Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.418
Filtrar
1.
ACS Sens ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985951

RESUMO

Gas sensors based on ambipolar materials offer significant advantages in reducing the size of the analytical system and enhancing its efficiency. Here, bilayer heterojunction devices are constructed using different octafluorinated phthalocyanine complexes, with Zn and Co as metal centers, combined with a lutetium bisphthalocyanine complex (LuPc2). Stable p-type behavior is observed for the ZnF8Pc/LuPc2 device under both electron-donating (NH3) and -oxidizing (NO2 and O3) gaseous species, while the CoF8Pc/LuPc2 device exhibits n-type behavior under reducing gases and p-type behavior under oxidizing gases. The nature of majority of the charge carriers of Co-based devices varies depending on the nature of target gases, displaying an ambipolar behavior. Both heterojunction devices demonstrate stable and observable response toward all three toxic gases in the sub-ppm range. Remarkably, the Co-based device is highly sensitive toward ammonia with a limit of detection (LOD) of 200 ppb, whereas the Zn-based device demonstrates exceptional sensitivity toward oxidizing gases, with excellent LOD values of 4.9 and 0.75 ppb toward NO2 and O3, respectively, which makes it one of the most effective organic heterojunction sensors reported so far for oxidizing gases.

2.
J Colloid Interface Sci ; 675: 130-138, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968633

RESUMO

Prospective photocatalytic ammonia synthesis process has received more attentions but quite challenging with the low visible light utilization and weak N2 molecule absorption ability around the photocatalysts. Herein, interface reconstruction of MXene-Ti3C2/CeO2 composites with high-concentration active sites through the carbon-doped process are presented firstly, and obvious transition zones with the three-phase reaction interface are formed in the as-prepared catalysts. The optimal co-doped sample demonstrates an excellent photo response in the visible light region, the strongest chemisorption activity and the most active sites. Moreover, much more in-situ extra oxygen defects are also produced under light irradiation. It is expected that the double decorated catalyst shows a remarked ammonia production rate of above 0.76 mmol gcal-1·h-1 under visible-light illumination and a higher apparent quantum efficiency of 1.08 % at 420 nm, which is one of the most completive properties for the photocatalytic N2 fixation at present.

3.
Chemosphere ; : 142763, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969216

RESUMO

The loss of carbon and nitrogen from broiler litter limits nutrient recycling and is damaging to the environment. This study investigated lignite, a low-rank brown coal, as an amendment to reduce the loss of carbon and nitrogen from broiler litter over 3 consecutive grow-out cycles, November 2021 to May 2022, at a commercially operated farm in Victoria, Australia. Lignite-treated litter contained significantly more carbon and nitrogen, with an increase of 70.1 g/bird and 12.6 g/bird for carbon and nitrogen, respectively. Lignite also reduced aerobic microbial respiration, with a 46.0% reduction in CO2 flux recorded in week 7 of the study, resulting in reduced mass loss. It is expected that this is a key mechanism responsible for nutrient retention in litter following treatment with lignite. Furthermore, lignite treatment lowered litter moisture content by 7, 6 and 3 percentage points for grow-out 1, 2 and 3, respectively. These findings present lignite as a beneficial litter amendment for increasing the nutrient value of waste and reducing carbon dioxide emissions. The study highlights the potential of lignite to reduce the environmental impact of poultry production and presents an alternative use for lignite as an existing resource.

4.
J Environ Manage ; 365: 121683, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963968

RESUMO

Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.

5.
Cell Host Microbe ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959900

RESUMO

The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38963227

RESUMO

The electrochemical reduction of nitrate (NO3-) ions to ammonia (NH3) provides an alternative method to eliminate harmful NO3- pollutants in water as well as to produce highly valuable NH3 chemicals. The NH3 yield rate however is still limited to the µmol h-1 cm-2 range when dealing with dilute NO3- concentrations found in waste streams. Copper (Cu) has attracted much attention because of its unique ability to effectively convert NO3- to NH3. We have reported a simple and scalable electrochemical method to produce a Cu foil having its surface covered with a porous Cu nanostructure enriched with (100) facets, which efficiently catalyzes NO3- to NH3. The Cu(100)-rich electrocatalyst showed a very high NH3 production rate of 1.1 mmol h-1 cm-2 in NO3- concentration as low as 14 mM NO3-, which is 4-5 times higher than the best-reported values. Increasing the NO3- concentration (140 mM) resulted in an NH3 production yield rate of 3.34 mmol h-1 cm-2. The durability test conducted for this catalyst foil in a flow cell system showed greater than 100 h stability with a Faradaic efficiency greater than 98%, demonstrating its potential to be used on an industrially relevant scale. Further, density functional theory (DFT) calculations have been performed to understand the better catalytic activity of Cu(100) compared to Cu(111) facets toward NO3-RR.

7.
Small ; : e2400892, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953333

RESUMO

Ammonia fuel cells using carbon-neutral ammonia as fuel are regarded as a fast, furious, and flexible next-generation carbon-free energy conversion technology, but it is limited by the kinetically sluggish ammonia oxidation reaction (AOR), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). Platinum can efficiently drive these three types of reactions, but its scale-up application is limited by its susceptibility to poisoning and high cost. In order to reduce the cost and alleviate poisoning, incorporating Pt with various metals proves to be an efficient and feasible strategy. Herein, PtFeCoNiIr/C trifunctional high-entropy alloy (HEA) catalysts are prepared with uniform mixing and ultra-small size of 2 ± 0.5 nm by Joule heating method. PtFeCoNiIr/C exhibits efficient performance in AOR (Jpeak = 139.8 A g-1 PGM), ORR (E1/2 = 0.87 V), and HER (E10 = 20.3 mV), outperforming the benchmark Pt/C, and no loss in HER performance at 100 mA cm-2 for 200 h. The almost unchanged E1/2 in the anti-poisoning test indicates its promising application in real fuel cells powered by ammonia. This work opens up a new path for the development of multi-functional electrocatalysts and also makes a big leap toward the exploration of cost-effective device configurations for novel fuel cells.

8.
Small ; : e2404249, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953366

RESUMO

The photoelectrochemical (PEC) method has the potential to be an attractive route for converting and storing solar energy as chemical bonds. In this study, a maximum NH3 production yield of 1.01 g L-1 with a solar-to-ammonia conversion efficiency of 8.17% through the photovoltaic electrocatalytic (PV-EC) nitrate (NO3 -) reduction reaction (NO3 -RR) is achieved, using silicon heterojunction solar cell technology. Additionally, the effect of tuning the operation potential of the PV-EC system and its influence on product selectivity are systematically investigated. By using this unique external resistance tuning approach in the PV-EC system, ammonia production through nitrate reduction performance from 96 to 360 mg L-1 is enhanced, a four-fold increase. Furthermore, the NH3 is extracted as NH4Cl powder using acid stripping, which is essential for storing chemical energy. This work demonstrates the possibility of tuning product selectivity in PV-EC systems, with prospects toward pilot scale on value-added product synthesis.

9.
Environ Sci Technol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953681

RESUMO

Electroreduction of nitrate (NO3RR) to ammonia in membraneless electrolyzers is of great significance for reducing the cost and saving energy consumption. However, severe chemical crossover with side reactions makes it challenging to achieve ideal electrolysis. Herein, we propose a general strategy for efficient membraneless ammonia synthesis by screening NO3RR catalysts with inferior oxygen reduction activity and matching the counter electrode (CE) with good oxygen evolution activity while blocking anodic ammonia oxidation. Consequently, screening the available Co-Co system, the membraneless NO3--to-NH3 conversion performance was significantly higher than H-type cells using costly proton-exchange membranes. At 200 mA cm-2, the full-cell voltage of the membraneless system (∼2.5 V) is 4 V lower than that of the membrane system (∼6.5 V), and the savings are 61.4 kW h (or 56.9%) per 1 kg NH3 produced. A well-designed pulse process, inducing reversible surface reconstruction that in situ generates and restores the active Co(III) species at the working electrode and forms favorable Co3O4/CoOOH at the CE, further significantly improves NO3--to-NH3 conversion and blocks side reactions. A maximum NH3 yield rate of 1500.9 µmol cm-2 h-1 was achieved at -0.9 V (Faraday efficiency 92.6%). This pulse-coupled membraneless strategy provides new insights into design complex electrochemical synthesis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38954330

RESUMO

Animal farming wastewater is one of the most important sources of ammonia nitrogen (NH4+-N) emissions. Electro-oxidation can be a viable solution for removing NH4+-N in wastewater. Compared with other treatment methods, electro-oxidation has the advantages of i) high removal efficiency, ii) smaller size of treatment facilities, and iii) complete removal of contaminant. In this study, a previously prepared DSA (W, Ti-doped IrO2) was used for electro-oxidation of synthetic mariculture and livestock wastewater. The DSA was tested for chlorine evolution reaction (CER) activity, and the reaction kinetics was investigated. CER current efficiency reaches 60-80% in mariculture wastewater and less than 20% in livestock wastewater. In the absence of NH4+-N, the generation of active chlorine follows zero-order kinetics and its consumption follows first-order kinetics, with cathodic reduction being its main consumption pathway, rather than escape or conversion to ClO3-. Cyclic voltammetry experiments show that NH4+-N in the form of NH3 can be oxidized directly on the anode surface. In addition, the generated active chlorine combines with NH4+-N at a fast rate near the anode, rather than in the bulk solution. In electrolysis experiments, the NH4+-N removal rate in synthetic mariculture wastewater (30-40 mg/L NH4+-N) and livestock wastewater (~ 450 mg/L NH4+-N) is 112.9 g NH4+-N/(m2·d) and 186.5 g NH4+-N/(m2·d), respectively, which is much more efficient than biological treatment. The specific energy consumption (SEC) in synthetic mariculture wastewater is 31.5 kWh/kg NH4+-N, comparable to other modified electro-catalysts reported in the literature. However, in synthetic livestock wastewater, the SEC is as high as 260 kWh/kg NH4+-N, mainly due to the suppression of active chlorine generation by HCO3- and the generation of NO3- as a by-product. Therefore, we conclude that electro-oxidation is suitable for mariculture wastewater treatment, but is not recommended for livestock wastewater. Electrolysis prior to urea hydrolysis may enhance the treatment efficiency in livestock wastewater.

11.
Adv Sci (Weinh) ; : e2405942, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958529

RESUMO

A novel Fe2Mo3O8/MoO2@MoS2 nanocomposite is synthesized for extremely sensitive detection of NH3 in the breath of kidney disease patients at room temperature. Compared to MoS2, α-Fe2O3/MoS2, and MoO2@MoS2, it shows the optimal gas-sensing performance by optimizing the formation of Fe2Mo3O8 at 900 °C. The annealed Fe2Mo3O8/MoO2@MoS2 nanocomposite (Fe2Mo3O8/MoO2@MoS2-900 °C) sensor demonstrates a remarkably high selectivity of NH3 with a response of 875% to 30 ppm NH3 and an ultralow detection limit of 3.7 ppb. This sensor demonstrates excellent linearity, repeatability, and long-term stability. Furthermore, it effectively differentiates between patients at varying stages of kidney disease through quantitative NH3 measurements. The sensing mechanism is elucidated through the analysis of alterations in X-ray photoelectron spectroscopy (XPS) signals, which is supported by density functional theory (DFT) calculations illustrating the NH3 adsorption and oxidation pathways and their effects on charge transfer, resulting in the conductivity change as the sensing signal. The excellent performance is mainly attributed to the heterojunction among MoS2, MoO2, and Fe2Mo3O8 and the exceptional adsorption and catalytic activity of Fe2Mo3O8/MoO2@MoS2-900 °C for NH3. This research presents a promising new material optimized for detecting NH3 in exhaled breath and a new strategy for the early diagnosis and management of kidney disease.

12.
Sci Rep ; 14(1): 15080, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956280

RESUMO

Plyometric training is characterized by high-intensity exercise which is performed in short term efforts divided into sets. The purpose of the present study was twofold: first, to investigate the effects of three distinct plyometric exercise protocols, each with varying work-to-rest ratios, on muscle fatigue and recovery using an incline-plane training machine; and second, to assess the relationship between changes in lower limb muscle strength and power and the biochemical response to the three exercise variants employed. Forty-five adult males were randomly divided into 3 groups (n = 15) performing an exercise of 60 rebounds on an incline-plane training machine. The G0 group performed continuous exercise, while the G45 and G90 groups completed 4 sets of 15 repetitions, each set lasting 45 s with 45 s rest in G45 (work-to-rest ratio of 1:1) and 90 s rest in G90 (1:2 ratio). Changes in muscle torques of knee extensors and flexors, as well as blood lactate (LA) and ammonia levels, were assessed before and every 5 min for 30 min after completing the workout. The results showed significantly higher (p < 0.001) average power across all jumps generated during intermittent compared to continuous exercise. The greatest decrease in knee extensor strength immediately post-exercise was recorded in group G0 and the least in G90. The post-exercise time course of LA changes followed a similar pattern in all groups, while the longer the interval between sets, the faster LA returned to baseline. Intermittent exercise had a more favourable effect on muscle energy metabolism and recovery than continuous exercise, and the work-to-rest ratio of 1:2 in plyometric exercises was sufficient rest time to allow the continuation of exercise in subsequent sets at similar intensity.


Assuntos
Fadiga Muscular , Força Muscular , Exercício Pliométrico , Descanso , Humanos , Masculino , Descanso/fisiologia , Fadiga Muscular/fisiologia , Adulto , Força Muscular/fisiologia , Exercício Pliométrico/métodos , Adulto Jovem , Músculo Esquelético/fisiologia , Ácido Láctico/sangue , Amônia/sangue , Exercício Físico/fisiologia
13.
J Environ Manage ; 366: 121729, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38976949

RESUMO

Forest water reclamation is a decades-old practice of repurposing municipal reclaimed water using land application on forests to filter nutrients and increase wood production. However, long-term application may lead to nutrient saturation, leaching, and potential impairment of ground and surface water quality. We studied long-term effects of reclaimed water application on nutrient leaching potential in a four-decade time series of forest water reclamation facilities in northern Idaho. Our approach compared reclaimed water treated plots with untreated control plots at each of the forest water reclamation facilities. We measured soil nitrifier abundance and net nitrification rates and used tension lysimeters to sample soil matrix water and drain gauges to sample from a combination of matrix and preferential flow paths. We determined nutrient leaching as the product of soil water nutrient concentrations and model-estimated drainage flux. There was more than 450-fold increase in nitrifier abundance and a 1000-fold increase in net nitrification rates in treated plots compared with control plots at long-established facilities, indicating greater nitrate production with increased cumulative inputs. There were no differences in soil water ammonium, phosphate, and dissolved organic nitrogen concentrations between control and effluent treatments in tension lysimeter samples. However, concurrent with increased nitrifier abundance and net nitrification, nitrate concentration below the rooting zone was 2 to 4-fold higher and nitrate leaching was 4 to 10-fold higher in effluent treated plots, particularly at facilities that have been in operation for over two decades. Thus, net nitrification and nitrifier abundance assays are likely indicators of nitrate leaching potential. Inorganic nutrient concentrations in drain gauge samples were 2 to 11-fold higher than lysimeter samples, suggesting nutrient losses occurred predominantly through preferential flow paths. Nitrate was vulnerable to leaching during the wet season under saturated flow conditions. Although nitrogen saturation is a concern that should be mitigated at long-established facilities, these forest water reclamation facilities were able to maintain average soil water nitrate concentrations to less than 2 mg L-1, so that nitrogen and phosphorous are effectively filtered to below safe water standards.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38970628

RESUMO

The need to move to more sustainable energy generation has become a major concern among world leaders due to the debilitating effect of greenhouse gases on the environment. Africa has the greatest potential to transition to more sustainable energy sources due to its enormous renewable energy resource potential, particularly solar. This study thus assessed the potential of generating power using a concentrated solar tower power plant (CSTP) at three different locations in Algeria. The study evaluated the system's technical, environmental, economic, and employment creation potential and analyzed the hydrogen and ammonia creation potential using the electricity produced by the CSTP system. Naama, Laghouat, and Ghardaia recorded annual energies of 507 GWh, 502 GWh, and 547 GWh, with capacity factors of 57.6%, 57.6%, and 62%, respectively. A real levelized cost of energy ranging between 7.72 and 8.47 cent$/kWh was obtained. A total of 8530 tons of nitrogen and 1844 tons of hydrogen will be theoretically needed to produce ammonia (fertilizer) for 500,000 hectares of arable land for agricultural activities. In addition, using hydrogen from the CSTP system to produce the estimated ammonia will save 6124.56 tons of CO2 emissions from polluting the environment annually. The creation of thousands of direct and indirect jobs will significantly benefit Algerians. The study concluded with some policy recommendations based on its findings.

15.
Food Chem ; 458: 140285, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38970956

RESUMO

Sprouting can enhance the bioavailability and stimulate the production of health-promoting compounds. This research explored the potential health benefits of wheat sprouting, focusing on underexplored areas in existing literature such as alterations in phenylalanine ammonia-lyase (PAL) activity and glutathione levels during wheat sprouting. Furthermore, special attention was directed toward asparagine (Asn), the main precursor of acrylamide formation, as regulatory agencies are actively seeking to impose limitations on the presence of acrylamide in baked products. The results demonstrate elevated levels of PAL (4.5-fold at 48 h of sprouting), antioxidants, and total phenolics (1.32 mg gallic acid equivalent/g dry matter at 72 h of sprouting), coupled with a reduction in Asn (i.e. 11-fold at 48 h of sprouting) and glutathione concentrations, after wheat sprouting. These findings suggest that sprouting can unlock health-promoting properties in wheat. Optimizing the sprouting process to harness these benefits, however, may have implications for the techno-functionality of wheat flour in food processing.

16.
Water Res ; 261: 122026, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38971078

RESUMO

This study investigated the impact of varying total ammonia nitrogen (TAN) feed levels along with water temperature decreases on the performance of nitrifying moving bed biofilm reactor (MBBR) at 1 °C and its recovery at 3 °C. Five MBBR reactors were operated with different TAN concentrations as water temperature decreased from 20 to 3 °C: reactor R1 at 30 mg N/L, reactor R2 at 20 mg N/L, reactor R3 at 15 mg N/L, reactor R4 at 10 mg N/L and reactor R5 at 0 mg N/L. The corresponding biofilm characteristics were also analyzed to understand further nitrifying MBBR under different TAN feeding scenarios. The findings revealed that the higher TAN levels were before reaching 1 °C, the better nitrification performance and the more biomass grew. However, the highest TAN concentration (30 mg N/L) might negatively affect the nitrification performance, the activity of nitrifiers, and the growth of biofilms at 1 °C because of the toxic effects of un-ionized or free ammonia (FA). It was observed that the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were affected by FA concentrations ranging from 0.2 to 0.7 mg N/L at 1 °C, but they could gradually be adapted to such inhibitory environment, with NOB recovering more quickly and robustly than AOB. The study identified 20 mg N/L (67 % of maximum influent TAN at 1 °C in R2 as the optimal TAN feeding concentration, achieving over 90 % TAN removal and a surface area removal rate (SARR) of 0.78 ± 0.02 g N/m2·d at 1 °C. Meanwhile, R2 also exhibited the highest biofilm mass, with total solids at 13.3 mg/carrier and volatile solids at 11.3 mg/carrier. As TAN was removed, nitrite accumulation was observed at 1 °C, and higher influent TAN concentrations prior to 1 °C appeared to delay the accumulation. When water temperature increased from 1 °C to 3 °C, nitrification performance improved significantly in all reactors without nitrite accumulation, and the higher TAN feeding in the previous stage led to faster recovery. Compared with 20 °C, biofilm became thinner and denser at 1 °C and 3 °C. Furthermore, this study revealed significant shifts in microbial community composition and nitrifier abundances in response to changes in water temperature and influent TAN levels. The dominant nitrifiers were identified as Nitrosomonadaceae (AOB) and Nitrospiraceae (NOB). At 1 °C, the nitrifier abundances were significantly correlated with SARRs, FA, and biofilm density. R2, which exhibited the best nitrification performance, maintained higher nitrifier abundances at 1 °C.

17.
Sci Rep ; 14(1): 15608, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971874

RESUMO

Urea used in fertilization and feed supplement, as well as a starting material for the manufacture of plastics and drugs. Urea is most commonly produced by reacting carbon dioxide with ammonia at high temperature. Photocatalysis has gained attention as a sustainable pathway for performing urea. This work focus on designing very active photocatalysts based on cerium organic framework (Ce-BTC) doped with metal oxide nanoparticles (molybdenum permanganate, Mo(MnO4)5) for production of urea from coupling of ammonia with carbon dioxide. The prepared materials were characterized using different spectral analysis and the morphology was analysed using microscopic data. The effect of catalyst loading on the production rate of urea was investigated and the obtained results showed speed rate of urea production with high production yield at low temperature. The recyclability tests confirmed the sustainability of the prepared photocatlysts (Mo(MnO4)5@Ce-BTC) which supported the beneficial of the photocatalysis process in urea production.

18.
Vet Med Sci ; 10(4): e1497, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952252

RESUMO

BACKGROUND: Annually, a massive amount of broiler litter (BL) is produced in the world, which causes soil and surface water pollution due to its high nitrogen content and microbial count. While ruminants can use this non-protein nitrogen (NPN) source for microbial protein synthesis. This issue becomes more critical when protein sources are unavailable or very expensive. One of the sources of NPN is BL which is produced at a considerable amount in the world yearly. OBJECTIVES: This aim of this research was to conduct a survey of non-thermal technologies such as electrocoagulation (EC), ultraviolet (UV) radiation, and ultrasound (US) waves on the microbial safety and nutritional value of BL samples as a protein source in ruminant diets. MATERIALS AND METHODS: The methodology of this study was based on the use of an EC device with 24 V for 60 min, UV-C light radiation (249 nm) for 1 and 10 min, and US waves with a frequency of 28 kHz for 5, 10 and 15 min to process BL samples compared with shade-dried samples. Chemical composition and nutritional values of processed samples were determined by gas production technique and measurement of fermentation parameters in vitro. RESULTS: Based on the results, microbial safety increased in the samples processed with the US (15 min). The EC method had the best performance in reducing the number of fungi and mould. However, none of the methods could remove total bacteria and fungi. Digestibility of BL was similar in shade-dried, EC, and US (10 min) treatments. In general, the use of EC and US15 without having adverse effects on gas production caused a decrease in the concentration of ammonia nitrogen. In contrast, it caused a decrease in neutral detergent fibre (NDF) in the investigated substrate. CONCLUSIONS: In general, it can be concluded that the use of US5 and EC methods without having a negative effect on the parameters of gas production and fermentation in vitro, while reducing NDF, causes a significant reduction in the microbial load, pathogens, yeast, and mould. Therefore, it is suggested to use these two methods to improve feed digestibility for other protein and feed sources.


Assuntos
Galinhas , Fermentação , Valor Nutritivo , Raios Ultravioleta , Animais , Ondas Ultrassônicas , Esterco/análise , Esterco/microbiologia
19.
Sci Total Environ ; 947: 174411, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960159

RESUMO

Agriculture receives approximately 25 % of the annual global nitrogen input, 37 % of which subsequently runs off into adjacent low-order streams and surface water, where it may contribute to high nitrification and nitrous oxide (N2O). However, the mechanisms of nitrification and the pathways controlling N2O production in agricultural streams remain unknown. Here, we report that the third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is widespread and contributes to important ammonia oxidation with low ammonia-N2O conversion in both basin- and continental-scale agricultural streams. The contribution of comammox to ammonia oxidation (21.5 ± 2.3 %) was between that of bacterial (68.6 ± 2.7 %) and archaeal (9.9 ± 1.8 %) ammonia oxidation. Interestingly, N2O production by comammox (18.5 ± 2.1 %) was higher than archaeal (10.5 ± 1.9 %) but significantly lower than bacterial (70.2 ± 2.6 %) ammonia oxidation. The first metagenome-assembled genome (MAG) of comammox bacteria from agricultural streams further revealed their potential extensive diverse and specific metabolism. Their wide habitats might be attributed to the diverse metabolism, i.e. harboring the functional gene of nitrate reduction to ammonia, while the lower N2O would be attributed to their lacking biological function to produce N2O. Our results highlight the importance of widespread comammox in agricultural streams, both for the fate of ammonia fertilizer and for climate change. However, it has not yet been routinely included in Earth system models and IPCC global assessments. Synopsis Widespread but overlooked comammox contributes to important ammonia oxidation but low N2O production, which were proved by the first comammox MAG found in agricultural streams.

20.
Bioresour Technol ; 406: 131069, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971388

RESUMO

The feasibility of inducing simultaneous nitrification and denitrification (SND) by S0 for low carbon to nitrogen (C/N) ratio wastewater remediation was investigated. Compared with S0 and/or organics absent systems (-3.4 %∼5.0 %), the higher nitrogen removal performance (18.2 %∼59.8 %) was achieved with C/N ratios and S0 dosages increasing when S0 and organics added simultaneously. The synergistic effect of S0 and organics stimulated extracellular polymeric substances secretion and weakened intermolecular binding force of S0, facilitating S0 bio-utilization and reducing the external organics requirement. It also promoted microbial metabolism (0.16 âˆ¼ 0.24 µg O2/(g VSS·h)) and ammonia assimilation (5.9 %∼20.5 %), thereby enhancing the capture of organics and providing more electron donors for SND. Furthermore, aerobic denitrifiers (15.91 %∼27.45 %) and aerobic denitrifying (napA and nirS) and ammonia assimilating genes were accumulated by this synergistic effect. This study revealed the mechanism of SND induced by coordination of S0 and organics and provided an innovative strategy for triggering efficient and stable SND.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...