Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Environ Manage ; 365: 121715, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968898

RESUMO

Treating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The anaerobic digestion performance of Si NPs and Ag@Si NPs was tested by treating landfill leachate samples with 50 mg/L of each NP. The results demonstrated an enhancement in the biogas production rate compared to the control phase without the nanocomposite, as the biogas production increased by 14% and 37% using Si NPs and Ag@Si NPs. Ag@Si NPs effectively promoted the degradation of organic pollutants in the leachate, regarding chemical oxygen demand (COD) and volatile solids (VS) by 58% and 65%. Furthermore, microbial analysis revealed that Ag@Si NPs enhanced the activity of microbial species responsible for the methanogenic process. Overall, incorporating AgNPs conjugated with eco-friendly green Si NPs represents a sustainable and efficient approach for enhancing the anaerobic digestion of landfill leachate.

2.
Environ Sci Technol ; 58(18): 8043-8052, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648493

RESUMO

Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.


Assuntos
Enxofre , Enxofre/metabolismo , Anaerobiose , Sulfeto de Hidrogênio/metabolismo , Fenóis/metabolismo , Compostos Benzidrílicos/metabolismo
3.
Bioprocess Biosyst Eng ; 47(3): 417-427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424249

RESUMO

The anaerobic treatment of sulfide-containing organic wastewater (SCOW) is significantly affected by pH, causing dramatic decrease of treatment efficiency when pH deviates from its appropriate range. Fe0 has proved as an effective strategy on mitigating the impact of pH. However, systematic analysis of the influence mechanism is still lacking. To fill this gap, the impact of different initial pH values on anaerobic treatment efficiency of SCOW with Fe0 addition, the change of fermentation type and methanogens, and intra-extracellular electron transfer were explored in this study. The results showed that Fe0 addition enhanced the efficacy of anaerobic treatment of SCOW at adjusted initial pH values, especially at pH 6. Mechanism analysis showed that respiratory chain-related enzymes and electron shuttle secretion and resistance reduction were stimulated by soluble iron ions generated by Fe0 at pH 6, which accelerated intra-extracellular electron transfer of microorganisms, and ultimately alleviated the impact of acidic pH on the system. While at pH 8, Fe0 addition increased the acetogenic bacteria abundance, as well as optimized the fermentation type and improved the F420 coenzyme activity, resulting in the enhancement of treatment efficiency in the anaerobic system and remission of the effect of alkaline pH on the system. At the neutral pH, Fe0 addition had both advantages as stimulating the secretion of respiratory chain and electron transfer-related enzymes at pH 6 and optimizing the fermentation type pH 8, and thus enhanced the treatment efficacy. This study provides important insights and scientific basis for the application of new SCOW treatment technologies.


Assuntos
Sulfatos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Sulfetos , Concentração de Íons de Hidrogênio , Esgotos/microbiologia
4.
Food Chem ; 445: 138620, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382249

RESUMO

Gabaron green tea (GAGT) has unique flavor and health benefits through the special anaerobic treatment. However, how this composite processing affects the aroma formation of GAGT and the regulatory mechanism was rarely reported. This study used nontargeted metabolomics and molecular sensory science to overlay screen differential metabolites and key aroma contributors. The potential regulatory mechanism of anaerobic treatment on the aroma formation of GAGT was investigated by transcriptomics and correlation analyses. Five volatiles: benzeneacetaldehyde, nonanal, geraniol, linalool, and linalool oxide III, were screened as target metabolites. Through the transcriptional-level differential genes screening and analysis, some CsERF transcription factors in the ethylene signaling pathway were proposed might participate the response to the anaerobic treatment. They might regulate the expression of related genes in the metabolic pathway of the target metabolites thus affecting the GAGT flavor. The findings of this study provide novel information on the flavor and its formation of GAGT.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Chá/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Multiômica , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise
5.
J Sci Food Agric ; 104(7): 4320-4330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38318646

RESUMO

BACKGROUND: This study aimed to investigate the effect of 6, 12, and 24 h short-term anaerobic treatment on kiwiberry quality and antioxidant properties at 5 °C. RESULTS: Short-term anaerobic treatment was found to delay ripening and softening in kiwiberries, evident from changes in ethylene release, total soluble solids, starch, protopectin, and fruit texture. The 24 h treatment group exhibited the lowest decay rate of 12% on day 49, a 38% reduction compared with the control group. Anaerobic treatment reduced flesh translucency and decay in the fruit. The 12 h and 24 h treatments enhanced the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, and increased the level of total phenolics, flavonoids, anthocyanins, and ascorbic acid. Moreover, it lowered oxidative damage in cell membranes, evidenced by reduced malondialdehyde content and relative conductivity. CONCLUSION: These results indicate that anaerobic treatment maintains the fruit quality by stimulating its antioxidant defense system. Therefore, short-term anaerobic treatment emerges as a promising method for kiwiberry storage. © 2024 Society of Chemical Industry.


Assuntos
Actinidia , Antioxidantes , Antioxidantes/análise , Actinidia/química , Antocianinas/análise , Anaerobiose , Ácido Ascórbico/análise , Frutas/química
6.
Sci Total Environ ; 912: 168895, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042180

RESUMO

In the last decades, the interest for anaerobic process as a mainstream treatment of municipal wastewater increased due to the development of high-rate anaerobic bioreactors able to achieve removal kinetics comparable to the aerobic ones. Moreover, they have the additional advantages of energy production, nutrient recovery and reduced excess sludge yield, which are interesting features in the frame of sustainability wastewater treatment goals. These appealing factors increased the research demand to evaluate the potential of the anaerobic removal for contaminants of emerging concern (CECs) in municipal wastewater. However, despite the growing interest for the subject, literature is still fragmentary and reviews are mainly focused on specific technologies and target compounds or groups of compounds. We propose this review with the main objectives of presenting the state of knowledge, the performances of anaerobic systems for CECs' removal and, more important, to give the reader guidelines for optimal treatment selection. In the first part, a general overview of the investigated technologies at different scale, with a special focus on the recently proposed enhancements, is presented. Collected data are analysed to select the target CECs and the analysis results employed to define the optimal technological solution for their removal. A first novelty element of the paper is the original procedure for contaminant selection consisting of a risk assessment tool for CECs, based on their frequency of detection, concentration and potential for biosorption in wastewater treatment plants. Data of selected target CECs are combined with compound and technology performance data to implement a flowchart tool to evaluate the optimal treatment strategy, which constitute another, even more important, novelty element of this study.


Assuntos
Águas Residuárias , Purificação da Água , Anaerobiose , Esgotos , Reatores Biológicos
7.
Sci Total Environ ; 904: 166796, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666346

RESUMO

Anaerobic treatment of chloramphenicol wastewater holds significant promise due to its potential for bioenergy generation. However, the high concentration of organic matter and residual toxic substances in the wastewater severely inhibit the activity of microorganisms. In this study, a three-dimensional graphene aerogel (GA), as a conductive material with high specific surface area (114.942 m2 g-1) and pore volume (0.352 cm3 g-1), was synthesized and its role in the efficiency and related mechanism for EGSB reactor to treat chloramphenicol wastewater was verified. The results indicated that synergy effects of GA for Chemical Oxygen Demand (COD) removal (increased by 8.17 %), chloramphenicol (CAP) removal (increased by 4.43 %) and methane production (increased by 70.29 %). Furthermore, GA increased the average particle size of anaerobic granular sludge (AGS) and promoted AGS to secrete more redox active substances. Microbial community analysis revealed that GA increased the relative abundance of functional bacteria and archaea, specifically Syntrophomonas, Geobacter, Methanothrix, and Methanolinea. These microbial species can participate in direct interspecific electron transfer (DIET). This research serves as a theoretical foundation for the application of GA in mitigating the toxic impact of refractory organic substances, such as antibiotics, on microorganisms during anaerobic treatment processes.


Assuntos
Grafite , Águas Residuárias , Grafite/toxicidade , Eliminação de Resíduos Líquidos/métodos , Cloranfenicol/toxicidade , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Metano
8.
Bioresour Technol ; 388: 129776, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709152

RESUMO

Herein, a cost-effective method for improving the anaerobic fermentation performance of sewage sludge (SS) is proposed. The highest volatile fatty acids (VFAs) reached up to 5550 mg COD/L with the supplementation of 0.2 g urea/g total suspended solids (TSS). Intensive exploration showed that SS decomposition was profoundly triggered by urea and the free ammonia generated due to the hydrolysis of urea, providing adequately bioaccessible substrates for acidogenic reactions and thus contributing to VFAs formation. Microbial composition analysis indicated that functional bacteria (i.e., Tissierella and Clostridium) associated with VFAs generation were enriched. Moreover, the metabolic activities of functional flora (i.e., membrane transport and fatty acid synthesis) were up-regulated due to the stimulation of urea. In general, the increase in bioavailable organic matter and functional microbes, and thus the increased microbial metabolic activities, improved the efficient production of VFAs. This study could provide a cost-effective approach for resource recovery from SS.

9.
J Basic Microbiol ; 63(10): 1085-1094, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37551023

RESUMO

Interdisciplinary studies on cultural heritage artworks provide efficient solutions to control fungal growth and the negative effects of biodeterioration. In this study, we aimed to identify the population of filamentous fungi colonizing an engraving by the Dutch painter Rembrandt, whose conservation status was compromised and showed visible stains of biodeterioration. Microbiological techniques, such as cultivation-dependent approaches and molecular biology, have been used to identify fungal populations. In addition, the anaerobic atmosphere technique and eco-friendly antifungal agents, such as essential oils (EOs) of Curcuma longa, Thymus vulgaris, and Melaleuca alternifolia, were tested against the metabolically active fungal population Cladoposporium spinulosum. Furthermore, in vitro assays revealed that the interaction between the fungal strains and EO was positive, inhibiting the growth of these fungi, and the EOs from T. vulgaris and M. alternifolia showed low minimum inhibitory concentration values. Exposure to anaerobic conditions for 35 days was effective in the total elimination of isolated fungal strains. In conclusion, this study demonstrated the effectiveness of a nondestructive technique for artwork on engraving colonized by fungal strains and using EO as an alternative to toxic antifungals used in conventional treatments in artworks. Thus, this interdisciplinary study involving applied microbiology and botanical and preventive conservation presents a tool to control microbial growth while maintaining artwork integrity.


Assuntos
Antifúngicos , Óleos Voláteis , Antifúngicos/farmacologia , Gravuras e Gravação , Fungos , Cladosporium , Óleos Voláteis/farmacologia , Testes de Sensibilidade Microbiana
10.
Bioresour Technol ; 385: 129342, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37348569

RESUMO

The management of dairy processing wastewater (DPW) must address water pollution while delivering renewable energy and recovering resources. A high-rate anaerobic membrane bioreactor (AnMBR) was investigated for treating DPW, and the system was evaluated in terms of elemental flow, nutrient recovery, energy balance, and reduction of CO2 emission. The AnMBR system was superior in terms of both methanogenic performance and efficiency of bioenergy recovery in the DPW treatment, with a high net energy potential of 51.4-53.2 kWh/m3. The theoretical economic values of the digestate (13.8 $/m3) and permeate (4.1 $/m3) were assessed according to nutrient transformation and price of mineral fertilizer. The total CO2 emission equivalent in the AnMBR was 44.7 kg CO2-eq/m3, with a significant reduction of 54.1 kg CO2-eq/m3 compared to the conventional process. The application of the AnMBR in the DPW treatment is a promising approach for the development of carbon neutrality and a circular economy.


Assuntos
Dióxido de Carbono , Águas Residuárias , Anaerobiose , Membranas Artificiais , Reatores Biológicos , Biocombustíveis , Eliminação de Resíduos Líquidos , Metano , Esgotos
11.
Environ Sci Technol ; 57(16): 6712-6722, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37038903

RESUMO

This study aims to demonstrate a new technology roadmap to support the ongoing paradigm shift in wastewater management from pollutant removal to resource recovery. This is achieved by developing a novel use of an iron salt (i.e., FeCl3) in an integrated anaerobic wastewater treatment and mainstream anammox process. FeCl3 was chosen to be dosed in a proposed sidestream unit rather than in a primary settler or a mainstream reactor. This causes acidification of returned activated sludge and enables stable suppression of nitrite-oxidizing bacterial activity and excess sludge reduction. A laboratory-scale system, which comprised an anaerobic baffled reactor, a continuous-flow anoxic-aerobic (A/O) reactor, and a secondary settler, was designed to treat real domestic wastewater, with the performance of the system comprehensively monitored under a steady-state condition. The experimental assessments showed that the system had good effluent quality, with total nitrogen and phosphorus concentrations of 12.6 ± 1.3 mg N/L and 0.34 ± 0.05 mg P/L, respectively. It efficiently retained phosphorus in excess sludge (0.18 ± 0.03 g P/g dry sludge), suggesting its potential for further recovery. About half of influent organic carbon was recovered in the form of bioenergy (i.e., methane). This together with low energy consumption revealed that the system could produce a net energy of about 0.11 kWh/m3-wastewater, assessed by an energy balance analysis.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Desnitrificação , Nitrogênio , Anaerobiose , Reatores Biológicos/microbiologia , Oxirredução
12.
Sci Total Environ ; 880: 163223, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37019235

RESUMO

The management of swine wastewater has become the focus of attention in the farming industry. The disposal mode of swine wastewater can be classified as field application of treated waste and treatment to meet discharge standards. The status of investigation and application of unit technology in treatment and utilization such as solid-liquid separation, aerobic treatment, anaerobic treatment, digestate utilization, natural treatment, anaerobic-aerobic combined treatment, advanced treatment, are reviewed from the full-scale application perspective. The technologies of anaerobic digestion-land application is most appropriate for small and medium-sized pig farms or large pig farms with enough land around for digestate application. The process of "solid-liquid separation-anaerobic-aerobic-advanced treatment" to meet the discharge standard is most suitable for large and extra-large pig farms without enough land. Poor operation of anaerobic digestion unit in winter, hard to completely utilize liquid digestate and high treatment cost of digested effluent for meeting discharge standard are established as the main difficulties.


Assuntos
Agricultura , Águas Residuárias , Suínos , Animais , Tecnologia , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos
13.
Environ Pollut ; 324: 121343, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893977

RESUMO

The effect of graphene oxide on the anaerobic digestion of waste activated sludge was investigated at two graphene oxide concentrations (0.025 and 0.075 g graphene oxide per g volatile solids) using biochemical methane potential tests. The occurrence of 36 pharmaceuticals was monitored in the solid and liquid phases before and after the anaerobic treatment. The addition of graphene oxide improved the removal of most pharmaceuticals detected, even those that are considered persistent to biological degradation, such as azithromycin, carbamazepine, and diclofenac. No significant differences were observed in the final specific methane production without graphene oxide and with the lowest graphene oxide concentration, yet the highest graphene oxide concentration partially inhibited methane production. The relative abundance of antibiotic resistance genes was not affected by the graphene oxide addition. Finally, significant changes in the microbial community including bacteria and archaea were detected with graphene oxide addition.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Anaerobiose , Reatores Biológicos , Metano/metabolismo , Preparações Farmacêuticas
14.
Environ Sci Technol ; 57(10): 4082-4090, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36848936

RESUMO

An increasing percentage of US waste methane (CH4) emissions come from wastewater treatment (10% in 1990 to 14% in 2019), although there are limited measurements across the sector, leading to large uncertainties in current inventories. We conducted the largest study of CH4 emissions from US wastewater treatment, measuring 63 plants with average daily flows ranging from 4.2 × 10-4 to 8.5 m3 s-1 (<0.1 to 193 MGD), totaling 2% of the 62.5 billion gallons treated, nationally. We employed Bayesian inference to quantify facility-integrated emission rates with a mobile laboratory approach (1165 cross-plume transects). The median plant-averaged emission rate was 1.1 g CH4 s-1 (0.1-21.6 g CH4 s-1; 10th/90th percentiles; mean 7.9 g CH4 s-1), and the median emission factor was 3.4 × 10-2 g CH4 (g influent 5 day biochemical oxygen demand; BOD5)-1 [0.6-9.9 × 10-2 g CH4 (g BOD5)-1; 10th/90th percentiles; mean 5.7 × 10-2 g CH4 (g BOD5)-1]. Using a Monte Carlo-based scaling of measured emission factors, emissions from US centrally treated domestic wastewater are 1.9 (95% CI: 1.5-2.4) times greater than the current US EPA inventory (bias of 5.4 MMT CO2-eq). With increasing urbanization and centralized treatment, efforts to identify and mitigate CH4 emissions are needed.


Assuntos
Metano , Purificação da Água , Estados Unidos , Teorema de Bayes , Águas Residuárias , Óxido Nitroso/análise
15.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614205

RESUMO

Landfill leachate (LFL) treatment is a severe challenge due to its highly viscous nature and various complex pollutants. Leachate comprises various toxic pollutants, including inorganic macro/nano components, xenobiotics, dissolved organic matter, heavy metals, and microorganisms responsible for severe environmental pollution. Various treatment procedures are available to achieve better effluent quality levels; however, most of these treatments are nondestructive, so pollutants are merely transported from one phase to another, resulting in secondary contamination. Anaerobic digestion is a promising bioconversion technology for treating leachate while producing renewable, cleaner energy. Because of its high toxicity and low biodegradability, biological approaches necessitate employing other techniques to complement and support the primary process. In this regard, pretreatment technologies have recently attracted researchers' interest in addressing leachate treatment concerns through anaerobic digestion. This review summarizes various LFL pretreatment methods, such as electrochemical, ultrasonic, alkaline, coagulation, nanofiltration, air stripping, adsorption, and photocatalysis, before the anaerobic digestion of leachate. The pretreatment could assist in converting biogas (carbon dioxide to methane) and residual volatile fatty acids to valuable chemicals and fuels and even straight to power generation. However, the selection of pretreatment is a vital step. The techno-economic analysis also suggested the high economic feasibility of integrated-anaerobic digestion. Therefore, with the incorporation of pretreatment and anaerobic digestion, the process could have high economic viability attributed to bioenergy production and cost savings through sustainable leachate management options.


Assuntos
Reatores Biológicos , Poluentes Ambientais , Anaerobiose , Biocombustíveis/análise , Estudos de Viabilidade , Poluentes Ambientais/análise , Metano/análise
16.
Environ Technol ; : 1-12, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35960006

RESUMO

The costs associated with microalgal biomass production can be reduced by leveraging alternative and cheap growth media. Digestate from fermentation reactors is a particularly interesting candidate for use in cultivating mixotrophic species. The aim of the present study was to assess whether pre-digested milk-industry effluent can be harnessed to grow Tetraselmis subcordiformis and produce hydrogen. The experimental series with 25% and 50% effluent in the growth medium performed the best, producing more than 2000 mgVS biomass/dm3. The biogas produced in these variants contained over 60% hydrogen. Increasing the effluent in the medium to 75% led to significant deterioration of performance, both in terms of T. subcordiformis biomass growth and biohydrogen production. The highest efficiency of nitrogen and phosphorus removal, respectively 98.1 ± 1.9% and 97.1 ± 1.4%, was observed in the system to which 25% of sewage was introduced. Increasing the share of fermented wastewater directly reduced the efficiency of removing biogenic compounds. A very strong negative correlation was found between initial N-NH4 in the growth medium and T. subcordiformis biomass production rates (R2 = 0.9177).

17.
Sci Total Environ ; 850: 158083, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985604

RESUMO

The occurrence of para-chloro-meta-xylenol (PCMX, as largely consumed antimicrobial chemicals) in waste activated sludge (WAS) would pose environmental risks for WAS utilization. This study revealed that PCMX principally prompted the abundances and diversity of antibiotic resistance genes (ARGs), particularly for the multidrug- genes (i.e., acrB and mexW), and reshaped the resistance mechanism categories during WAS fermentation process. The genotype and phenotype results indicated that PCMX upregulated abundances of transposase and increased cell permeability via disrupting WAS structure, which further facilitated the horizontal transfer of ARGs. The network and correlation analysis among ARGs, mobile genetic elements (MGEs) and genera (i.e., Sphingopyxis and Pseudoxanthomonas) verified that PCMX enriched the potential ARGs hosts associated with multidrug resistance mechanism. Also, PCMX upregulated the genes involved in ARGs-associated metabolic pathways, such as two-component (i.e., phoP and vcaM) and quorum sensing systems (i.e., lasR and cciR), which determined the ARGs proliferation via multidrug efflux pump and outer membrane proteins, and facilitated the recognition between ARGs hosts. Variance partitioning analysis (VPA) implied that the shift of microbial community contributed predominantly to the dissemination of ARGs. These findings unveiled the environmental behaviors and risks of exogenous pollutants in WAS with insightful understanding, which could guide the WAS utilization for resource recovery.


Assuntos
Poluentes Ambientais , Esgotos , Antibacterianos/análise , Estruturas Bacterianas/química , Permeabilidade da Membrana Celular , Resistência Microbiana a Medicamentos/genética , Poluentes Ambientais/análise , Fermentação , Genes Bacterianos , Proteínas de Membrana/genética , Esgotos/microbiologia , Transposases/genética , Xilenos
18.
Bioresour Technol ; 362: 127773, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963486

RESUMO

Orange peel waste (OPW) and sewage sludge (SS) valorization for volatile fatty acids (VFAs) production from anaerobic co-fermentation are attractive and feasible. The highest VFAs reached 11996.3 mg COD/L within 10 d at the mass ratio (TS/TS) of 1:1, which was approximately 30-fold of that in sole SS fermentation. The OPW provided plenty of organic substrates and facilitated the fermentation processes by disintegrating SS structure and inhibiting methanogenesis due to the abundant limonene. Also, the OPW feeds reshaped the microbial community and enriched fermentative bacteria, especially those saccharolytic ones (i.e. Prevotella-7). The key genes involved in membrane transport (i.e. ptsG), glycolysis (i.e. pgk), pyruvate metabolism (i.e. ace), and fatty acid biosynthesis (i.e. accA), which are associated with VFAs biosynthesis, were up-regulated in OPW/SS reactors. Overall, it was the increase in bioavailable organic matter and functional microorganisms, and the simultaneous enhancement of metabolic activity that improved the efficient VFAs production.


Assuntos
Citrus sinensis , Esgotos , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Limoneno , Esgotos/microbiologia
19.
Environ Pollut ; 311: 119932, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973449

RESUMO

To better promote environment friendly development of the coal chemical industry, this study investigated effects of methanol, sodium citrate, and chlorella powder (a type of microalgae) as co-metabolic substances on enhanced anaerobic treatment of coal pyrolysis wastewater with anaerobic sludge. The anaerobic sludge was loaded into four 2 L anaerobic reactors for co-metabolism enhanced anaerobic experiments. Anaerobic reactor 1 (R1) as control group did not add a co-metabolic substance; anaerobic reactor 2 (R2) added methanol; anaerobic reactor 3 (R3) added sodium citrate; and anaerobic reactor 4 (R4) added chlorella powder. In the blank control group, the removal ratios of total phenol (TPh), quinoline, and indole were only 12.07%, 42.15%, and 50.47%, respectively, indicating that 50 mg/L quinoline, 50 mg/L indole, and 600 mg/L TPh produced strong toxicity inhibition function on the anaerobic microorganism in reactor. When the concentration of methanol, sodium citrate, and chlorella was 400 µg/L, the reactors with co-metabolic substances had better treatment effect on TPh. Among them, the strengthening effects of sodium citrate (TPh removal ratio: 44.87%) and chlorella (47.85%) were better than that of methanol (38.72%) and the control group (10.62%). Additionally, the reactors with co-metabolic substances had higher degradation ratios on quinoline, indole, and chemical oxygen demand (COD). The data of extracellular polymeric substances showed that with the co-metabolic substances, anaerobic microorganisms produced more humic acids by degrading phenols and nitrogen-containing heterocyclic compounds (NHCs). Compared with the control group, the reactors added with sodium citrate and chlorella had larger average particle size of sludge. Thus, sodium citrate and chlorella could improve sludge sedimentation performance by increasing the sludge particle size. The bacterial community structures of reactors were explored and the results showed that Aminicenantes genera incertae sedis, Levinea, Geobacter, Smithella, Brachymonas, and Longilinea were the main functional bacteria in reactor added with chlorella.


Assuntos
Chlorella , Quinolinas , Anaerobiose , Reatores Biológicos/microbiologia , Chlorella/metabolismo , Carvão Mineral , Indóis , Metanol , Fenol , Pós , Pirólise , Quinolinas/metabolismo , Esgotos/química , Citrato de Sódio , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
20.
Bioresour Technol ; 357: 127349, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35605772

RESUMO

Dairy product wastewater contains high-strength organic matter suitable for anaerobic treatment, but excessive protein degradation may lead to an ammonia inhibition problem. This work studied protein-rich dairy product wastewater treatment in the anaerobic membrane bioreactor. The results showed that a temporary self-detoxification phase of ammonia inhibition from the change of pH buffer system was vital for rapid reactor recovery by substrate dilution. The ammonia washout from the reactor was simulated by a kinetic model. After ammonia inhibition, the relative abundance of syntrophic lactic and propionic acids oxidising bacteria significantly reduced along with fermentative bacteria involved in mixed organic acids production. Nevertheless, the relative abundance of the protein degradation bacteria producing acetic acid and H2/CO2 increased. A potential metabolic process change was proposed by profiling the functional community. To conclude, substrate dilution is essential for overcoming ammonia inhibition in the anaerobic treatment of protein-rich dairy product wastewater.


Assuntos
Euryarchaeota , Microbiota , Amônia/metabolismo , Anaerobiose , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Laticínios , Euryarchaeota/metabolismo , Metano , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...