Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cureus ; 16(3): e55605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586722

RESUMO

Introduction  Nanoparticles, owing to their minuscule size, have become pivotal in diverse scientific endeavors, presenting unique characteristics with applications spanning medicine to environmental science. Selenium nanoparticles (SeNPs) exhibit potential in diverse biomedical uses. Aim This research investigates the potential anti-inflammatory and anticancer properties of SeNPs, which are synthesized using the green synthesis method. This eco-friendly approach aligns with sustainable practices and utilizes clove extract (Syzygium aromaticum). Materials and methods Clove extract facilitates SeNP synthesis via sodium selenite reduction. The characterization methods comprised Fourier-transform infrared (FTIR) spectroscopy, UV-VIS spectroscopy, and scanning electron microscopy (SEM). Assessments covered antioxidant properties, chorioallantoic membrane assay (CAM) assay for antiangiogenic effects, toxicity evaluation, and antibacterial assays. Results Successful synthesis of SeNPs was verified by a UV-visible absorption peak at 256 nm and FTIR peaks around 3500-500 cm -1, and the spherical morphology was confirmed by SEM analysis with EDAX, which indicated the presence of SeNPs and their unique properties. Phytochemical substances are active chemicals that contribute to the properties of SeNPs. The SeNPs exhibited antioxidant activity with an IC50 value of 0.437 µg/mL and antibacterial properties against bacterial pathogen Salmonella species, with a zone of inhibition measuring 19 mm. The CAM assay demonstrated possible antiangiogenic actions, and toxicity testing on Artemia nauplii showed biocompatibility. Conclusion This study underscores the efficient synthesis of SeNPs using clove extract, emphasizing their potential applications. The notable properties of SeNPs emphasize their promise for diverse biomedical and environmental uses.

2.
Carbohydr Polym ; 333: 121991, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494240

RESUMO

Large-pore hydrogels are better suited to meet the management needs of nutrient transportation and gas exchange between infected burn wounds and normal tissues. However, better construction strategies are required to balance the pore size and mechanical strength of hydrogels to construct a faster substance/gas interaction medium between tissues. Herein, we developed spongy large pore size hydrogel (CS-TA@Lys) with good mechanical properties using a simple ice crystal-assisted method based on chitosan (CS), incorporating tannic acid (TA) and ε-polylysine (Lys). A large-pore and mechanically robust hydrogel medium was constructed based on hydrogen bonding between CS molecules. On this basis, a pro-restorative functional platform with antioxidation and pro-vascularization was constructed using TA and Lys. In vitro experiments displayed that the CS-TA@Lys hydrogel possessed favorable mechanical properties and fast interaction performances. In addition, the CS-TA@Lys hydrogel possessed the capacity to remove intra/extracellular reactive oxygen species (ROS) and possessed antimicrobial and pro-angiogenic properties. In vivo experiments displayed that the CS-TA@Lys hydrogel inhibited wound inflammation and promoted wound vascularization. In addition, the CS-TA@Lys hydrogel showed the potential for rapid hemostasis. This study provides a potential functional wound dressing with rapid interaction properties for skin wound repair.


Assuntos
Queimaduras , Quitosana , Polifenóis , Humanos , Antioxidantes/farmacologia , Queimaduras/tratamento farmacológico , Materiais Biocompatíveis , Hidrogéis/farmacologia , Neovascularização Patológica , Cicatrização , Antibacterianos
3.
Biomed Pharmacother ; 167: 115481, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37703664

RESUMO

Eleven alkaloids, including five previously undescribed indolizidine alkaloids (1, 2a, 2b, 3a, and 3b) and four new pyrrolidine alkaloids (5-8), were isolated from the roots of Anisodus tanguticus. Of these, two new pairs of enantiomeric alkaloids (2a/2b and 3a/3b) are the first examples of alkaloids containing both indolizidine and pyrrolidine structural fragments. The one-carbon bridge connections with two pyrrolidine rings (6) or with a pyrrolidine ring and a pyridine ring (8) are the first reported from nature. Extensive spectroscopic techniques were used to elucidate their structures, and NMR and ECD calculations were used to determine the absolute configurations. The viability of human umbilical vein endothelial cells (HUVECs) was inhibited by compounds 2a, 2b, 3a, 4b, and 5, and compound 2b exhibited a potential anti-angiogenic effect by inhibiting the proliferation, migration, and tube formation of HUVECs. A chorioallantoic membrane assay also demonstrated the anti-angiogenic activity of 2b. In addition, compounds 2a, 2b, 3a, and 4b exhibited moderate cytotoxicity against A2780 cells.

4.
Biomol Ther (Seoul) ; 31(4): 456-465, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357018

RESUMO

Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

5.
Mol Clin Oncol ; 17(5): 151, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36172002

RESUMO

Andrographis paniculata (Ap) has been a part of traditional medicine for its anti-inflammatory effects, treatment of snake bites and liver abnormalities. Several investigations have revealed its bioactive components to be andrographolides. The methanolic extracts of leaves from Ap were characterized, the non-andrographolides were identified and screened for anti-proliferative activity. The extracts showed significant toxicity against numerous cancer cells including HeLa, MCF7, BT549, 293 and A549 cells. Anti-proliferative activity and effect on cancer cell invasion (metastatic potential) and cell migration were examined. The extracts revealed significant inhibition of the ability of HeLa cells in repairing the gap created by a vertical wound made on a confluent cell monolayer. Similarly, a 40% reduction in cell migration was observed in presence of the extracts. Significant anti-angiogenic activity in terms of reduced blood capillary formation was observed on the Chorioallantoic membranes of embryonated hen eggs co-inoculated with HeLa cells and the extracts. Analysis of HeLa cells treated with the extracts using flow cytometry indicated the arrest of cell cycle progression at the G2/M phase. Variation in the Bax/Bcl-2 ratio and elevated caspase-3 levels by immunoblotting confirmed cell death induction via the apoptotic pathway. Investigation of the extracts by gas chromatography-mass spectrometry displayed the predominant components to be 2(5H)-Furanone (14.73%), Quinic acid (17.32%), and Phytol (11.43%). These components have been previously known to have anticancer activity, while being studied individually in other plants. This is the first study, to the best of our knowledge, on the anti-proliferative and anti-angiogenic activity of the non-andrographolide components from Ap.

6.
Front Microbiol ; 13: 943452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935205

RESUMO

Five new chloro-azaphilones, chaetofanixins A-E (1-5), and five known analogs (6-10) were isolated and identified from the hadal trench-derived fungus Chaetomium globosum YP-106. The structure of chaetofanixin E (5) is unique and interesting, bearing a highly rigid 6/6/5/3/5 penta-cyclic ring system, which is first encountered in natural products. The structures of these compounds, including absolute configurations, were determined based on the spectroscopic analysis, electronic circular dichroism (ECD) calculations, and analysis of biogenetic origins. Compounds 1-7 significantly promoted angiogenesis in a dose-dependent manner, and thus, these compounds might be used as promising molecules for the development of natural cardiovascular disease agents.

7.
Eur J Pharm Biopharm ; 179: 26-36, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36041595

RESUMO

Sodium butyrate-loaded nanoparticles coated chitosan (NaBu-loaded nanoparticles/CS) were developed to treat the choroidal neovascularization in wet age-related macular degeneration (AMD). The nanoparticles were produced by double emulsification and solvent evaporation technique, optimized by experimental statistical design, characterized by analytical methods, investigated in terms of in vitro and in vivo ocular biocompatibility, and evaluated as an antiangiogenic system in vivo. The NaBu-loaded nanoparticles/CS were 311.1 ± 3.1 nm in diameter with a 0.208 ± 0.007 polydispersity index; had a +56.3 ± 2.6 mV zeta potential; showed a 92.3 % NaBu encapsulation efficiency; and sustained the drug release over 35 days. The NaBu-loaded nanoparticles/CS showed no toxicity to human retinal pigment epithelium cells (ARPE-19 cells); was not irritant to the chorioallantoic membrane (CAM); did not interfere in the integrity of the retinal layers of rat's eyes, as detected by the Optical Coherence Tomography and histopathology; and inhibited the angiogenesis in CAM assay. The NaBu-loaded nanoparticles/CS could be a therapeutic alternative to limit the neovascularization in AMD.


Assuntos
Quitosana , Nanopartículas , Degeneração Macular Exsudativa , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Ácido Butírico/uso terapêutico , Humanos , Ratos , Solventes , Degeneração Macular Exsudativa/tratamento farmacológico
8.
J Microbiol Biotechnol ; 32(3): 302-306, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35058400

RESUMO

A chemical investigation of a culture extract from Streptomyces sp. RK85-270 led to the isolation and characterization of two new oxindoles, RK-270D (1) and E (2). The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and High-resolution electrospray ionization mass spectrometry (HRESIMS) experiments. Compound 1 exhibited anti-angiogenic activities against human umbilical vein endothelial cells (HUVECs) without cytotoxicity. Results of Western blot analysis revealed that 1 inhibits VEGF-induced angiogenesis in the HUVECs via VEGFR2/ p38 MAPK-mediated pathway.


Assuntos
Streptomyces , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Oxindóis/metabolismo , Oxindóis/farmacologia
9.
Trials ; 22(1): 950, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930416

RESUMO

BACKGROUND: Hemodialysis (HD) is a common renal replacement therapy for patients with renal failure. Cardiovascular and cerebrovascular diseases are known to shorten survival periods and worsen the quality of life of HD patients. Atherosclerosis is a major cause of vascular diseases, and various factors such as abnormality of lipid metabolism and increased macrophage activity, oxidative stress, and endothelial dysfunction are associated with its pathogenesis and progression. Further, endothelial stem cells (ESCs) have been reported to play important roles in endothelial functions. Royal jelly (RJ) affects atherosclerosis- and endothelial function-related factors. The main aim of this trial is to investigate whether oral intake of RJ can maintain endothelial function in HD patients. In addition, the effects of RJ intake on atherosclerosis, ESC count, inflammation, and oxidative stress will be analyzed. METHODS: This will be a multicenter, prospective, double-blind, randomized controlled trial. We will enroll 270 participants at Nagasaki Jin Hospital, Shinzato Clinic Urakami, and Maeda Clinic, Japan. The participants will be randomized into RJ and placebo groups. The trial will be conducted according to the principles of the Declaration of Helsinki, and all participants will be required to provide written informed consent. The RJ group will be treated with 3600 mg/day of RJ for 24 months, and the placebo group will be treated with starch for 24 months. The primary endpoint will be the change in flow-mediated dilation (FMD), a parameter of endothelium function, from the time before treatment initiation to 24 months after treatment initiation. The secondary and other endpoints will be changes in FMD; ESC count; serum levels of vascular endothelial cell growth factor, macrophage colony-stimulating factor, 8-hydroxydeoxyguanosine, and malondialdehyde; the incidence of cardiovascular diseases, cerebrovascular diseases, and stenosis of blood access; and safety. DISCUSSION: This trial will clarify whether oral intake of RJ can maintain endothelial function and suppress the progression of atherosclerosis in HD patients. In addition, it will clarify the effects of RJ on ESCs, oxidative stress, and angiogenic activity in blood samples. TRIAL REGISTRATION: The Japan Registry of Clinical Trials  jRCTs071200031 .  Registered on 7 December 2020.


Assuntos
Qualidade de Vida , Diálise Renal , Endotélio , Ácidos Graxos , Humanos , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Diálise Renal/efeitos adversos
10.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680238

RESUMO

Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.

11.
Front Chem ; 9: 733350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616713

RESUMO

Seven new clerodane diterpenoids, crassifolins Q-W (1-7), along with five known analogues (8-12), were isolated from the roots of Croton crassifolius. Their structures were identified by comprehensive spectroscopic analysis (UV, IR, NMR, and HR-ESI-MS), and their absolute configurations were determined by ECD spectra and X-ray crystallography. The activities of compounds 1-5 against inflammatory cytokines IL-6 and TNF-α levels on LPS-induced RAW 264.7 macrophages were assessed, and compound 5 showed the most significant activity with the secretion levels of IL-6 and TNF-α at 32.78 and 12.53%, respectively. Moreover, compounds 1-5 were screened for their anti-angiogenesis using a human umbilical vein endothelial cells in vitro mode; the results showed all of them exhibited obvious anti-angiogenesis activities, in particular, compound 5 showed the strongest anti-angiogenesis effect in the range of 6.25-50 µM.

12.
FASEB Bioadv ; 3(4): 243-258, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33842849

RESUMO

Moyamoya disease (MMD) is a cryptogenic vascular disorder in the intracranial arteries. RING protein 213 (RNF213) is the susceptibility gene for MMD, and encodes a RING domain and a Walker motif. Herein, we identified UBC13 (UBE2N) as an E2 ubiquitin-conjugating enzyme for RNF213 E3 ubiquitin ligase by yeast two-hybrid screening with a fragment containing RNF213 RING domain as bait, and the immunocomplex of RNF213-UBC13 was detected in vivo. Analysis of the ubiquitin chain on RNF213 by monitoring autoubiquitination showed that RNF213 was autoubiquitinated in a K63 chain fashion, but not in a K48 chain fashion. Finally, this RNF213 ubiquitination in a UBC13-dependent manner was required for cell mobility and invasion activity for HUVEC cells in UBC13 knock-down and ubiquitination-dead RNF213 mutant expressing experiments. These findings demonstrated that RNF213 is a K63-linked E3 ubiquitin ligase, and UBC13 is responsible for RNF213 dependent ubiquitination. The RNF213-UBC13 axis may be associated with angiogenic activity and MMD.

13.
Gene ; 786: 145616, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33811963

RESUMO

Breast cancer acts as an assassin among women. According to WHO (world health organisation), about 6, 27,000 deaths have occurred in 2018 due to breast cancer. Since, the evolution of cancer involves many complicated pathway, in this article we have decided to focus on wild type p53. P53 is also called as tumor suppressor gene. As the name suggest, p53 is a real guardian of genome, if it is not mutated or subjected to degradation. It can perform a wide range of activities during cancer progression. It either stimulates or inhibits the genes or proteins that are responsible for cell cycle arrest, apoptosis, anti-angiogenic activity and anti-metastatic activity. At times, the p53 will be unable to produce its action due to various reasons like mutation or degradation by other proteins or degrading ligases. Since, we are focusing on wild type p53, it will be inhibited occasionally by mdm2 resulting in proteosomal degradation of p53. However, this condition can be prevented by possible treatment regimen. With the above points in mind, we have focused on p53 activation, complex formation between p53 and mdm2, and inhibition of the complex in order to free p53 and allow them to perform their action for rehabilitation of cancer. Furthermore, we have also discussed pathways involved in eradicating cancer through p53 activation. By considering the following aspects, hope that p53 can be considered for management of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/genética , Progressão da Doença , Feminino , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteína Supressora de Tumor p53/genética
14.
Am J Chin Med ; 49(3): 737-751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33683188

RESUMO

Angiogenesis plays a crucial role in tumor growth and metastasis. Vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation and migration are critical steps in tumor angiogenesis. Here, we investigated the anti-angiogenic activity of xanthorrhizol, a sesquiterpenoid isolated from the Indonesian medicinal plant Curcuma xanthorrhiza. Xanthorrhizol at noncytotoxic concentrations inhibited the proliferation, migration, and formation of capillary-like tubes in VEGF-treated human umbilical vein endothelial cells (HUVECs). Xanthorrhizol inhibited the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) and the expression of vascular cell adhesion molecule (VCAM)-1 and E-selectin in VEGF-treated HUVECs. The expression and transcriptional activity of NF-[Formula: see text]B were downregulated by xanthorrhizol in VEGF-treated HUVECs. Furthermore, xanthorrhizol significantly inhibited VEGF-induced angiogenesis in the chorioallantoic membrane of fertilized eggs and Matrigel plugs subcutaneously injected into mice. Xanthorrhizol inhibited tumor volume and tumor-derived angiogenesis in mice inoculated with breast cancer cells. The in vitro and in vivo anti-angiogenic activities of xanthorrhizol were as potent as those of curcumin, a well-known anticancer agent derived from C. longa. Taken together, xanthorrhizol inhibits VEGF-induced angiogenesis of endothelial cells by blocking the activation of the PI3K/Akt/eNOS axis and subsequent upregulation of adhesion molecules induced by the transcriptional activation of NF-[Formula: see text]B. Xanthorrhizol is a promising anti-angiogenic agent and can serve as a beneficial agent to enhance anticancer treatments.


Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , NF-kappa B/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Fenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/efeitos adversos , Animais , Curcuma/química , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neovascularização Patológica/induzido quimicamente , Fenóis/isolamento & purificação , Fenóis/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fitoterapia , Células Tumorais Cultivadas
15.
Bioorg Chem ; 109: 104700, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607361

RESUMO

A chemical investigation of the zoantharian Zoanthus vietnamensis, collected off Taiwan, yielded eleven new alkaloids, 7α-hydroxykuroshine J (1), 18ß-hydroxykuroshine J (2), 5α-hydroxyzoanthenamine (3), 5ß-hydroxyzoanthenamine (4), 14α-hydroxyzoanthenamine (5), 30-hydroxyzoanthenamine (6), 11-dehydroxy-18-epi-kuroshine A (7), 5α-hydroxykuroshine A (8), 7ß-hydroxykuroshine A (9), 11-keto-oxyzoanthamine (10), and 30-hydroxyzoanthamine (11), along with eight known compounds (12-19). The structures of these compounds were identified by detailed spectroscopic data, including HRESIMS, IR, NMR, and UV spectra. All secondary metabolites isolated from Z. vietnamensis were investigated for the anti-angiogenic effect in human endothelial progenitor cells (EPCs). Compounds 6, 7, 11, and 13 exhibited mild anti-angiogenic effect by blocking cell growth and tube formation of EPCs. The neuroprotective potential of four major compounds 12, 14, 15, and 19 against paclitaxel-induced neurotoxicity was evaluated. Pretreatment of 14 and 15 protected paclitaxel-damaged neurite outgrowth of dorsal root ganglion (DRG) neurons, without interfering the cytotoxic activity of paclitaxel on cervical cancer SiHa cells.


Assuntos
Alcaloides/farmacologia , Antozoários/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neurônios/efeitos dos fármacos , Alcaloides/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Descoberta de Drogas , Gânglios Espinais/citologia , Humanos , Camundongos , Estrutura Molecular , Paclitaxel/toxicidade , Células-Tronco/efeitos dos fármacos
16.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076322

RESUMO

HPV16 E6 oncoprotein is a member of the human papillomavirus (HPV) family that contributes to enhanced cellular proliferation and risk of cervical cancer progression via viral infection. In this study, interferon regulatory factor-1 (IRF-1) regulates cell growth inhibition and transcription factors in immune response, and acts as an HPV16 E6-binding cellular molecule. Over-expression of HPV16 E6 elevated cell growth by attenuating IRF-1-induced apoptosis and repressing p21 and p53 expression, but activating cyclin D1 and nuclear factor kappa B (NF-κB) expression. The promoter activities of p21 and p53 were suppressed, whereas NF-κB activities were increased by HPV16 E6. Additionally, the cell viability of HPV16 E6 was diminished by IRF-1 in a dose-dependent manner. We found that HPV16 E6 activated vascular endothelial growth factor (VEGF)-induced endothelial cell migration and proliferation as well as phosphorylation of VEGFR-2 via direct interaction in vitro. HPV16 E6 exhibited potent pro-angiogenic activity and clearly enhanced the levels of hypoxia-inducible factor-1α (HIF-1α). By contrast, the loss of function of HPV16 E6 by siRNA-mediated knockdown inhibited the cellular events. These data provide direct evidence that HPV16 E6 facilitates tumour growth and angiogenesis. HPV16 E6 also activates the PI3K/mTOR signalling cascades, and IRF-1 suppresses HPV16 E6-induced tumourigenesis and angiogenesis. Collectively, these findings suggest a biological mechanism underlying the HPV16 E6-related activity in cervical tumourigenesis.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Papillomavirus Humano 16/patogenicidade , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator Regulador 1 de Interferon/genética , NF-kappa B/metabolismo , Neovascularização Patológica/virologia , Proteínas Oncogênicas Virais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/virologia
17.
Biomolecules ; 10(9)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916959

RESUMO

The majority of research into the effects of mesenchymal stem cell (MSC) transplants on spinal cord injury (SCI) is performed in rodent models, which may help inform on mechanisms of action, but does not represent the scale and wound heterogeneity seen in human SCI. In contrast, SCI in dogs occurs naturally, is more akin to human SCI, and can be used to help address important aspects of the development of human MSC-based therapies. To enable translation to the clinic and comparison across species, we have examined the paracrine, regenerative capacity of human and canine adipose-derived MSCs in vitro. MSCs were initially phenotyped according to tissue culture plastic adherence, cluster of differentiation (CD) immunoprofiling and tri-lineage differentiation potential. Conditioned medium (CM) from MSC cultures was then assessed for its neurotrophic and angiogenic activity using established cell-based assays. MSC CM significantly increased neuronal cell proliferation, neurite outgrowth, and ßIII tubulin immunopositivity. In addition, MSC CM significantly increased endothelial cell migration, cell proliferation and the formation of tubule-like structures in Matrigel assays. There were no marked or significant differences in the capacity of human or canine MSC CM to stimulate neuronal cell or endothelial cell activity. Hence, this study supports the use of MSC transplants for canine SCI; furthermore, it increases understanding of how this may subsequently provide useful information and translate to MSC transplants for human SCI.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Colágeno , Meios de Cultivo Condicionados , Cães , Combinação de Medicamentos , Células Endoteliais/fisiologia , Humanos , Técnicas In Vitro , Laminina , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Crescimento Neuronal/fisiologia , Neurônios/fisiologia , Comunicação Parácrina , Proteoglicanas , Tubulina (Proteína)/metabolismo
18.
Anticancer Res ; 40(9): 5049-5057, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878793

RESUMO

BACKGROUND/AIM: Studies with acridine compounds have reported anticancer effects. Herein, we evaluated the toxicity and antitumor effect of the (E)-1'-((4-chlorobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-06), a promising anticancer spiro-acridine compound. MATERIALS AND METHODS: The toxicity of AMTAC-06 was evaluated on zebrafish and mice. Antitumor activity was assessed in Ehrlich ascites carcinoma model. Effects on angiogenesis, cytokine levels and cell cycle were also investigated. RESULTS: AMTAC-06 did not induce toxicity on zebrafish and mice (LD50 approximately 5000 mg/kg, intraperitoneally). No genotoxicity was observed on micronucleus assay. AMTAC-06 significantly reduced the total viable Ehrlich tumor cells and increased sub-G1 peak, suggesting apoptosis was triggered. Moreover, the compound significantly decreased the density of peritumoral microvessels, indicating an anti-angiogenic action, possibly dependent on the cytokine modulation (TNF-α, IL-1ß and IFN-γ). No significant toxicological effects were recorded for AMTAC-06 on tumor transplanted animals. CONCLUSION: AMTAC-06 has low toxicity and a significant antitumor activity.


Assuntos
Acridinas/farmacologia , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Fatores Imunológicos/farmacologia , Compostos de Espiro/farmacologia , Acridinas/química , Inibidores da Angiogênese/química , Animais , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Fatores Imunológicos/química , Imunomodulação/efeitos dos fármacos , Camundongos , Estrutura Molecular , Compostos de Espiro/química , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
19.
Plants (Basel) ; 9(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824448

RESUMO

Lemon bottlebrush (Callistemon citrinus (Curtis) Skeels) is one of the most common ornamental plants, diffused worldwide, and characterized by the presence of flowers with an intense red/purple coloration. There is increasing interest in the use and application of anthocyanins for their unique structural/chemical features in both food and pharmaceutical applications. RP-HPLC-DAD-ESI-MS/MS analysis of an enriched fraction of acidified methanolic extract of C. citrinus flowers allow the possibility of identifying, for the first time, the presence of four anthocyanins: cyanidin-3,5-O-diglucoside (cyanin), peonidin-3,5-O-diglucoside (peonin), cyanidin-3-O-glucoside, and cyanidin-coumaroylglucoside-pyruvic acid. Moreover, the evaluation of antioxidant and biological potential showed a remarkable activity of this fraction, able to actively scavenge DPPH, AAPH, and ABTS radicals, and to counteract the ß-carotene-bleaching. In addition, it protects human mononuclear cells from oxidative injuries and prevents angiogenesis (acting in the range of few µg/ml); furthermore, it does not show significant iron-chelating ability (up to 200 µg/mL). The easy way of cultivation, robustness, and adaptability to different environments make the flowers of this plant a useful source of anthocyanins, with remarkable health promoting properties.

20.
Int J Nanomedicine ; 15: 4523-4540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606692

RESUMO

PURPOSE: Selenium nanoparticles (SeNP) have several applications in the field of biotechnology, including their use as anti-cancer drugs. The purpose of the present study is to analyze the efficacy of green synthesis on the preparation of SeNP and its effect on their anti-cancer properties. METHODS: A bacterial strain isolated from a freshwater source was shown to efficiently synthesize SeNP with potential therapeutic properties. The quality and stability of the NP were studied by scanning electron microscopy, X-ray diffraction, zeta-potential and FTIR analysis. A cost-effective medium formulation from biowaste having 6% banana peel extract enriched with 0.25 mM tryptophan was used to synthesize the NP. The NP after optimization was used to analyze their anti-tumor and anti-angiogenic activity. For this purpose, first, the cytotoxicity of the NP against cancer cells was analyzed by MTT assay and then chorioallantoic membrane assay was performed to assess anti-angiogenic activity. Further, cell migration assay and clonogenic inhibition assay were performed to test the anti-tumor properties of SeNP. To assess the cytotoxicity of SeNP on healthy RBC, hemolysis assay was performed. RESULTS: The strain identified as Pseudomonas stutzeri (MH191156) produced phenazine carboxylic acid, which aids the conversion of Se oxyanions to reduced NP state, resulting in particles in the size range of 75 nm to 200 nm with improved stability and quality of SeNP, as observed by zeta (ξ) potential of the particles which was found to be -46.2 mV. Cytotoxicity of the SeNP was observed even at low concentrations such as 5 µg/mL against cervical cancer cell line, ie, HeLa cells. Further, neovascularization was inhibited by upto 30 % in CAMs of eggs coinoculated with SeNp when compared with untreated controls, indicating significant anti-angiogenic activity of SeNP. The NP also inhibited the invasiveness of HeLa cells as observed by decreased cell migration and clonogenic proliferation. These observations indicate significant anti-tumor and anti-angiogenic activity of the SeNP in cervical cancer cells. CONCLUSION: P. stutzeri (MH191156) is an efficient source of Se NP production with potential anti-angiogenic and anti-tumor properties, particularly against cervical cancer cells.


Assuntos
Inibidores da Angiogênese/farmacologia , Nanopartículas Metálicas/química , Pseudomonas stutzeri/metabolismo , Selênio/farmacologia , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Custos e Análise de Custo , Feminino , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/ultraestrutura , Fenazinas/química , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Neoplasias do Colo do Útero/irrigação sanguínea , Neoplasias do Colo do Útero/patologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...