Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118663, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487454

RESUMO

Long-term exposure to ambient ozone (O3) poses a severe public health threat in China. However, the drivers of premature mortality caused by O3 pollution are still poorly constrained, despite being prerequisites for addressing the threat. Here, we demonstrate the contributions of historical and future changes in peak-season O3, population size, age structure, and baseline mortality to China's O3-related mortality using decomposition analysis. From 2013 to 2021, O3-related mortality decreased dramatically from 78.8 (40.8-124.6) to 68.7 (36.0-107.2) thousand, especially in densely populated areas with high pollution. Variations in peak-season O3, population size, age structure, and baseline mortality led to changes in O3-related mortality of +27.3 (14.8-41.3), +2.6 (1.4-4.1), +22.3 (11.5-35.2), and -40.3 (20.9-63.7) thousand, respectively. The influence of peak-season O3 on O3-related mortality shifted from positive during 2013-2019 (+8.4% per year) to negative during 2019-2021 (-8.8% per year), which highly regulated the interannual trend of mortality. From 2021 to 2035, O3-related mortality is expected to increase by 31% in the current context of peak-season O3 levels, primarily caused by increased aging. Even reducing peak-season O3 to the WHO interim target 1 (IT-1) would only reduce O3-related mortality by 3.9%, while a more rigorous standard (IT-2) would prevent 83.7% of mortality. These findings suggest that improving ambient O3 can lead to significant health benefits, but substantial mitigation strategies are merited given the future trend of population aging.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluição do Ar/análise , Mortalidade Prematura , Exposição Ambiental/análise , China/epidemiologia , Poluentes Atmosféricos/análise , Material Particulado/análise
2.
Sci Total Environ ; 654: 135-143, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439690

RESUMO

Evidence suggesting an association between ozone exposure and stroke risk remains inconsistent; variations in the distributions of susceptibilities of the study populations may explain some of it. We examined the hypothesis in a general Chinese population. During 2013-2015, 1356 first-ever stroke events were selected from a large representative sample, the China National Stroke Screening Survey (CNSSS) database; daily maximal 8-hour ozone concentrations were obtained from spatiotemporally interpolated estimates of in-situ observations over China. We conducted a time-stratified case-crossover design to assess associations between stroke risk and ambient ozone exposure. Next, potential effect modifiers were identified using interaction analyses. Final, a well-established approach was applied to estimate individual-level susceptibility (i.e., the individual-specific effect given a certain combination of multiple effect-modifiers) and its probability distribution among all the CNSSS participants (n = 1,292,010). With adjustments for temperature, relative humidity and ambient fine particulate matter exposure, a 10-µg/m3 increment in mean ozone levels 2-3 day prior to symptom onset was associated with a 3.0% change in stroke risk (95% confidence interval: -1.2%, 7.3%). This association was statistically significantly enhanced by male gender, rural residence and low vegetable and fruit consumption. The subgroup results suggested that a fraction of the population might be considerably affected by ozone, regardless of the insignificant association in average level. The analysis of susceptibility distribution further indicated that the ozone-stroke association was statistically significantly positive in 14% of the general population. Susceptibility to ozone-related stroke significantly varied among Chinese adults. Characterizing individual-level susceptibility reveals the complexity underlying the weak average effect of ozone, and supports to plan subpopulation-specific interventions to mitigate the stroke risk.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Material Particulado/análise , Acidente Vascular Cerebral/epidemiologia , Idoso , China/epidemiologia , Estudos Cross-Over , Suscetibilidade a Doenças/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA