Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
J Environ Manage ; 366: 121729, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38976949

RESUMO

Forest water reclamation is a decades-old practice of repurposing municipal reclaimed water using land application on forests to filter nutrients and increase wood production. However, long-term application may lead to nutrient saturation, leaching, and potential impairment of ground and surface water quality. We studied long-term effects of reclaimed water application on nutrient leaching potential in a four-decade time series of forest water reclamation facilities in northern Idaho. Our approach compared reclaimed water treated plots with untreated control plots at each of the forest water reclamation facilities. We measured soil nitrifier abundance and net nitrification rates and used tension lysimeters to sample soil matrix water and drain gauges to sample from a combination of matrix and preferential flow paths. We determined nutrient leaching as the product of soil water nutrient concentrations and model-estimated drainage flux. There was more than 450-fold increase in nitrifier abundance and a 1000-fold increase in net nitrification rates in treated plots compared with control plots at long-established facilities, indicating greater nitrate production with increased cumulative inputs. There were no differences in soil water ammonium, phosphate, and dissolved organic nitrogen concentrations between control and effluent treatments in tension lysimeter samples. However, concurrent with increased nitrifier abundance and net nitrification, nitrate concentration below the rooting zone was 2 to 4-fold higher and nitrate leaching was 4 to 10-fold higher in effluent treated plots, particularly at facilities that have been in operation for over two decades. Thus, net nitrification and nitrifier abundance assays are likely indicators of nitrate leaching potential. Inorganic nutrient concentrations in drain gauge samples were 2 to 11-fold higher than lysimeter samples, suggesting nutrient losses occurred predominantly through preferential flow paths. Nitrate was vulnerable to leaching during the wet season under saturated flow conditions. Although nitrogen saturation is a concern that should be mitigated at long-established facilities, these forest water reclamation facilities were able to maintain average soil water nitrate concentrations to less than 2 mg L-1, so that nitrogen and phosphorous are effectively filtered to below safe water standards.

2.
Water Res ; 261: 122042, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38986284

RESUMO

Minimizing sludge generation in activated sludge systems is critical to reducing the operational cost of wastewater treatment plants (WWTPs), particularly for small plants where bioenergy is not recovered. This study introduces a novel acidic activated sludge technology for in situ sludge yield reduction, leveraging acid-tolerant ammonia-oxidizing bacteria (Candidatus Nitrosoglobus). The observed sludge yield (Yobs) was calculated based on the cumulative sludge generation and COD removal during 400 d long-term operation. The acidic process achieved a low Yobs of 0.106 ± 0.004 gMLSS/gCOD at pH 4.6 to 4.8 and in situ free nitrous acid (FNA) of 1 to 3 mg/L, reducing sludge production by 58 % compared to the conventional neutral-pH system (Yobs of 0.250 ± 0.003 gMLSS/gCOD). The acidic system also maintained effective sludge settling and organic matter removal over long-term operation. Mechanism studies revealed that the acidic sludge displayed higher endogenous respiration, sludge hydrolysis rates, and higher soluble microbial products and loosely-bounded extracellular polymer substances, compared to the neutral sludge. It also selectively enriched several hydrolytic genera (e.g., Chryseobacterium, Acidovorax, and Ottowia). Those results indicate that the acidic pH and in situ FNA enhanced sludge disintegration, hydrolysis, and cryptic growth. Besides, a lower intracellular ATP content was observed for acidic sludge than neutral sludge, suggesting potential decoupling of catabolism and anabolism in the acidic sludge. These findings collectively demonstrate that the acidic activated sludge technology could significantly reduce sludge yield, contributing to more cost- and space-effective wastewater management.

3.
Water Res ; 262: 122090, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39032340

RESUMO

Ammonia monooxygenase (AMO)-mediated cometabolism of organic pollutants has been widely observed in biological nitrogen removal process. However, its molecular mechanism remains unclear, hindering its practical application. Furthermore, conventional nitrification systems encounter significant challenges such as air pollution and the loss of ammonia-oxidizing bacteria, when dealing with wastewater containing volatile organic pollutants. This study developed a nitrifying membrane-aerated biofilm reactor (MABR) to enhance the biodegradation of volatile 4-chlorophenol (4-CP). Results showed that 4-CP was primarily removed via Nitrosomonas nitrosa-mediated cometabolism in the presence of NH4+-N, supported by the increased nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) content, AMO activity and the related genes abundance. Hydroquinone, detected for the first time and produced via oxidative dechlorination, as well as 4-chlorocatechol was primary transformation products of 4-CP. Nitrosomonas nitrosa AMO structural model was constructed for the first time using homology modeling. Molecular dynamics simulation suggested that the ortho-carbon in the benzene ring of 4-CP was more prone to metabolismcompared to the ipso-carbon. Density functional theory calculation revealed that 4-CP was metabolized by AMO via H-abstraction-OH-rebound reaction, with a significantly higher rebound barrier at the ipso-carbon (16.37 kcal·mol-1) as compared to the ortho-carbon (6.7 kcal·mol-1). This study fills the knowledge gap on the molecular mechanism of AMO-mediated cometabolism of organic pollutants, providing practical and theoretical foundations for improving volatile organic pollutants removal through nitrifying MABR.

4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1242-1250, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886422

RESUMO

In this study, we used a high-throughput sequencing technology to survey the dry-wet seasonal change characteristics of soil ammonia-oxidizing bacteria (AOB) communities in the three restoration stages [i.e., Mallotus paniculatus community (early stage), Millettia leptobotrya community (middle stage), and Syzygium oblatum community (later stage)] of Xishuangbanna tropical forest ecosystems. We analyzed the effects of soil physicochemical characteristics on AOB community composition and diversity during tropical forest restoration. The results showed that tropical forest restoration significantly affected the relative abundance of dominant AOB phyla and their dry-wet seasonal variation. The maximum relative abundance of Proteobacteria (71.3%) was found in the early recovery stage, while that of Actinobacteria was found in the late recovery stage (1.0%). The abundances of Proteobacteria and Actinobacteria had the maximum ranges of dry-wet seasonal variation in the early and late stages, respectively. The abundance of dominant AOB genera and its dry-wet seasonal variation varied across tropical forest restoration stages. The maximum average relative abundance of Nitrosospira and Nitrosomonas in the late recovery stage was 66.2% and 1.5%, respectively. In contrast, the abundance of Nitrosovibrio reached its maximum (25.6%) in the early recovery stage. The maximum dry-wet seasonal variation in relative abundance of Nitrosospira and Nitrosomonas occurred in the early recovery stage, while that of Nitrosovibrio occurred in the middle recovery stage. The Chao1, Shannon, and Simpson diversity indices of AOB communities increased along the restoration stages, which were significantly higher in the wet season than in the dry season. The results of canonical correspondence analysis showed that soil easily oxidized carbon was the main factor controlling AOB community diversity and Actinobacteria abundance. Soil bulk density and temperature were the main factors affecting Proteobacteria abundance. Soil pH, microbial biomass carbon, water content, ammonium nitrogen, bulk density, and temperature were the main factors controlling the abundances of Nitrosospira, Nitrosomonas, and Nitrosovibrio. Therefore, tropical forest restoration can regulate the change of relative abundance of dominant AOB taxa via mediating the changes of soil temperature, bulk density, and readily oxidized carbon, leading to an increase in soil AOB community diversity.


Assuntos
Amônia , Bactérias , Florestas , Oxirredução , Estações do Ano , Microbiologia do Solo , Clima Tropical , Amônia/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , Proteobactérias/classificação , Proteobactérias/metabolismo , Proteobactérias/genética , China , Conservação dos Recursos Naturais , Recuperação e Remediação Ambiental/métodos , Nitrosomonas/metabolismo , Nitrosomonas/classificação , Nitrosomonas/crescimento & desenvolvimento , Floresta Úmida
5.
Water Res ; 260: 121916, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875857

RESUMO

Ammonia-oxidizing bacteria (AOB) are ubiquitous on the earth and have broad applications in bioremediation. However, the number of their species with standing in nomenclature and deposited in Microbial Culture Collections still remains low. Moreover, only a few novel species have been reported over the last decades. In this study, we sealed agar in serum bottles to develop a kind of solid agar plate with the oxygen concentration in the headspace maintained at low levels. By using these plates, eight AOB isolates including two novel species were obtained. When AOB cells were grown on the sealed solid agar plates, the time to form visible colonies was largely reduced and the maximum diameter of colonies reached 2 mm, which makes the process of AOB isolation rapid and efficient. Based on five AOB isolates, the headspace oxygen concentration had a significant influence on AOB growth either on solid plate or in liquid culture. Especially, when grown under 21 % O2, the number of colonies formed on solid agar plates was very low and sometimes no visible colony formed. Besides the application on AOB isolation, the sealed solid agar plate was also effective for the enumeration and preservation of AOB cells. When preserved under room temperature for more than ten months, the AOB colonies on the plate could still be recovered. This method provides a feasible way to isolate more novel AOB species from the environment and deposit more species in Microbial Culture Collections.

6.
Appl Microbiol Biotechnol ; 108(1): 342, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789552

RESUMO

Chemoautotrophic canonical ammonia oxidizers (ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB)) and complete ammonia oxidizers (comammox Nitrospira) are accountable for ammonia oxidation, which is a fundamental process of nitrification in terrestrial ecosystems. However, the relationship between autotrophic nitrification and the active nitrifying populations during 15N-urea incubation has not been totally clarified. The 15N-labeled DNA stable isotope probing (DNA-SIP) technique was utilized in order to study the response from the soil nitrification process and the active nitrifying populations, in both acidic and neutral paddy soils, to the application of urea. The presence of C2H2 almost completely inhibited NO3--N production, indicating that autotrophic ammonia oxidation was dominant in both paddy soils. 15N-DNA-SIP technology could effectively distinguish active nitrifying populations in both soils. The active ammonia oxidation groups in both soils were significantly different, AOA (NS (Nitrososphaerales)-Alpha, NS-Gamma, NS-Beta, NS-Delta, NS-Zeta and NT (Ca. Nitrosotaleales)-Alpha), and AOB (Nitrosospira) were functionally active in the acidic paddy soil, whereas comammox Nitrospira clade A and Nitrosospira AOB were functionally active in the neutral paddy soil. This study highlights the effective discriminative effect of 15N-DNA-SIP and niche differentiation of nitrifying populations in these paddy soils. KEY POINTS: • 15N-DNA-SIP technology could effectively distinguish active ammonia oxidizers. • Comammox Nitrospira clade A plays a lesser role than canonical ammonia oxidizers. • The active groups in the acidic and neutral paddy soils were significantly different.


Assuntos
Amônia , Archaea , Bactérias , Nitrificação , Isótopos de Nitrogênio , Oxirredução , Microbiologia do Solo , Amônia/metabolismo , Archaea/metabolismo , Archaea/classificação , Archaea/genética , Isótopos de Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Solo/química , Ureia/metabolismo , Filogenia
7.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776415

RESUMO

Evolution of a complete nitrogen (N) cycle relies on the onset of ammonia oxidation, which aerobically converts ammonia to nitrogen oxides. However, accurate estimation of the antiquity of ammonia-oxidizing bacteria (AOB) remains challenging because AOB-specific fossils are absent and bacterial fossils amenable to calibrate molecular clocks are rare. Leveraging the ancient endosymbiosis of mitochondria and plastid, as well as using state-of-the-art Bayesian sequential dating approach, we obtained a timeline of AOB evolution calibrated largely by eukaryotic fossils. We show that the first AOB evolved in marine Gammaproteobacteria (Gamma-AOB) and emerged between 2.1 and 1.9 billion years ago (Ga), thus postdating the Great Oxidation Event (GOE; 2.4 to 2.32 Ga). To reconcile the sedimentary N isotopic signatures of ammonia oxidation occurring near the GOE, we propose that ammonia oxidation likely occurred at the common ancestor of Gamma-AOB and Gammaproteobacterial methanotrophs, or the actinobacterial/verrucomicrobial methanotrophs which are known to have ammonia oxidation activities. It is also likely that nitrite was transported from the terrestrial habitats where ammonia oxidation by archaea took place. Further, we show that the Gamma-AOB predated the anaerobic ammonia-oxidizing (anammox) bacteria, implying that the emergence of anammox was constrained by the availability of dedicated ammonia oxidizers which produce nitrite to fuel anammox. Our work supports a new hypothesis that N redox cycle involving nitrogen oxides evolved rather late in the ocean.


Assuntos
Amônia , Fósseis , Oxirredução , Amônia/metabolismo , Gammaproteobacteria/metabolismo , Gammaproteobacteria/genética , Bactérias/metabolismo , Bactérias/genética , Evolução Biológica , Filogenia , Simbiose , Eucariotos/metabolismo , Eucariotos/genética , Ciclo do Nitrogênio
8.
Chemosphere ; 356: 141883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583528

RESUMO

Comammox Nitrospira and canonical ammonia-oxidizing bacteria (cAOB) generally coexist in activated sludge. In present study, the effect of comammox Nitrospira on N2O production during nitrification of activated sludge was investigated. Comammox Nitrospira and cAOB were separately enriched in two nitrifying reactors, with respective relative abundance of approximately 98% in ammonia oxidizer community. The N2O emission factor (EF) of nitrification in comammox Nitrospira dominated reactor was 0.35%, consistently lower than that (2.2%) in cAOB dominated reactor. When increasing the relative abundance of comammox Nitrospira in ammonia oxidizer community, the N2O EF of nitrification decreased exponentially, which suggested that comammox Nitrospira not only decreased N2O production directly but also might have reduced N2O yield by cAOB. When cAOB dominated the ammonia oxidizer community of sludge, decreasing pH to 6.3, lowering DO to less than 0.5 mg/L, and increasing nitrite concentration enhanced N2O EF dramatically. When comammox Nitrospira became the dominant ammonia oxidizer, however, the N2O EF correlated to nitrite insignificantly and a low DO of 0.2 mg/L and weakly acidic pH (6.3) decreased N2O EF by approximately 70% and 60%, respectively. These results imply that enhancing the relative abundance of comammox Nitrospira in sludge is an effective way to reducing N2O emissions and can also offset the promoting effects of acidic pH, low DO, and high nitrite concentration on N2O production during nitrification.


Assuntos
Amônia , Bactérias , Nitrificação , Oxirredução , Esgotos , Amônia/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Óxido Nitroso/metabolismo , Nitritos/metabolismo , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos
9.
Chemosphere ; 353: 141580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430943

RESUMO

Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.


Assuntos
Amidas , Compostos de Amônio , Pirazinas , Esgotos , Amônia/toxicidade , Amônia/metabolismo , Rios , Oxirredução , Ácido Nitroso , Biotransformação , Antivirais/toxicidade , Reatores Biológicos , Nitritos
10.
Bioresour Technol ; 399: 130637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548031

RESUMO

The discovery of Comammox bacteria (CMX) has changed our traditional concept towards nitrification, yet its role in constructed wetlands (CWs) remains unclear. This study investigated the contributions of CMX and two canonical ammonia-oxidizing microorganisms, ammonia-oxidizing bacteria (AOB) and archaea to nitrification in four regions (sediment, shoreside, adjacent soil, and water) of a typical CW using DNA-based stable isotope probing. The results revealed that CMX not only widely occurred in sediment and shoreside zones with high abundance (5.08 × 104 and 6.57 × 104 copies g-1 soil, respectively), but also actively participated in ammonia oxidation, achieving ammonia oxidation rates of 1.43 and 2.00 times that of AOB in sediment and shoreside, respectively. Phylogenetic analysis indicated that N. nitrosa was the dominant and active CMX species. These findings uncovered the crucial role of CMX in nitrification of sediment and shoreside, providing a new insight into nitrogen cycle of constructed wetlands.


Assuntos
Betaproteobacteria , Nitrificação , Amônia , Áreas Alagadas , Filogenia , Oxirredução , Microbiologia do Solo , Bactérias/genética , Archaea/genética , Solo , DNA
11.
Water Res ; 254: 121432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461606

RESUMO

Chloramination is an effective strategy for eliminating pathogens from drinking water and repressing their regrowth in water distribution systems. However, the inevitable release of NH4+ potentially promotes nitrification and associated ammonia-oxidizing bacteria (AOB) contamination. In this study, AOB (Nitrosomona eutropha) were isolated from environmental water and treated with two disinfection stages (chloramine disinfection and chloramine residues) to investigate the occurrence mechanisms of AOB in chloramination. The results showed that N. eutropha had considerable resistance to monochloramine compared to Escherichia coli, whose inactivation rate constant was 19.4-fold lower. The higher resistance was attributed to high levels of extracellular polymer substances (EPS) in AOB, which contribute to AOB surviving disinfection and entering the distribution system. In AOB response to the chloramine residues stage, the respiratory activity of N. eutropha remained at a high level after three days of continuous exposure to high chloramine residue concentrations (0.5-1.5 mg/L). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) suggested that the mechanism of N. eutropha tolerance involved a significantly high expression of the intracellular oxidative stress-regulating (sodB, txrA) and protein-related (NE1545, NE1546) genes. Additionally, this process enhanced EPS secretion and promoted biofilm formation. Adhesion predictions based on the XDLVO theory corroborated the trend of biofilm formation. Overall, the naturally higher resistance contributed to the survival of AOB in primary disinfection; the enhanced antioxidant response of surviving N. eutropha accompanied by biofilm formation was responsible for their increased resistance to the residual chloramines.


Assuntos
Água Potável , Purificação da Água , Antioxidantes , Abastecimento de Água , Purificação da Água/métodos , Cloraminas/química , Desinfecção/métodos , Biofilmes , Amônia/metabolismo
12.
Appl Environ Microbiol ; 90(3): e0007024, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38385702

RESUMO

Nitrogen availability limits the net primary productivity in alpine meadows on the Qinghai-Tibetan Plateau, which is regulated by ammonia-oxidizing microorganisms. However, little is known about the elevational patterns of soil ammonia oxidizers in alpine meadows. Here, we investigated the potential nitrification rate (PNR), abundance, and community diversity of soil ammonia-oxidizing microorganisms along the altitudinal gradient between 3,200 and 4,200 m in Qinghai-Tibetan alpine meadows. We found that both PNR and amoA gene abundance declined from 3,400 to 4,200 m but lowered at 3,200 m, possibly due to intense substrate competition and biological nitrification inhibition from grasses. The primary contributors to soil nitrification were ammonia-oxidizing archaea (AOA), and their proportionate share of soil nitrification increased with altitude in comparison to ammonia-oxidizing bacteria (AOB). The alpha diversity of AOA increased by higher temperature and plant richness at low elevations, while decreased by higher moisture and low legume biomass at middle elevations. In contrast, the alpha diversity of AOB increased along elevation. The elevational patterns of AOA and AOB communities were primarily driven by temperature, soil moisture, and vegetation. These findings suggest that elevation-induced climate changes, such as shifts in temperature and water conditions, could potentially alter the soil nitrification process in alpine meadows through changes in vegetation and soil properties, which provide new insights into how soil ammonia oxidizers respond to climate change in alpine meadows.IMPORTANCEThe importance of this study is revealing that elevational patterns and nitrification contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities were primarily driven by temperature, soil moisture, and vegetation. Compared to AOB, the relative contribution of AOA to soil nitrification increased at higher elevations. The research highlights the potential impact of elevation-induced climate change on nitrification processes in alpine meadows, mediated by alterations in vegetation and soil properties. By providing new insights into how ammonia oxidizers respond to climate change, this study contributes valuable knowledge to the field of microbial ecology and helps predict ecological responses to environmental changes in alpine meadows.


Assuntos
Bactérias , Solo , Bactérias/genética , Solo/química , Amônia , Nitrificação , Oxirredução , Microbiologia do Solo , Archaea/genética , Filogenia
13.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400564

RESUMO

Ammonia-oxidizing bacteria, key players in the nitrogen cycle, have been the focus of extensive research. Numerous novel species have been isolated and their growth dynamics were studied. Despite these efforts, controlling their growth to obtain diverse physiological findings remains a challenge. These bacteria often fail to grow, even under optimal conditions. This unpredictable growth pattern could be viewed as a survival strategy. Understanding this heterogeneous behavior could enhance our ability to culture these bacteria. In this study, the variation in the growth rate was quantified for the ammonia-oxidizing bacterium Nitrosomonas mobilis Ms1. Our findings revealed significant growth rate variation under low inoculum conditions. Interestingly, higher cell densities resulted in more stable cultures. A comparative analysis of three Nitrosomonas species showed a correlation between growth rate variation and culture failure. The greater the variation in growth rate, the higher the likelihood of culture failure.


Assuntos
Amônia , Bactérias , Oxirredução , Ciclo do Nitrogênio
14.
Environ Sci Technol ; 58(10): 4662-4669, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422482

RESUMO

Since the mass production and extensive use of chloroquine (CLQ) would lead to its inevitable discharge, wastewater treatment plants (WWTPs) might play a key role in the management of CLQ. Despite the reported functional versatility of ammonia-oxidizing bacteria (AOB) that mediate the first step for biological nitrogen removal at WWTP (i.e., partial nitrification), their potential capability to degrade CLQ remains to be discovered. Therefore, with the enriched partial nitrification sludge, a series of dedicated batch tests were performed in this study to verify the performance and mechanisms of CLQ biodegradation under the ammonium conditions of mainstream wastewater. The results showed that AOB could degrade CLQ in the presence of ammonium oxidation activity, but the capability was limited by the amount of partial nitrification sludge (∼1.1 mg/L at a mixed liquor volatile suspended solids concentration of 200 mg/L). CLQ and its biodegradation products were found to have no significant effect on the ammonium oxidation activity of AOB while the latter would promote N2O production through the AOB denitrification pathway, especially at relatively low DO levels (≤0.5 mg-O2/L). This study provided valuable insights into a more comprehensive assessment of the fate of CLQ in the context of wastewater treatment.


Assuntos
Amônia , Compostos de Amônio , Amônia/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Oxirredução , Óxido Nitroso/análise , Nitrificação , Compostos de Amônio/metabolismo
15.
Int. microbiol ; 27(1): 67-79, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-230244

RESUMO

Complete ammonia oxidation (comammox) bacteria can complete the whole nitrification process independently, which not only challenges the classical two-step nitrification theory but also updates long-held perspective of microbial ecological relationship in nitrification process. Although comammox bacteria have been found in many ecosystems in recent years, there is still a lack of research on the comammox process in rhizosphere of emergent macrophytes in lakeshore zone. Sediment samples were collected in this study from rhizosphere, far-rhizosphere, and non-rhizosphere of emergent macrophytes along the shore of Lake Liangzi, a shallow lake. The diversity of comammox bacteria and amoA gene abundance of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in these samples were measured. The results showed that comammox bacteria widely existed in the rhizosphere of emergent macrophytes and fell into clade A.1, clade A.2, and clade B, and clade A was the predominant community in all sampling sites. The abundance of comammox amoA gene (6.52 × 106–2.45 × 108 copies g−1 dry sediment) was higher than that of AOB amoA gene (6.58 × 104–3.58 × 106 copies g−1 dry sediment), and four orders of magnitude higher than that of AOA amoA gene (7.24 × 102–6.89 × 103 copies g−1 dry sediment), suggesting that the rhizosphere of emergent macrophytes is more favorable for the growth of comammox bacteria than that of AOB and AOA. Our study indicated that the comammox bacteria may play important roles in ammonia-oxidizing processes in all different rhizosphere regions.(AU)


Assuntos
Humanos , Rizosfera , Microbiologia do Solo , Amônia , Lagos/microbiologia , Archaea , Oxirredução , Microbiologia , Técnicas Microbiológicas , Ecossistema
16.
Environ Sci Technol ; 58(4): 1954-1965, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38239129

RESUMO

Partial nitritation (PN) is an important partner with anammox in the sidestream line treating high-strength wastewater and primarily contributes to nitrous oxide (N2O) emissions in such a hybrid system, which also suffers from ubiquitous microplastics because of the growing usage and disposal levels of plastics. In this study, the influences of polyvinyl chloride microplastics (PVC-MPs) on N2O-contributing pathways were experimentally revealed to fill the knowledge gap on N2O emission from the PN system under microplastics stress. The long-term results showed that the overall PN performance was hardly affected by the low-dose PVC-MPs (0.5 mg/L) while obviously deteriorated by the high dose (5 mg/L). According to the batch tests, PVC-MPs reduced biomass-specific ammonia oxidation rates (AORs) by 5.78-21.94% and stimulated aerobic N2O production by 9.22-88.36%. Further, upon increasing dissolved oxygen concentrations from 0.3 to 0.9 mg O2/L, the degree of AOR inhibition increased but that of N2O stimulation was lightened. Site preference analysis in combination with metabolic inhibitors demonstrated that the contributions of hydroxylamine oxidation and heterotrophic denitrification to N2O production at 0.3 mg O2/L were enhanced by 18.84 and 10.34%, respectively, accompanied by a corresponding decreased contribution of nitrifier denitrification. Finally, the underlying mechanisms proposed for negative influences of PVC-MPs were bisphenol A leaching and reactive oxygen species production, which led to more cell death, altered sludge properties, and reshaped microbial communities, further resulting in enhanced N2O emission. Overall, this work implied that the ubiquitous microplastics are a hidden danger that cannot be ignored in the PN system.


Assuntos
Microplásticos , Óxido Nitroso , Óxido Nitroso/análise , Plásticos , Cloreto de Polivinila/metabolismo , Desnitrificação , Eliminação de Resíduos Líquidos , Reatores Biológicos , Esgotos , Oxirredução
17.
World J Microbiol Biotechnol ; 40(2): 75, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246888

RESUMO

The waterbodies have been polluted by various natural and anthropogenic activities. The aquatic waste includes ammonia as one of the most toxic pollutants. Several biological treatment systems involving anoxic and semi anoxic bacteria have been proposed for reducing nitrogen loads from wastewater and increasing the efficiency and cost effectiveness. These bacteria play a vital role in the processes involved in the nitrogen cycle in nature. However, the enrichment, sustainability and identification of bacterial communities for wastewater treatment is an important aspect. Most of the chemolithotrophs are unculturable hence their identification and measurement of abundance remains a challenging task. In this study the different bacteria involved in total nitrogen removal from the wastewater are enriched for 700 days under anoxic condition. The synthetic wastewater containing 0.382 g/L of ammonium chloride was used. Molecular identification of the bacteria involved in various steps of the nitrogen cycle was carried out based on amplification of functional genes and 16S rRNA gene Polymerase chain reaction followed by DNA sequencing. Change in the abundance of chemolithotrophs was studied using qPCR. The mutual growth of various nitrifiers along with anaerobic bacteria were identified by molecular characterisation of DNA at various time intervals with the different genes involved in the nitrogen cycle. Nitrosomonas species like Nitrosomonas europaea were identified throughout the batch scale studies possessing the genes associated with ammonia oxidizing bacteria and nitrite oxidizing bacteria which act as a complete ammonia oxidizer. The uncultured species of Nitrospira and anammox bacteria were also observed which predicts the coexistence of the anammox and comammox bacteria in a batch scale study. The coexistence of the semi anoxic and anoxic bacteria helped in the growth of these bacteria for a longer duration of time. The nitrite produced by the comammox during nitrification can be utilized by anammox as an electron carrier. The other species of denitrifiers like Pseudomonas denitrificans and Aminobacter aminovorans were also observed. It is concluded that the enrichment of semi anoxic and anoxic bacteria was faster with the increase in growth of the bacteria involved in nitrification, comammox, anammox and partial denitrification process. The bacterial growth is enhanced and the efficiency is increased which can be further used in the development of small pilot scale bioreactor for total nitrogen removal.


Assuntos
Amônia , Águas Residuárias , Nitritos , RNA Ribossômico 16S/genética , Bactérias/genética
18.
Int Microbiol ; 27(1): 67-79, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062210

RESUMO

Complete ammonia oxidation (comammox) bacteria can complete the whole nitrification process independently, which not only challenges the classical two-step nitrification theory but also updates long-held perspective of microbial ecological relationship in nitrification process. Although comammox bacteria have been found in many ecosystems in recent years, there is still a lack of research on the comammox process in rhizosphere of emergent macrophytes in lakeshore zone. Sediment samples were collected in this study from rhizosphere, far-rhizosphere, and non-rhizosphere of emergent macrophytes along the shore of Lake Liangzi, a shallow lake. The diversity of comammox bacteria and amoA gene abundance of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in these samples were measured. The results showed that comammox bacteria widely existed in the rhizosphere of emergent macrophytes and fell into clade A.1, clade A.2, and clade B, and clade A was the predominant community in all sampling sites. The abundance of comammox amoA gene (6.52 × 106-2.45 × 108 copies g-1 dry sediment) was higher than that of AOB amoA gene (6.58 × 104-3.58 × 106 copies g-1 dry sediment), and four orders of magnitude higher than that of AOA amoA gene (7.24 × 102-6.89 × 103 copies g-1 dry sediment), suggesting that the rhizosphere of emergent macrophytes is more favorable for the growth of comammox bacteria than that of AOB and AOA. Our study indicated that the comammox bacteria may play important roles in ammonia-oxidizing processes in all different rhizosphere regions.


Assuntos
Amônia , Archaea , Archaea/genética , Rizosfera , Ecossistema , Lagos/microbiologia , Oxirredução , Filogenia , Bactérias , Microbiologia do Solo
19.
Mar Pollut Bull ; 198: 115850, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029671

RESUMO

Microbe plays an important role in the biogeochemical cycles of the coastal waters. However, comprehensive information about the microbe in the gulf waters is lacking. This study employed high-throughput sequencing and quantitative PCR (qPCR) to investigate the distribution patterns of bacterial, archaeal, ammonia-oxidizing bacterial (AOB), and archaeal (AOA) communities in Daya Bay. Community compositions and principal coordinates analysis (PCoA) exhibited significant spatial characteristics in the diversity and distributions of bacteria, archaea, AOB, and AOA. Notably, various microbial taxa (bacterial, archaeal, AOB, and AOA) exhibited significant differences in different regions, playing crucial roles in nitrogen, sulfur metabolism, and organic carbon mineralization. Canonical correlation analysis (CCA) or redundancy analysis (RDA) indicated that environmental parameters such as temperature, salinity, nitrate, total nitrogen, silicate, and phosphate strongly influenced the distributions of bacterial, archaeal, AOB, and AOA. This study deepens the understanding of the composition and ecological function of prokaryotes in the bay.


Assuntos
Amônia , Archaea , Archaea/metabolismo , Amônia/metabolismo , Baías , Oxirredução , Sedimentos Geológicos/química , Bactérias/metabolismo , China , Nitrogênio/metabolismo , Filogenia , Microbiologia do Solo
20.
Bioresour Technol ; 393: 129995, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951552

RESUMO

Heterotrophic nitrification-aerobic denitrification (HN-AD) shows innovation potential of wastewater treatment process in a single tank. However, how to enrich HN-AD bacteria in activated sludge to enhance their contribution remained unknown. This study explored the impact of the feast/famine (F/F) ratio on the succession of autotrophic ammonia oxidizing bacteria (AOB) and HN-AD bacteria in a halophilic aerobic granular sludge (HAGS) system. As the F/F ratio decreased from 1/9 to 1/15, the total inorganic nitrogen (TIN) removal performance significantly decreased. The proportion of heterotrophic bacteria was dropped from 79.0 % to 33 %. Accordingly, the relative abundance of Paracoccus decreased from 70.8 % to 25.4 %, and the copy number of the napA gene was reduced from 2.2 × 1010 copies/g HAGS to 8.1 × 109 copies/g HAGS. It found the F/F ratio regulated the population succession of autotrophic AOB and HN-AD bacteria, thereby providing a solution to achieve the enrichment of HN-AD bacteria in HAGS.


Assuntos
Betaproteobacteria , Nitrificação , Águas Residuárias , Esgotos/microbiologia , Desnitrificação , Amônia , Reatores Biológicos , Processos Heterotróficos , Bactérias/genética , Nitrogênio , Oxirredução , Aerobiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...