Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Talanta ; 281: 126855, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265420

RESUMO

A novel ionophore-based fluorescent nanosensor has been successfully fabricated for the sensitive and selective detection of Cu2+ ions. The nanosensor was constructed through self-assembly of amphiphilic block copolymers, incorporating elesclomol as a Cu2+ ionophore and long-chain dialkylcarbocyanines (DiD) as a fluorescent dye. This design exhibits an "ON/OFF" fluorescence response, where Cu2⁺ ions are selectively sequestered within the nanosensors, resulting in fluorescence quenching of DiD. This strategy enables rapid and highly selective Cu2⁺ sensing with remarkable fluorescence quenching efficiency (up to 93.5 %) and an exceptionally low detection limit of 28.6 nM. The linear detection range extends over two orders of magnitude (0.05-10 µM). Furthermore, the feasibility of this nanosensor for practical applications was confirmed through successful determination of Cu2+ in real water and beer samples, with excellent recovery rates. This nanosensor offers advantages of simplicity, rapidity, and cost-effectiveness, holding significant potential for sensitive and selective Cu2+ detection in various biological and environmental samples.

2.
Macromol Rapid Commun ; 45(12): e2400097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499007

RESUMO

Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage. The authors explore the synthesis and aqueous micellization of well-defined poly(ethylene glycol)-based block copolymer bearing BzAA linkage covalently attached to a polymethacrylate block for the formation of colloidally-stable nanoassemblies with BzAA groups at core/corona interfaces. Promisingly, the investigation on acid-catalyzed hydrolysis and disassembly shows that the formed nanoassemblies meet the criteria for acid-degradable shell-sheddable nanoassemblies: slow degradation at tumoral pH = 6.5 and rapid disassembly at endo/lysosomal pH = 5.0, while colloidal stability at physiological pH = 7.4. This work guides the design principle of acid-degradable shell-sheddable nanoassemblies bearing BzAA at interfaces, thus offering the promise to address the PEG dilemma and improve endocytosis in tumor-targeting drug delivery.


Assuntos
Acetais , Benzaldeídos , Acetais/química , Benzaldeídos/química , Concentração de Íons de Hidrogênio , Hidrólise , Polímeros/química , Polímeros/síntese química , Polietilenoglicóis/química , Humanos , Estrutura Molecular , Portadores de Fármacos/química , Portadores de Fármacos/síntese química
3.
ACS Appl Mater Interfaces ; 16(10): 13291-13304, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422470

RESUMO

Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.

4.
Materials (Basel) ; 17(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255498

RESUMO

Amphiphilic block copolymers-based aqueous color inks show great potential in the field of visual communication design. However, the conventional step-by-step chemistry employed to synthesize the amphiphilic block copolymers is intricate, with low yield and high economic and environmental costs. In this work, we present a novel method for preparing an amphiphilic AB di-block copolymer of PCL-b-PAA by employing a combined polymerization strategy that involves both cationic ring-opening polymerization (ROP) of the ε-caprolactone monomer and the reversible addition-fragmentation chain-transfer (RAFT) polymerization on the acrylic acid monomer simultaneously. The corresponding polycaprolactone (PCL) and polyacrylic acid (PAA) serve as the hydrophobic and hydrophilic units, respectively. The effectiveness of the amphiphilic AB di-block copolymer as the polymeric pigment dispersant for water-based color inks is evaluated. The amphiphilic AB di-block copolymer of PCL-b-PAA exhibits a molecular weight of 1400 g mol-1, which is consistent with the theoretical value and suitable for polymeric dispersant application. The high surface excess (Γmax) of the PCL-b-PAA in water indicates a densely packed molecular morphology at the water/air interface. Additionally, micelles can be stably formed in the aqueous PCL-b-PAA solution at very low concentrations by demonstrating a low CMC value of 10-4 wt% and a micelle dimension of approximately 30 nm. The model ink dispersion is prepared using organic dyes (Disperse Yellow 232) and the amphiphilic block copolymer of PCL-b-PAA. The dispersion demonstrates near-Newtonian behavior, which is highly favorable for the application as inkjet ink. Furthermore, the ink dispersion displays a low viscosity, making it particularly suitable for visual communication design and printing purposes. Moreover, the ink dispersion demonstrates an unimodal distribution of the particle size, with an average diameter of approximately 500 nm. It retains exceptional stability of dispersion and even conducts a thermal aging treatment at 60 °C for 5 days. This work presents a facile and efficient synthetic strategy and molecular design of AB di-block copolymer-based dispersants for dye dispersions.

5.
Colloids Surf B Biointerfaces ; 220: 112884, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209550

RESUMO

The design of drug delivery systems (DDS) for the encapsulation of therapeutic agents and the controlled release to the target site of the disease is one of the main goals of nanomedicine. Although already explored in an extensive number of studies over the years, lipid assemblies, and particularly liposomes, are still considered the most promising and interesting candidates as DDS due to their biocompatibility and structural similarity with plasma membranes. Lately, this research area has been extended to include more complex lipid assemblies, such as cubosomes. Cubosomes are an emerging structural platform for the delivery of molecules with pharmaceutical interest, such as drugs, bioactives and contrast agents. Here we report on the application of a thermo-responsive copolymer poly(N,N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a thermoresponsive stabilizer of lipid-based nanoparticles for drug-delivery. First, we assessed the affinity of PDMA-b-PNIPAM towards supported and free-standing bilayers; then, we explored the colloidal and thermoresponsive properties of cubic self-assembled DDS composed of glycerol-monooleate (GMO), where PDMA-b-PNIPAM replaces the conventional stabilizer Pluronic F127 (PEOx-PPOy-PEOx), normally used for cubosomes. We prepared dispersions of cubic lipid nanoparticles with two PDMA-b-PNIPAM block copolymers of different molar mass. The colloidal properties were then assessed and compared to those exhibited by standard lipid cubic dispersions stabilized by Pluronic F-127, combining a series of experimental techniques (Quartz Crystal Microbalance with Dissipation monitoring, Dynamic Light Scattering, Small-Angle X-rays Scattering, Cryo-Transmission Electron Microscopy). Interestingly, PDMA-b-PNIPAM stabilized cubosomes display additional benefits with respect to those stabilized by Pluronic, thanks to the combination of a "sponge " effect for the controlled release of encapsulated molecules and an increased affinity towards lipid bilayer membranes, which is a promising feature to maximize fusion with the target-cellular site.


Assuntos
Lipossomos , Nanopartículas , Preparações de Ação Retardada , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Polímeros , Poloxâmero/química , Excipientes
6.
Angew Chem Int Ed Engl ; 61(40): e202210619, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35972462

RESUMO

Low mass-transfer efficiency and reaction-driving force make it difficult to realize thorough purification in traditional low-concentration pollutant treatments. Herein, we propose an "adsorption/catalysis in situ" perylene based bifunctional micelle for efficient, accurate and rapid adsorption and catalytic degradation of low-concentration bisphenol A (BPA). They show super-fast (within 10 s), high capacity (448 mg g-1 ) and selectivity for BPA adsorption, due to π-π, hydrophobic interactions and hydrogen bonding. The BPA degradation efficiency improves by up to 8 times after forming micelles compared with simple perylene nanorods, which is primarily due to the superior mass-transfer from adsorption. Moreover, self-assembly can optimize the stacking of the perylene moieties and facilitate charge transfer in micelle, and the regular π-π stacking of inside perylene units enhances the response to visible light, resulting in high catalytic capacity and good cycling stability.

7.
J Colloid Interface Sci ; 617: 764-777, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35325653

RESUMO

HYPOTHESIS: The surface mechanical properties of poly(styrene)-poly(ethylene glycol) (PS-PEG) micelles are influenced by the PEG corona structure. Changes in micelle aggregation number as well as changes in the PEG end group and linking group chemistry of the PS-PEG block copolymer are expected to alter PEG corona characteristics and therefore affect surface mechanical properties of the resulting micelle film. EXPERIMENTS: Different sized micelles comprised of PS-PEG block copolymer chains were formulated by equilibrating micelles in different ratios of acetone/water mixtures and subsequently removing acetone using dialysis. Additionally, micelles of a similar size and PS-PEG molecular weight but slightly different chemistry were formulated. The micelles were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), 1H NMR, surface pressure-area isotherms and Brewster angle microscopy (BAM). FINDINGS: The reduction in micelle aggregation number results in the subsequent monolayer having higher compressibility moduli and bending stiffnesses and collapsing at lower surface pressures. Micelle hydrophobicity was shown to improve readsorption of micelles to interface after collapse. Analysis of Brewster angle microscopy images of out-of-plane wrinkle structures which formed upon monolayer collapse indicates the presence of continuous 1 nm thick PEG layer which allows micelle monolayers to bend under high compression.

8.
Polymers (Basel) ; 14(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054658

RESUMO

In this study, a novel polystyrene-block-quaternized polyisoprene amphipathic block copolymer (PS-b-PIN) is derived from anionic polymerization. Quaternized polymers are prepared through post-quaternization on a functionalized polymer side chain. Moreover, the antibacterial activity of quaternized polymers without red blood cell (RBCs) hemolysis can be controlled by block composition, side chain length, and polymer morphology. The solvent environment is highly related to the polymer morphology, forming micelles or other structures. The polymersome formation would decrease the hemolysis and increase the electron density or quaternized groups density as previous research and our experiment revealed. Herein, the PS-b-PIN with N,N-dimethyldodecylamine as side chain would form a polymersome structure in the aqueous solution to display the best inhibiting bacterial growth efficiency without hemolytic effect. Therefore, the different single-chain quaternized groups play an important role in the antibacterial action, and act as a controllable factor.

9.
ACS Appl Mater Interfaces ; 13(46): 54739-54752, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752058

RESUMO

Boron neutron capture therapy (BNCT) is an encouraging therapeutic modality for cancer treatment. Prostate-specific membrane antigen (PSMA) is a cell membrane protein that is abundantly overexpressed in prostate cancer and can be targeted with radioligand therapies to stimulate clinical responses in patients. In principle, a spatially targeted neutron beam together with specifically targeted PSMA ligands could enable prostate cancer-targeted BNCT. Thus, we developed and tested PSMA-targeted poly(lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) loaded with carborane and tethered to the radiometal chelator deferoxamine B (DFB) for simultaneous positron emission tomography (PET) imaging and selective delivery of boron to prostate cancer. Monomeric PLGA-b-PEGs were covalently functionalized with either DFB or the PSMA ligand ACUPA. Different nanoparticle formulations were generated by nanoemulsification of the corresponding unmodified and DFB- or ACUPA-modified monomers in varying percent fractions. The nanoparticles were efficiently labeled with 89Zr and were subjected to in vitro and in vivo evaluation. The optimized DFB(25)ACUPA(75) NPs exhibited strong in vitro binding to PSMA in direct binding and competition radioligand binding assays in PSMA(+) PC3-Pip cells. [89Zr]DFB(25) NPs and [89Zr]DFB(25)ACUPA(75) NPs were injected to mice with bilateral PSMA(-) PC3-Flu and PSMA(+) PC3-Pip dual xenografts. The NPs demonstrated twofold superior accumulation in PC3-Pip tumors to that of PC3-Flu tumors with a tumor/blood ratio of 25; however, no substantial effect of the ACUPA ligands was detected. Moreover, fast release of carborane from the NPs was observed, resulting in a low boron delivery to tumors in vivo. In summary, these data demonstrate the synthesis, characterization, and initial biological assessment of PSMA-targeted, carborane-loaded PLGA-b-PEG nanoparticles and establish the foundation for future efforts to enable their best use in vivo.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Desferroxamina/farmacologia , Nanopartículas/química , Antígeno Prostático Específico/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Boro/síntese química , Compostos de Boro/química , Terapia por Captura de Nêutron de Boro , Desferroxamina/química , Humanos , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Células PC-3 , Polietilenoglicóis/química , Poliglactina 910/química , Tomografia por Emissão de Pósitrons , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Nanomedicina Teranóstica , Células Tumorais Cultivadas
10.
Molecules ; 26(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641428

RESUMO

Poly(methyl acrylate)-b-poly(N-vinyl pyrrolidone/maleic anhydride/styrene) (PMA-b-P (NVP/MAH/St)) quaternary amphiphilic block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) was used to improve the anti-hydrolysis and dispersion properties of aluminum nitride (AIN) powders that were modified by copolymers. Its structure was characterized by Fourier transform infrared spectroscopy (FT-IR) and Hydrogen nuclear magnetic spectroscopy (1H-NMR). The results demonstrate that the molecular weight distribution of the quaternary amphiphilic block copolymers is 1.35-1.60, which is characteristic of controlled molecular weight and narrow molecular weight distribution. Through charge transfer complexes, NVP/MAH/St produces a regular alternating arrangement structure. After being treated with micro-crosslinking, AlN powder modified by copolymer PMA-b-P(NVP/MAH/St) exhibits outstanding resistance to hydrolysis and can be stabilized in hot water at 50 °C for more than 14 h, and the agglomeration of powder particles was improved remarkably.

11.
Front Chem ; 9: 576349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777891

RESUMO

Using the radicals generated during pH oscillations, a semibatch pH oscillator is used as the chemical fuel and engine to drive polymerization induced self-assembly (PISA) for the one-pot autonomous synthesis of functional giant vesicles. Vesicles with diameters ranging from sub-micron to ∼5 µm are generated. Radical formation is found to be switched ON/OFF and be autonomously controlled by the pH oscillator itself, inducing a periodic polymerization process. The mechanism underlying these complex processes is studied and compared to conventional (non-oscillatory) initiation by the same redox pair. The pH oscillations along with the continuous increase in salt concentration in the semibatch reactor make the self-assembled objects undergo morphological evolution. This process provides a self-regulated means for the synthesis of soft giant polymersomes and opens the door for new applications of pH oscillators in a variety of contexts, from the exploration of new geochemical scenarios for the origin of life and the autonomous emergence of the necessary free-energy and proton gradients, to the creation of active functional microreactors and programmable release of cargo molecules for pH-responsive materials.

12.
Mikrochim Acta ; 187(12): 648, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33165743

RESUMO

An amphiphilic block copolymer consisting of poly(N-acryloyl-glucosamine) (PAGA) and poly(tert-butyl methacrylate) (PtBMA) was designed and grafted on magnetic multi-walled carbon nanotubes (Fe3O4MWCNTs). The resultant Fe3O4MWCNTs@copolymer was proposed as QuEChERS adsorbent for determination of 15 mycotoxins and 25 pesticides in grains via liquid chromatography tandem mass spectrometry. The adsorbent was characterized by a transmission electron microscope, scanning electron microscope, elemental analysis, and other techniques. The common matrix interferences were efficiently removed by the proposed adsorbent, such as pigment, fatty acids, and the saccharide. PAGA segment played an important role in removing the hydrophilic interferences through hydrogen bonding due to the high density of hydroxyl groups. PtBMA segment removed the fatty residues through its strong hydrophobic carbon moiety. In comparison with the commercially available QuEChERS adsorbents, the proposed adsorbent had higher adsorption capacities towards the typical matrix interferences. To achieve satisfactory recoveries of analytes, various parameters in the QuEChERS procedure were comprehensively investigated. Under the optimal conditions, 95.0% of the analytes showed satisfactory recoveries in the range 70.0-120% as well as negligible matrix effects. The limits of detection (LOD) were in the range 0.00015-1.3 µg kg-1. Compared with previously reported QuEChERS methods, the proposed method had improved sensitivity and benefited from low matrix effects. The recoveries of analytes in various grains were in the range 60.8-108% with relative standard deviations (RSD) less than 13%. Moreover, the Fe3O4MWCNTs@copolymer exhibited good synthetic reproducibility and rapid magnetic separation (less than 10 s). The research provides a versatile platform to develop multi-functional QuEChERS adsorbents based on the amphiphilic block copolymer.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Grão Comestível/química , Contaminação de Alimentos/análise , Magnetismo , Micotoxinas/análise , Nanotubos de Carbono/química , Praguicidas/análise , Polímeros/química , Espectrometria de Massas em Tandem/métodos , Adsorção , Limite de Detecção , Reprodutibilidade dos Testes
13.
Polymers (Basel) ; 12(5)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455766

RESUMO

Polymeric nanomaterials made from amphiphilic block copolymers are increasingly used in the treatment of tumor tissues. In this work, we firstly synthesized the amphiphilic block copolymer PBnMA-b-P(BAPMA-co-PEGMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization using benzyl methacrylate (BnMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA), and 3-((tert-butoxycarbonyl)amino)propyl methacrylate (BAPMA) as the monomers. Subsequently, PBnMA-b-P(APMA-co-PEGMA)@NIR 800 with photothermal conversion property was obtained by deprotection of the tert-butoxycarbonyl (BOC) groups of PBAPMA chains with trifluoroacetic acid (TFA) and post-modification with carboxyl functionalized ketocyanine dye (NIR 800), and it could self-assemble into micelles in CH3OH/water mixed solvent. The NIR photothermal conversion property of the post-modified micelles were investigated. Under irradiation with NIR light (λmax = 810 nm, 0.028 W/cm2) for 1 h, the temperature of the modified micelles aqueous solution increased to 53 °C from 20 °C, which showed the excellent NIR photothermal conversion property.

14.
J Colloid Interface Sci ; 566: 304-315, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007741

RESUMO

HYPOTHESIS: This paper investigates the self-assembly behavior of a new amphiphilic block copolymer, PPEGMA-PPC-PPEGMA, in dilute aqueous solution and at the air-water interface. In PPEGMA-PPC-PPEGMA, the hydrophilic PEG moieties exist as side chains attached to the PMA backbone. Because of this unique non-linear architecture, the morphological and conformational properties of self-assembled PPEGMA-PPC-PPEGMA polymers are expected to be different from those of conventional linear PEG-based polymer surfactants. EXPERIMENTS: For this study, three PPEGMA-PPC-PPEGMA samples having an identical PPC molecular weight (5.6 kDa) and different PPEGMA molecular weights (7.2, 2.8 and 2.1 kDa on either side) (named "G7C6G7", "G3C5G3", and "G2C6G2", respectively) were synthesized. The micellar self-assembly behaviors of these materials were investigated by cryo-TEM, rheology, DLS, and visual observation. Langmuir monolayers of these materials were characterized by surface mechanical testing. FINDINGS: PPEGMA-PPC-PPEGMA micelles were found to have a spherical geometry, irrespective of copolymer composition. Interestingly, G2C6G2 and G3C6G3 micelles formed weakly-bound clusters, whereas G7C6G7 micelles predominantly existed as isolated micelles. Detailed analysis suggests that this unexpected trend in micelle morphology originates from the fact that the PPEGMA blocks are only partially hydrated at aqueous interfaces. Detailed features of the surface pressure-area isotherms obtained from Langmuir PPEG-PPC-PPEGMA monolayers further supported this notion.

15.
Polymers (Basel) ; 12(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941035

RESUMO

In this work, the self-assembly of a series of amphiphilic polystyrene-b-polyglycidol (PS-b-PGL) diblock copolymers in dioxane and dioxane/water mixtures is presented. The PS-b-PGL have an average degree of polymerization (DP) of PS block equal to 29 units and varied degrees of polymerization for the glycidol segments with DPs of 13, 42, 69 and 117. In dioxane, amphiphilic diblock copolymers form micelles with the hydrophilic PGL placed in the core. Critical micelle concentration (CMC) was determined based on the intensity of scattered light vs. concentration. The micelle size was measured by dynamic light scattering and transmission electron microscopy. Also, the behaviour of the copolymer was studied in water/dioxane solutions by following the changes of scattered light intensity with the addition of water to the system. Critical water content (CWC) of the studied systems decreased as the initial PS-b-PGL concentration in dioxane increased. This process was accompanied by a decrease in the size of aggregate formed. For a given initial copolymer concentration, the size of copolymer aggregates decreased linearly with increasing the length of the PGL block.

16.
Se Pu ; 38(9): 1107-1114, 2020 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-34213278

RESUMO

The advantages of capillary electrophoresis, such as small sample consumption, high separation efficiency, and multiple separation modes, have been known for decades. However, exploring unique capillary electrophoresis techniques for the analysis of fluid drugs in living bio-systems remains an important and urgent task. Owing to the similar structures and mass-to-charge ratios of antipyretic analgesic drugs, efficient baseline separation of these analytes by capillary zone electrophoresis method cannot be easily achieved. Micellar electrokinetic chromatography can improve the baseline separation of these drugs, but the substantial amounts of non-volatile surfactants (such as sodium dodecyl sulfate, sodium dodecyl sulfonate, sodium deoxycholate and cetylammonium bromide) in running buffer solutions would pollute the ion source during mass spectrometric analysis. For this reason, it is difficult to analyze unknown drugs by capillary electrophoresis-electrospray ionization-mass spectrometry. To overcome these drawbacks, much attention has been paid to capillary electrochromatography (CEC) because combines the high separation efficiency of capillary electrophoresis with the high selectivity of high performance liquid chromatography (HPLC). Recent challenges encountered in open-tubular capillary electrochromatography (OT-CEC) expanding the range of suitable functional polymer monomers and improvement of the separation efficiency by tuning the characteristics of the polymer coatings without using any organic solvent additives. In this study, a protocol based on OT-CEC using a block co-polymer coating is proposed for the analysis of three test antipyretic analgesic drugs (4-aminoantipyrine, antipyrine and phenacetin), without adding organic solvents and surfactants in the running buffer solutions. First, an amphiphilic block co-poly(styrene-co-glycidyl methacrylate) (P(St-GMA)), was synthesized by reversible addition-fragmentation chain transfer polymerization under mild conditions. Then, P(St-GMA) was coated onto the capillary surface, and an OT-CEC analysis was performed. Next, the effect of some key factors, including the polymerization time for obtaining P(St-GMA) with different molecular weights, coating concentrations of the block copolymer, the species of the running buffer solutions, pH and concentrations of the running buffer solutions, and organic solvent additives, on the OT-CEC separation efficiency were investigated. Under the optimized conditions with 50.0 mmol/L NaAc-HAc as the running buffer solution at pH 5.7, the three test antipyretic analgesic drugs were base-line separated by the constructed OT-CEC system. Good linear relationships between peak area and concentration of the test analytes in the range of 8.0-2.5×103 µmol/L were obtained (R2 ≥ 0.995). The limits of detection (LODs) were 1.0-2.5 µmol/L. Furthermore, the reason for the OT-CEC separation efficiency was clarified based on the decreased electro-osmotic flow in the coated capillary compared with that in the uncoated capillary. Finally, the proposed OT-CEC assay without using any organic solvents and surfactants as additives was applied for analysis of the three test antipyretic analgesic drugs in rat serum samples. Importantly, it was found that despite peak tailing, the OT-CEC separation efficiency of the drugs was dramatically enhanced because the block co-polymer could self-assemble in the solution and form pseudo-micelles, which further increased the interactions between the P(St-GMA) and these drugs. Our results not only reveal the great potential of block co-polymer coatings in OT-CEC for the analysis of drugs in real biological samples, but also serve asa platform for the preparation of diverse block co-polymers to be used in OT-CEC analysis. We believe that in the near future, the peak tailing problem in OT-CEC analysis can be resolved by using the designed unique block co-polymers, which possess a greater number of functional sites, as coatings and by appropriately tuning the interactions between the analytes and the coatings.


Assuntos
Analgésicos , Antipiréticos , Eletrocromatografia Capilar , Analgésicos/análise , Animais , Antipiréticos/análise , Micelas , Polímeros , Ratos
17.
Macromol Biosci ; 20(1): e1900178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596553

RESUMO

Adrenocortical carcinoma (ACC) is a rare tumor and prognosis is overall poor but heterogeneous. Mitotane (MT) has been used for treatment of ACC for decades, either alone or in combination with cytotoxic chemotherapy. Even at doses up to 6 g per day, more than half of the patients do not achieve targeted plasma concentration (14-20 mg L-1 ) even after many months of treatment due to low water solubility, bioavailability, and unfavorable pharmacokinetic profile. Here a novel MT nanoformulation with very high MT concentrations in physiological aqueous media is reported. The MT-loaded nanoformulations are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction which confirms the amorphous nature of the drug. The polymer itself does not show any cytotoxicity in adrenal and liver cell lines. By using the ACC model cell line NCI-H295 both in monolayers and tumor cell spheroids, micellar MT is demonstrated to exhibit comparable efficacy to its ethanol solution. It is postulated that this formulation will be suitable for i.v. application and rapid attainment of therapeutic plasma concentrations. In conclusion, the micellar formulation is considered a promising tool to alleviate major drawbacks of current MT treatment while retaining bioactivity toward ACC in vitro.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Citotoxinas , Portadores de Fármacos , Micelas , Mitotano , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células Hep G2 , Humanos , Mitotano/química , Mitotano/farmacocinética , Mitotano/farmacologia , Solubilidade
18.
J Colloid Interface Sci ; 563: 122-130, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31869583

RESUMO

Liquid crystal nanocapsules (LC-Nanocapsules) were prepared by miniemulsion polymerization of the oil-in-water emulsion monomer droplets dissolving the liquid crystal (LC) compounds. In order to establish the preparation conditions of LC-Nanocapsules exhibiting the liquid crystallinity, the effects of the capsule wall-forming monomers and the crosslinking agent concentration on the capsule structure were investigated in detail. The monodisperse colloidal products covered with the robust polymer shell wall was successfully prepared by the polymerization of the emulsion monomer droplets obtained through the phase inversion temperature emulsification technique using the amphiphilic block copolymer as an emulsifier. The endothermic peak was observed at the nematic-isotropic phase transition temperature (TNI) of the LC in the differential scanning calorimetry diagram of LC-Nanocapsules. The bright- and dark-field images of the dried thin films of LC-Nanocapsules spread on a glass substrate were found to appear repeatedly by the temperature change below and above TNI by polarized optical microscopic analysis. These results revealed that the LC-Nanocapsules with a complete engulfing morphology were successfully formed by the spontaneous coacervation phenomena between the crosslinked polymer and the LC with a progression of the polymerization, as theoretically predicted from the viewpoint of the spreading coefficients.

19.
Materials (Basel) ; 12(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561543

RESUMO

In this work, we present a novel synthetic route to diblock copolymers based on styrene and 3-vinylpyridine monomers. Surfactant-free water-based reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization of styrene in the presence of the macroRAFT agent poly(3-vinylpyridine) (P3VP) is used to synthesize diblock copolymers with molecular weights of around 60 kDa. The proposed mechanism for the poly(3-vinylpyridine)-block-poly(styrene) (P3VP-b-PS) synthesis is the polymerization-induced self-assembly (PISA) which involves the in situ formation of well-defined micellar nanoscale objects consisting of a PS core and a stabilizing P3VP macroRAFT agent corona. The presented approach shows a well-controlled RAFT polymerization, allowing for the synthesis of diblock copolymers with high monomer conversion. The obtained diblock copolymers display microphase-separated structures according to their composition.

20.
Molecules ; 24(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480234

RESUMO

This work presents the first example of utilization of amphiphilic block copolymer PCL-PEG-PCL as a stationary phase for capillary gas chromatographic (GC) separations. The PCL-PEG-PCL capillary column fabricated by static coating provides a high column efficiency of 3951 plates/m for n-dodecane at 120 °C. McReynolds constants and Abraham system constants were also determined in order to evaluate the polarity and possible molecular interactions of the PCL-PEG-PCL stationary phase. Its selectivity and resolving capability were investigated by using a complex mixture covering analytes of diverse types and positional, structural, and cis-/trans-isomers. Impressively, it exhibits high resolution performance for aliphatic and aromatic isomers with diverse polarity, including those critical isomers such as butanol, dichlorobenzene, dimethylnaphthalene, xylenol, dichlorobenzaldehyde, and toluidine. Moreover, it was applied for the determination of isomer impurities in real samples, suggesting its potential for practical use. The superior separation performance demonstrates the potential of PCL-PEG-PCL and related block copolymers as stationary phases in GC and other separation technologies.


Assuntos
Cromatografia Gasosa/métodos , Poliésteres/química , Polietilenoglicóis/química , Tensoativos/química , Varredura Diferencial de Calorimetria , Isomerismo , Temperatura , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA