Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioorg Med Chem ; 103: 117695, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522346

RESUMO

Resveratrol oligomers, ranging from dimers to octamers, are formed through regioselective synthesis involving the phenoxy radical coupling of resveratrol building blocks, exhibiting remarkable therapeutic potential, including antidiabetic properties. In this study, we elucidate the mechanistic insights into the insulin secretion potential of a resveratrol dimer, (-)-Ampelopsin F (AmF), isolated from the acetone extract of Vatica chinensis L. stem bark in Pancreatic Beta-TC-6 cell lines. The AmF (50 µM) treated cells exhibited a 3.5-fold increase in insulin secretion potential as compared to unstimulated cells, which was achieved through the enhancement of mitochondrial membrane hyperpolarization, elevation of intracellular calcium concentration, and upregulation of GLUT2 and glucokinase expression in pancreatic Beta-TC-6 cell lines. Furthermore, AmF effectively inhibited the activity of DPP4, showcasing a 2.5-fold decrease compared to the control and a significant 6.5-fold reduction compared to the positive control. These findings emphasize AmF as a potential lead for the management of diabetes mellitus and point to its possible application in the next therapeutic initiatives.


Assuntos
Flavonoides , Células Secretoras de Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Resveratrol , Glucoquinase/metabolismo , Glucose/metabolismo
2.
Biomed Pharmacother ; 167: 115548, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734263

RESUMO

Luteolin, naringenin, myricetin, and ampelopsin are abundant flavonoids in nature, and several dietary supplements also contain them at very high doses. After the peroral intake, flavonoids go through extensive presystemic biotransformation; therefore, typically their sulfate/glucuronic acid conjugates reach high concentrations in the circulation. Xanthine oxidase (XO) enzyme is involved in uric acid production, and it also takes part in the elimination of certain drugs (e.g., 6-mercaptopurine). The inhibitory effects of flavonoid aglycones on XO have been widely studied; however, only limited data are available regarding their sulfate and glucuronic acid conjugates. In this study, we examined the impacts of luteolin, naringenin, myricetin, ampelopsin, and their sulfate/glucuronide derivatives on XO-catalyzed xanthine and 6-mercaptopurine oxidations employing in vitro enzyme incubation assays and molecular modeling studies. Our major results/conclusions are the following: (1) Sulfate metabolites were stronger while glucuronic acid derivatives were weaker inhibitors of XO compared to the parent flavonoids. (2) Naringenin, ampelopsin, and their metabolites were weak inhibitors of the enzyme. (3) Luteolin, myricetin, and their sulfates were highly potent inhibitors of XO, and the glucuronides of luteolin showed moderate inhibitory impacts. (4) Conjugated metabolites of luteolin and myricetin can be involved in the inhibitory effects of these flavonoids on XO enzyme.

3.
Microb Pathog ; 183: 106316, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634577

RESUMO

Staphylococcus aureus is a prevalent cause of lung infections in hospitals and communities, and can cause a wide spectrum of human infections. Due to the bottleneck caused by antibiotic resistance and substantial increases in morbidity and mortality, targeting the virulence factors released by S. aureus as an alternative prevention and treatment method has become a promising approach. Ampelopsin, a component of vine tea, has promising potential for treating S. aureus-induced acute lung injury. In this study, the effects of ampelopsin were investigated on a mouse model of acute lung injury established using S. aureus 8325-4 and the α-hemolysin (hla) silent strain DU1090. The hla silent strain did not cause mortality in mice, whereas lethal and sublethal concentrations of S. aureus 8325-4 caused high mortality. Notably, ampelopsin treatment protected against mortality stemming from S. aureus infection. Ampelopsin yielded enhancements in lung barrier function, decreased total protein leakage in the alveolar lavage fluid, and modulated inflammatory signaling pathway-related proteins, thereby reducing the release of pro-inflammatory factors and improving respiratory dysfunction. Moreover, ampelopsin prevented the upregulation of ADAM10 activity, leading to E-cadherin mucin cleavage. In conclusion, our findings establish the key role of alpha -toxin in infectious lung injury in S. aureus and provide support for ampelopsin as an effective therapeutic approach to improve lung injury.


Assuntos
Lesão Pulmonar Aguda , Staphylococcus aureus , Humanos , Animais , Camundongos , Proteínas Hemolisinas , Lesão Pulmonar Aguda/induzido quimicamente , Flavonoides
4.
Acta Pharm ; 73(1): 75-90, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692465

RESUMO

Breast cancer is one of the most common malignant tumors in women and it is the most frequently diagnosed cancer in the world. Ampelopsin (AMP) is a purified component from the root of Ampelopsis grossedentata. It is reported that AMP could significantly inhibit the proliferation of breast cancer cells. However, the antitumor mechanism against breast cancer has not yet been fully elucidated. The purpose of this work was to study the role of AMP against breast cancer MDA-MB-231 cells and to further investigate the underlying mechanism. PI3K/AKT/mTOR plays a very important role in tumor cell growth and proliferation and we hypothesize that AMP may inhibit this pathway. In the present work, the results showed that AMP could significantly inhibit the growth of breast cancer MDA-MB-231 cells in vitro and in vivo. In addition, treatment with AMP decreased the levels of PI3K, AKT and mTOR, as well as cyclin B1 expression, followed by p53/p21 pathway activation to arrest the cell cycle at G2/M. Moreover, it demonstrated a positive association between cyclin B1 and PI3K/AKT/mTOR levels. Importantly, this pathway was found to be regulated by cyclin B1 in MDA-MB-231 cells treated with AMP. Also, it was observed that cyclin B1 overexpression attenuated cell apoptosis and weakened the inhibitory effects of AMP on cell proliferation. Together, AMP could inhibit breast cancer MDA-MB-231 cell proliferation in vitro and in vivo, due to cell cycle arrest at G2/M by inactivating PI3K/AKT/mTOR pathway regulated by cyclin B1.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Células MDA-MB-231 , Ciclina B1/metabolismo , Ciclina B1/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
5.
Neurotox Res ; 41(2): 141-148, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36585544

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease associated with loss of dopaminergic neurons in the substantia nigra pars compacta. Although aging is the primary cause, environmental and genetic factors have also been implicated in its etiology. In fact, the sporadic nature of PD (i.e., unknown etiology) renders the uncovering of the exact pathogenic mechanism(s) or development of effective pharmacotherapies challenging. In search of novel neuroprotectants, we showed that butyrate (BUT), a short-chain fatty acid, protects against salsolinol (SALS)-induced toxicity in human neuroblastoma-derived SH-SY5Y cells, which are considered an in-vitro model of PD. Dihydromyricetin (DHM), a flavonoid derived from Asian medicinal plant, has also shown effectiveness against oxidative damage and neuroinflammation, hallmarks of neurodegenerative diseases. Here we show that pretreatment of SH-SY5Y cells with DHM concentration-dependently prevented SALS-induced toxicity and that a combination of DHM and BUT resulted in a synergistic protection. The effects of both DHM and BUT in turn could be completely blocked by flumazenil (FLU), a GABAA antagonist acting at benzodiazepine receptor site, and by bicuculline (BIC), a GABAA antagonist acting at orthosteric site. Beta-hydroxybutyrate (BHB), a free fatty acid 3 (FA3) receptor antagonist, also fully blocked the protective effect of DHM. BHB was shown previously to only partially block the protective effect of BUT. Thus, there are some overlaps and some distinct differences in protective mechanisms of DHM and BUT against SALS-induced toxicity. It is suggested that a combination of DHM and BUT may have therapeutic potential in PD. However, further in-vivo verifications are necessary.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Neurônios Dopaminérgicos , Linhagem Celular Tumoral , Neuroblastoma/patologia , Dopamina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácido gama-Aminobutírico
6.
Toxicol Rep ; 9: 1614-1623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561961

RESUMO

Cancer is being considered as a serious threat to human health globally due to limited availability and efficacy of therapeutics. In addition, existing chemotherapeutic drugs possess a diverse range of toxic side effects. Therefore, more research is welcomed to investigate the chemo-preventive action of plant-based metabolites. Ampelopsin (dihydromyricetin) is one among the biologically active plant-based chemicals with promising anti-cancer actions. It modulates the expression of various cellular molecules that are involved in cancer progressions. For instance, ampelopsin enhances the expression of apoptosis inducing proteins. It regulates the expression of angiogenic and metastatic proteins to inhibit tumor growth. Expression of inflammatory markers has also been found to be suppressed by ampelopsin in cancer cells. The present review article describes various anti-tumor cellular targets of ampelopsin at a single podium which will help the researchers to understand mechanistic insight of this phytochemical.

7.
J Proteome Res ; 21(6): 1428-1437, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35536659

RESUMO

Liquid chromatography coupled to mass spectrometry is a key metabolomics/metabonomics technology. Reversed-phase liquid chromatography (RPLC) is very widely used as a separation step, but typically has poor retention of highly polar metabolites. Here, we evaluated the combination of two alternative methods for improving retention of polar metabolites based on 6-aminoquinoloyl-N-hydroxysuccinidimyl carbamate derivatization for amine groups, and ion-pairing chromatography (IPC) using tributylamine as an ion-pairing agent to retain acids. We compared both of these methods to RPLC and also to each other, for targeted analysis using a triple-quadrupole mass spectrometer, applied to a library of ca. 500 polar metabolites. IPC and derivatization were complementary in terms of their coverage: combined, they improved the proportion of metabolites with good retention to 91%, compared to just 39% for RPLC alone. The combined method was assessed by analyzing a set of liver extracts from aged male and female mice that had been treated with the polyphenol compound ampelopsin. Not only were a number of significantly changed metabolites detected, but also it could be shown that there was a clear interaction between ampelopsin treatment and sex, in that the direction of metabolite change was opposite for males and females.


Assuntos
Aminas , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/métodos , Feminino , Masculino , Metaboloma , Metabolômica/métodos , Camundongos
8.
Neurotox Res ; 40(3): 892-899, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35386023

RESUMO

Toxicity induced by binge alcohol drinking, particularly in adolescent and young adults, is of major medical and social consequence. Recently, we reported that butyrate, a short chain fatty acid, can protect against ethanol (ETOH)-induced toxicity in an in vitro model. In this study, we sought to evaluate the potential effectiveness of dihydromyricetin (DHM), a natural bioactive flavonoid, alone or in combination with butyrate in the same model. Exposure of SH-SY5Y cells for 24 h to 500 mM ETOH resulted in approximately 40% reduction in cell viability, which was completely prevented by 0.1 µM DHM. Combinations of DHM and butyrate provided synergistic protection against alcohol toxicity. Whereas butyrate effect was shown to be mediated primarily through fatty acid receptor 3 activation, DHM protection appears to be mediated primarily via benzodiazepine receptor site of GABAA receptor. This is based on the finding that DHM's effect could be completely prevented by pretreatment with flumazenil, a selective antagonist at this site, but not by bicuculline, a selective antagonist at the actual GABAA receptor binding site. These findings suggest potential utility of DHM alone or in combination with butyrate against ETOH-induced toxicity.


Assuntos
Etanol , Flavonóis , Receptores de GABA-A , Butiratos , Linhagem Celular Tumoral , Etanol/toxicidade , Flavonóis/farmacologia , Humanos , Receptores de GABA-A/metabolismo
9.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163881

RESUMO

Ampelopsis grossedentata (AG) is an ancient medicinal plant that is mainly distributed and used in southwest China. It exerts therapeutic effects, such as antioxidant, anti-diabetic, and anti-inflammatory activities, reductions in blood pressure and cholesterol and hepatoprotective effects. Researchers in China recently reported the anti-obesity effects of AG extract in diet-induced obese mice and rats. To verify these findings, we herein investigated the effects of AG extract and its principal compound, ampelopsin, in high-fat diet (HFD)- and alcohol diet-fed mice, olive oil-loaded mice, and differentiated 3T3-L1 cells. The results obtained showed that AG extract and ampelopsin significantly suppressed increases in the weights of body, livers and abdominal fat and also up-regulated the expression of carnitine palmitoyltransferase 1A in HFD-fed mice. In olive oil-loaded mice, AG extract and ampelopsin significantly attenuated increases in serum triglyceride (TG) levels. In differentiated 3T3-L1 cells, AG extract and ampelopsin promoted TG decomposition, which appeared to be attributed to the expression of hormone-sensitive lipase. In alcohol diet-fed mice, AG extract and ampelopsin reduced serum levels of ethanol, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) and liver TG. An examination of metabolic enzyme expression patterns revealed that AG extract and ampelopsin mainly enhanced the expression of aldehyde dehydrogenase and suppressed that of cytochrome P450, family 2, subfamily e1. In conclusion, AG extract and ampelopsin suppressed diet-induced intestinal fat accumulation and reduced the risk of fatty liver associated with HFD and alcohol consumption.


Assuntos
Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Fígado Gorduroso Alcoólico/tratamento farmacológico , Flavonoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/farmacologia , Chá/química , Células 3T3-L1 , Adiposidade , Animais , Antioxidantes/farmacologia , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Metabolismo dos Lipídeos , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fitoterapia , Ratos , Ratos Sprague-Dawley
10.
Food Chem ; 378: 132033, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033717

RESUMO

Dihydromyricetin has shown many bioactivities in cell level. However, dihydromyricetin was found to be highly instable in cell culture medium DMEM. Here, the underlying degradation mechanism was investigated via UPLC-MS/MS analysis. Dihydromyricetin was mainly converted into its dimers and oxidized products. At lower temperature, dihydromyricetin in DMEM showed higher stability. Vitamin C increased the stability of dihydromyricetin in DMEM probably due to its high antioxidant potential.


Assuntos
Águias , Animais , Cromatografia Líquida , Meios de Cultura , Flavonóis , Espectrometria de Massas em Tandem
11.
Neurol Res ; 44(5): 403-414, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34882069

RESUMO

OBJECTIVES: In ischemic stroke, reperfusion after thrombolysis is associated with secondary brain damage. Dihydromyricetin (DHM), a flavonoid, has shown neuroprotective effects through anti-oxidant, anti-inflammatory and anti-apoptotic properties. This study investigates the potential of DHM, given postreperfusion in middle cerebral artery occlusion (MCAo) model of stroke in rats. METHODS: MCAo surgery was performed in male Wistar rats. Reperfusion was performed after 90 min of ischemia. DHM (50 and 100 mg/kg) was administered 10-15 min and 2 h postreperfusion followed by daily dosing for 2 more days. Neurobehavioral parameters and infarct size (TTC staining) were assessed after 72 h. The effective dose (100 mg/kg) was then used to study reduction in infarct size (measured by MRI) and effect on apoptosis (evaluated by protein expression of Bax, Bcl-2 and cleaved caspase-3 and TUNEL assay) in peri-infarct cortex. Furthermore, effects of DHM on neuronal damage and activation of astrocytes were studied by immunofluorescence. RESULTS: Poststroke DHM (100 mg/kg) administered for 3 days showed significant improvements in motor-coordination and infarct damage (TTC staining and MRI). MCAo-induced altered apoptotic proteins were normalized to a significant extent in peri-infarct cortex with DHM treatment. Data from TUNEL assay were complementary to the effects on apoptotic proteins. Additionally, DHM caused a significant reduction in the number of reactive astrocytes when compared with the MCAo group. DISCUSSION: This study demonstrated the efficacy of subacute DHM treatment in ischemia/reperfusion injury by modulating apoptosis and astrogliosis in the peri-infarct cortex. This suggests the potential of DHM in attenuating disease progression.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral , Modelos Animais de Doenças , Flavonóis , Gliose , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo
12.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681604

RESUMO

The present investigation aims to perceive the effect of exogenous ampelopsin treatment on salinity and heavy metal damaged soybean seedlings (Glycine max L.) in terms of physiochemical and molecular responses. Screening of numerous ampelopsin concentrations (0, 0.1, 1, 5, 10 and 25 µM) on soybean seedling growth indicated that the 1 µM concentration displayed an increase in agronomic traits. The study also determined how ampelopsin application could recover salinity and heavy metal damaged plants. Soybean seedlings were irrigated with water, 1.5% NaCl or 3 mM chosen heavy metals for 12 days. Our results showed that the application of ampelopsin raised survival of the 45-day old salinity and heavy metal stressed soybean plants. The ampelopsin treated plants sustained high chlorophyll, protein, amino acid, fatty acid, salicylic acid, sugar, antioxidant activities and proline contents, and displayed low hydrogen peroxide, lipid metabolism, and abscisic acid contents under unfavorable status. A gene expression survey revealed that ampelopsin application led to the improved expression of GmNAC109, GmFDL19, GmFAD3, GmAPX, GmWRKY12, GmWRKY142, and GmSAP16 genes, and reduced the expression of the GmERF75 gene. This study suggests irrigation with ampelopsin can alleviate plant damage and improve plant yield under stress conditions, especially those including salinity and heavy metals.


Assuntos
Flavonoides/farmacologia , Glycine max/metabolismo , Plântula/efeitos dos fármacos , Estresse Fisiológico , Ácido Abscísico/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Metais Pesados/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Cloreto de Sódio/farmacologia , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Biol Pharm Bull ; 44(11): 1738-1745, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470980

RESUMO

Ampelopsin, a flavonoid with a wide variety of biological activities, has been proposed to be a potent antitumor agent. However, the mechanism by which Ampelopsin shows anti-breast cancer activity remains unclear. Therefore, this study will explore the mechanism of Ampelopsin's anti-breast cancer activity by culturing MDA-MB-231 and MCF-7 breast cancer cells. Cell Counting Kit-8 (CCK-8) method and plate cloning method were used to detect the proliferation inhibition of breast cancer cells. Fluorescence microscopy was used to detect mitochondrial membrane potential (MMP). 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) method was used to determine the content of intracellular reactive oxygen species (ROS). Hoechst 33258 staining was used to detect the apoptotic morphological changes. Transmission electron microscope was used to observe the mitochondrial structure. Western blot was used to detect the protein expression of Bax and Bcl-2. The results showed that Ampelopsin could significantly inhibit the proliferation of breast cancer cells, and promote cells apoptosis. In addition, the occurrence of apoptosis in breast cancer cells was associated with mitochondrial dysfunction, including the loss of mitochondrial membrane potential, the production of large amounts of reactive oxygen species, and the up-regulation of Bax/Bcl-2 expression. In conclusion, Ampelopsin-induced mitochondria damage leads to loss of mitochondria membrane potential, overproduction of ROS and activation of Bax, increasing mitochondria membrane permeability and ultimately inducing breast cell apoptosis. These findings provided a new perspective on the role of Ampelopsin in breast cancer prevention and treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama , Flavonoides/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Vitaceae/química , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Flavonoides/uso terapêutico , Humanos , Células MCF-7 , Permeabilidade , Fitoterapia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
14.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34451892

RESUMO

Ampelopsin, also known as dihydromyricetin, is a commonly found flavonoid in medicinal plants. The cancer stem cell (CSC) population is a promising target for triple-negative breast cancer (TNBC). In this study, flavonoid screening was performed in the established MDA-MB-231/IR cell line, which is enriched in CSCs. Ampelopsin suppressed the proliferation and colony formation of stem cell-rich MDA-MB-231/IR, while inducing their apoptosis. Importantly, ampelopsin displayed an inhibitory impact on the stemness features of MDA-MB-231/IR cells, demonstrated by decreases in mammosphere formation, the CD44+/CD24-/low population, aldehyde dehydrogenase activity, and the levels of stem cell markers (e.g., CD44, MRP1, ß-catenin, and KLF4). Ampelopsin also suppressed the epithelial-mesenchymal transition, as evidenced by decreases in migration, invasion capacity, and mesenchymal markers, as well as an increase in the epithelial marker E-cadherin. Moreover, ampelopsin significantly impaired oxidative phosphorylation by reducing the oxygen consumption rate and adenosine triphosphate production in MDA-MB-231/IR cells. Notably, ampelopsin treatment significantly reduced the levels of the phosphorylated forms of IκBα and NF-κB p65, as well as the levels of tumor necrosis factor (TNF)-α-stimulated phosphorylation of IκBα and NF-κB p65. These results demonstrated that ampelopsin prevents the TNF-α/NF-κB signaling axis in breast CSCs.

15.
Antioxidants (Basel) ; 10(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073796

RESUMO

Neurodegenerative diseases are characterized by the progressive degeneration of the function of the central nervous system or peripheral nervous system and the decline of cognition and memory abilities. The dysfunctions of the cognitive and memory battery are closely related to inhibitions of neurotrophic factor (BDNF) and brain-derived cAMP response element-binding protein (CREB) to associate with the cholinergic system and long-term potentiation. Vitis vinifera, the common grapevine, is viewed as the important dietary source of stilbenoids, particularly the widely-studied monomeric resveratrol to be used as a natural compound with wide-ranging therapeutic benefits on neurodegenerative diseases. Here we found that ampelopsin A is a major compound in V. vinifera and it has neuroprotective effects on experimental animals. Bath application of ampelopsin A (10 ng/µL) restores the long-term potentiation (LTP) impairment induced by scopolamine (100 µM) in hippocampal CA3-CA1 synapses. Based on these results, we administered the ampelopsin A (10 ng/µL, three times a week) into the third ventricle of the brain in C57BL/6 mice for a month. Chronic administration of ampelopsin A into the brain ameliorated cognitive memory-behaviors in mice given scopolamine (0.8 mg/kg, i.p.). Studies of mice's hippocampi showed that the response of ampelopsin A was responsible for the restoration of the cholinergic deficits and molecular signal cascades via BDNF/CREB pathways. In conclusion, the central administration of ampelopsin A contributes to increasing neurocognitive and neuroprotective effects on intrinsic neuronal excitability and behaviors, partly through elevated BDNF/CREB-related signaling.

16.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924032

RESUMO

Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Células K562 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
J Agric Food Chem ; 68(40): 11197-11206, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32910657

RESUMO

Authentic standards of food flavonoids are important for human metabolic studies. Their isolation from biological materials is impracticable; however, they can be prepared in vitro. Twelve sulfated metabolites of luteolin, myricetin, and ampelopsin were obtained with arylsulfotransferase from Desulfitobacterium hafniense and fully characterized by high-performance liquid chromatography, MS, and NMR. The compounds were tested for their ability to scavenge 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), and N,N-dimethyl-p-phenylenediamine radicals, to reduce ferric ions and Folin-Ciocalteu reagent, and to inhibit tert-butyl hydroperoxide-induced lipid peroxidation of rat liver microsomes. The activity differed considerably even between monosulfate isomers. The parent compounds and myricetin-3'-O-sulfate were the most active while other compounds displayed significantly lower activity, particularly luteolin sulfates. No mutagenic activity of the parent compounds and their main metabolites was observed; only myricetin showed minor pro-mutagenicity. The prepared sulfated metabolites are now available as authentic standards for future in vitro and in vivo metabolic studies.


Assuntos
Arilsulfotransferase/química , Proteínas de Bactérias/química , Desulfitobacterium/enzimologia , Flavonoides/química , Luteolina/química , Sulfatos/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Biocatálise , Fenômenos Biofísicos , Flavonoides/metabolismo , Flavonoides/farmacologia , Isomerismo , Peroxidação de Lipídeos/efeitos dos fármacos , Luteolina/metabolismo , Luteolina/farmacologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Sulfatos/metabolismo
18.
Bioorg Chem ; 99: 103869, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32335358

RESUMO

Investigation of components of the chloroform-soluble and ethyl acetate-soluble extracts of the aerial parts of Chromolaena odorata L. selected by PCSK9 mRNA expression monitoring assay in HepG2 cells led to the isolation of a new stilbene dimer, (+)-8b-epi-ampelopsin A (1), and 30 known compounds (2-31). The structures of the isolates were established by interpretation of NMR spectroscopic data and the stereochemistry of the new stilbene (1) was proposed based on ECD and NMR calculations. Among the isolates, 1, 5,6,7,4'-tetramethoxyflavanone (6), 5,6,7,3',4'-pentamethoxyflavanone (7), acacetin (18), and uridine (21) were found to inhibit PCSK9 mRNA expression with IC50 values of 20.6, 21.4, 31.7, 15.0, and 13.7 µM, respectively. Furthermore, the most abundant isolate among the selected compounds, 6, suppressed PCSK9 and low-density lipoprotein receptor protein expression in addition to downregulating the mRNA expression of HNF-1α.


Assuntos
Chromolaena/química , Flavonoides/farmacologia , Inibidores de PCSK9 , Inibidores de Serina Proteinase/farmacologia , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/isolamento & purificação , Células Hep G2 , Humanos , Estrutura Molecular , Componentes Aéreos da Planta/química , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Phytother Res ; 34(8): 2044-2052, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32155298

RESUMO

Oxidative stress plays an important role in diabetic nephropathy (DN), which is a diabetic complication. Ampelopsin (AMP) is a natural flavonoid that has been found to possess antidiabetic and antioxidative activities. However, the effect of AMP on DN remains unclear. In this study, we aimed to evaluate the protective effect of AMP on glomerular mesangial cells (MCs) exposed to high glucose (HG). We found that AMP improved HG-caused cell viability reduction in MCs. AMP significantly suppressed the intracellular ROS production and expression levels of ROS producing enzymes NADPH oxidase 2 (NOX2) and NOX4. Increased of NOX activity in HG-stimulated MCs was suppressed by AMP. Pretreatment with AMP inhibited extracellular matrix (ECM) accumulation in HG-stimulated MCs with decreased expression levels of fibronectin (FN) and collagen type IV (Col IV). Furthermore, AMP elevated the expression levels of nuclear Nrf2 and heme oxygenase-1 (HO-1), as well as increased the mRNA levels of Nrf2-driven genes NAD(P)H dehydrogenase quinone-1 (NQO-1) and HO-1 in HG-treated MCs. Knockdown of Nrf2 reversed the protective effects of AMP against HG-induced oxidative stress and EMC accumulation in MCs. In conclusion, these findings indicated that AMP protected MCs from HG-induced oxidative damage and ECM accumulation, which might be mediated by Nrf2/HO-1 pathway.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Matriz Extracelular/efeitos dos fármacos , Flavonoides/uso terapêutico , Glucose/metabolismo , Células Mesangiais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Nefropatias Diabéticas/patologia , Flavonoides/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo
20.
Genes Genomics ; 42(4): 361-369, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31902108

RESUMO

BACKGROUND: Cancer-induced bone pain (CIBP) is the pain caused by bone metastasis from malignant tumors, and the largest source of pain for cancer patients. miR-300 is an important miRNA in cancer. It has been shown that miR-300 regulates tumorigenesis of various tumors. PURPOSE: This study aims to investigate the role of miR-300 in CIBP and its underlying molecular mechanisms in vitro and in vivo. METHODS: We constructed CIBP model in rats and investigated the mechanism through which miR-300 affects CIBP. We first examined expression level of miR-300 in CIBP rats and then tested the effect of its overexpression. Next, we identified the target of miR-300 using TargetScan analysis and double luciferase assay. Finally, we studied genetic interactions between miR-300 and its target and their roles in CIBP. RESULTS: We found that miR-300 was downregulated in CIBP rats. Overexpression of miR-300 significantly attenuated cancer-induced neuropathic pain (p < 0.01). Furthermore, TargetScan analysis and double luciferase assay show High Mobility Group Box 1 (HMGB1) is a target of miR-300. Notably, HMGB1 is overexpressed in CIBP rats, while up-regulation of miR-300 significantly suppresses expression of HMGB1 (p < 0.01). Moreover, knockdown of HMGB1 by siRNA significantly relieves cancer-induced neuropathic pain in rats (p < 0.01). On the other hand, HMGB1 overexpression partially blocked the effect of miR-300 on cancer-induced nerve pain. CONCLUSION: miR-300 relieves cancer-induced neuropathic pain by inhibiting HMGB1 expression. These results may be beneficial for the treatment of CIBP in clinical practice.


Assuntos
Anestésicos Inalatórios/toxicidade , Flavonoides/uso terapêutico , NF-kappa B/metabolismo , Complicações Cognitivas Pós-Operatórias/tratamento farmacológico , Sevoflurano/toxicidade , Animais , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , Complicações Cognitivas Pós-Operatórias/etiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...