To analyze the phylogenic and evolutional relationship of A. alpina, a neighbour-joining phylogenetic tree was reconstructed based on the mt genome of A. alpina and other 27 plants. The complete A. alpina mt genome will be helpful in population studies or investigations of mt functions of these alpine plant species.

20.
Sci Total Environ ; 595: 41-50, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28376427

RESUMO

Plant communities in alpine ecosystems worldwide are being altered by climate warming. In the alpine open heathland of the Bogong High Plains, Australia, warming and fire have affected the growth and phenology of plants, and have recently been found to alter soil nutrient availability. We examined the effects of nine years of passive warming by open-top chambers and nine years post-fire on (i) the soluble and extractable nutrients and toxic elements available for plant uptake in the soil and (ii) on the element composition of leaves of seven dominant sub-alpine open heathland plants. Warming increased soil C, soil C:N, and decreased soil δ13C, indicating an accumulation of soil organic matter and C sequestration. Warming increased soil δ15N, indicating increased N mineralization, which concurred with the increased availability of NH4+ (measured by ion-exchange membranes). Leaf element composition varied among the plant species in response to changes in soil element availabilities, suggesting the importance of species-specific knowledge. Warming decreased leaf N concentration and increased leaf C:N, generally in the plant community, and specifically in Asterolasia trymalioides, Carex breviculmis, Poa hiemata, and Rytidosperma nudiflorum. Warming increased soil P availability, but did not significantly affect leaf P in any species. Antecedent fire increased soil C:N, and decreased concentrations of Ca and Mg in Celmisia pugioniformis more than in the other species. The results suggest that warming and fire changed the nutrient composition of plants and increased soil C:N, which might lead to progressive N limitation in the alpine ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA