Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Eur J Pharmacol ; 984: 177057, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39396750

RESUMO

Prior investigation shows that diabetic patients present hypothalamus-pituitary-adrenal (HPA) axis hyperactivity related to impaired negative feedback. This study investigates the effect of Captopril on the overproduction of adrenocorticotropic hormone (ACTH) and its precursor proopiomelanocortin (POMC) in the pituitary gland of male diabetic mice. Diabetes was induced by intravenous injection of alloxan into fasted Swiss-webster mice, and the animals were treated with Captopril for 14 consecutive days, starting 7 days post-diabetes induction. Plasma corticosterone levels were evaluated by ELISA, while pituitary gland expressions of angiotensin-II type 1 receptor (AT1), angiotensin-II type 2 receptor (AT2), ACTH, Bax, Bcl-2, KI-67, POMC, and glucocorticoid receptor (GR) were evaluated using immunohistochemistry or Western blot. Diabetic mice showed pituitary gland overexpression of AT1, without altering AT2 levels, which were sensitive to Captopril treatment. Furthermore, diabetic mice presented hypercortisolism, along with an increase in the number of corticotroph cells, POMC and ACTH expression, and number of proliferative cells, and a decrease of GR expression in the pituitary gland. In addition, treatment with Captopril reduced systemic corticosterone levels, corticotroph and proliferative cell numbers, and Bcl-2, POMC, and ACTH expression in the pituitary gland of diabetic mice, besides increasing the expression of Bax and GR. In conclusion, these findings show that Captopril is a promising therapy for treating complications associated with HPA axis hyperactivity in diabetic patients, in a mechanism probably related to the downregulation of POMC production in the pituitary gland and subsequent reduction of systemic corticosterone levels.

2.
Front Physiol ; 15: 1452959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328833

RESUMO

Background: Hypertension is characterized by upregulation of the renin-angiotensin system, increased blood-brain barrier (BBB) permeability, microglia activation within autonomic nuclei, and an intense sympathoexcitation. There is no information on the interplay of these events during the development of neurogenic hypertension. We sought to identify the interaction and time-course changes of Ang II availability, barrier dysfunction, microglia activation, and autonomic imbalance within autonomic areas during the development of neurogenic hypertension. Methods: Sequential changes of hemodynamic/autonomic parameters, BBB permeability, microglia structure/density (IBA-1), and angiotensin II (Ang II) immunofluorescence were evaluated within the paraventricular hypothalamic nucleus, nucleus of the solitary tract, and rostral ventrolateral medulla of Wistar and spontaneously hypertensive rats (SHRs) aged 4 weeks, 5 weeks, 6 weeks, 8 weeks, and 12 weeks. The somatosensory cortex and hypoglossal nucleus were also analyzed as non-autonomic control areas. Results: Increased brain Ang II availability (4th-5th week) was the first observed change, followed by the incipient BBB leakage and increased microglia density (6th week). From the 5th-6th weeks on, BBB leakage, Ang II, and IBA-1 densities increased continuously, allowing a parallel increase in both Ang II-microglia colocalization and the transition of microglial cells from highly ramified in the basal surveillant condition (4th-5th week) to shorter process arbors, fewer endpoints, and enlarged soma in the disease-associate condition (6th week to the 12th week). Simultaneously with increased Ang II-microglia colocalization and microglia morphologic phenotypic changes, sympathetic activity and pressure variability increased, autonomic control deteriorated, and blood pressure increased. These responses were not specific for autonomic nuclei but also occurred at a lower magnitude in the somatosensory cortex and hypoglossal nucleus, indicating the predominance of hypertension-induced effects on autonomic areas. No changes were observed in age-matched controls where Ang II density did not change. Conclusion: Brain Ang II density is the initial stimulus to drive coordinated changes in BBB permeability and microglial reactivity. Increased BBB dysfunction allows access of plasma Ang II and increases its local availability and the colocalization and activation of microglial cells. It is a potent stimulus to augments vasomotor sympathetic activity, autonomic imbalance, and pressure elevation during the establishment of hypertension.

3.
Herz ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313691

RESUMO

BACKGROUND: Patients who have undergone catheter ablation for atrial fibrillation (AF) may experience recurrence of this condition. The efficacy of sacubitril-valsartan (S/V) in preventing AF recurrence compared with angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) is not established. This meta-analysis aimed to establish the best therapeutic choice for preventing AF recurrence after catheter ablation. METHOD: A systematic search of the PubMed, Embase, and Cochrane databases was conducted for randomized controlled trials (RCTs) and observational studies comparing the use of S/V with ACEI/ARB in patients who underwent catheter ablation. Results are presented as mean difference (MD) with 95% confidence interval (CI). Heterogeneity was assessed with the I2 statistic, and outcomes are expressed as relative risk (RR). R software version 4.2.3 was used for the analysis. RESULTS: Three RCTs and one cohort study, comprising 642 patients with 319 patients in the S/V group and 323 in the control group, were included. Follow-up ranged from 6 to 36 months, with mean ages ranging from 58.9 to 65.8 years. A significant reduction in persistent AF occurrence was demonstrated favoring the S/V group (RR: 0.54; 95% CI: [0.41, 0.70]; p = 0.000004; I2: 80%) over the ACEI/ARB group. There was no significant difference in left ventricular ejection fraction with S/V use (MD: 1.23; 95% CI: [-0.12, 2.60]; p = 0.076; I2: 0%) compared with ACEI/ARB. The analysis also showed a significant reduction in left atrial volume index (MD: -5.33; 95% CI: [-8.76, -1.90]; p = 0.002; I2: 57%) in the S/V group compared with the ACEI/ARB group. CONCLUSION: This meta-analysis demonstrated the efficacy of S/V in reducing the incidence of AF in patients undergoing catheter ablation compared with the use of ACEI/ARB. However, more RCTs are needed for a comprehensive evaluation of its efficacy in reducing AF recurrence after catheter ablation in clinical practice.

4.
Eur J Pharmacol ; 981: 176907, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39154825

RESUMO

Cardiovascular diseases (CVDs) have a high mortality rate, and despite the several available therapeutic targets, non-response to antihypertensives remains a common problem. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are important classes of drugs recommended as first-line therapy for several CVDs. However, response to ACEIs and ARBs varies among treated patients. Pharmacogenomics assesses how an individual's genetic characteristics affect their likely response to drug therapy. Currently, numerous studies suggest that genetic polymorphisms may contribute to variability in drug response. Moreover, further studies evaluating gene-gene interactions within signaling pathways in response to antihypertensives might help to unravel potential genetic predictors for antihypertensive response. This review summarizes the pharmacogenetic data for ACEIs and ARBs in patients with CVD, and discusses the potential pharmacogenetics of these classes of antihypertensives in clinical practice. However, replication studies in different populations are needed. In addition, studies that evaluate gene-gene interactions that share signaling pathways in the response to antihypertensive drugs might facilitate the discovery of genetic predictors for antihypertensive response.


Assuntos
Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Doenças Cardiovasculares , Farmacogenética , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/tratamento farmacológico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais
6.
Rev Med Virol ; 34(5): e2577, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39215460

RESUMO

Dengue is a disease caused by a flavivirus (DENV) and transmitted by the bite of a mosquito, primarily the Aedes aegypti and Aedes albopictus species. Previous studies have demonstrated a relationship between the host gut microbiota and the evolution of dengue. It seems to be a bidirectional relationship, in which the DENV can affect the microbiota by inducing alterations related to intestinal permeability, leading to the release of molecules from microbiota dysbiosis that can influence the evolution of dengue. The role of angiotensin II (Ang II) in the microbiota/dengue relationship is not well understood, but it is known that the renin-angiotensin system (RAS) is present in the intestinal tract and interacts with the gut microbiota. The possible effect of Ang II on the microbiota/Ang II/dengue relationship can be summarised as follows: the presence of Ang II induced hypertension, the increase in angiotensinogen, chymase, and microRNAs during the disease, the induction of vascular dysfunction, the production of trimethylamine N-oxide and the brain/microbiota relationship, all of which are elements present in dengue that could be part of the microbiota/Ang II/dengue interactions. These findings suggest the potential use of Ang II synthesis blockers and the use of AT1 receptor antagonists as therapeutic drugs in dengue.


Assuntos
Dengue , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Dengue/virologia , Animais , Disbiose/microbiologia , Angiotensina II/metabolismo , Vírus da Dengue/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Aedes/microbiologia , Aedes/virologia
7.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39204165

RESUMO

The treatment of hypertension has improved in the last century; attention has been directed to restoring several altered pathophysiological mechanisms. However, regardless of the current treatments, it is difficult to control blood pressure. Uncontrolled hypertension is responsible for several cardiovascular complications, such as chronic renal failure, which is frequently observed in hypertensive patients. Therefore, new approaches that may improve the control of arterial blood pressure should be considered to prevent serious cardiovascular disorders. The contribution of purinergic receptors has been acknowledged in the pathophysiology of hypertension; this review describes the participation of these receptors in the alteration of kidney function in hypertension. Elevated interstitial ATP concentrations are essential for the activation of renal purinergic receptors; this becomes a fundamental pathway that leads to the development and maintenance of hypertension. High ATP levels modify essential mechanisms implicated in the long-term control of blood pressure, such as pressure natriuresis, the autoregulation of the glomerular filtration rate and renal blood flow, and tubuloglomerular feedback responses. Any alteration in these mechanisms decreases sodium excretion. ATP stimulates the release of vasoactive substances, causes renal function to decline, and induces tubulointerstitial damage. At the same time, a deleterious interaction involving angiotensin II and purinergic receptors leads to the deterioration of renal function.

8.
Front Immunol ; 15: 1404384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953035

RESUMO

Introduction: Schistosomiasis (SM) is a parasitic disease caused by Schistosoma mansoni. SM causes chronic inflammation induced by parasitic eggs, with collagen/fibrosis deposition in the granuloma process in the liver, spleen, central nervous system, kidneys, and lungs. Pulmonary arterial hypertension (PAH) is a clinical manifestation characterized by high pressure in the pulmonary circulation and right ventricular overload. This study investigated the production of functional autoantibodies (fAABs) against the second loop of the G-protein-coupled receptor (GPCR) in the presence of hepatic and PAH forms of human SM. Methods: Uninfected and infected individuals presenting acute and chronic manifestations (e.g., hepatointestinal, hepato-splenic without PAH, and hepato-splenic with PAH) of SM were clinically evaluated and their blood was collected to identify fAABs/GPCRs capable of recognizing endothelin 1, angiotensin II, and a-1 adrenergic receptor. Human serum was analyzed in rat cardiomyocytes cultured in the presence of the receptor antagonists urapidil, losartan, and BQ123. Results: The fAABs/GPCRs from chronic hepatic and PAH SM individuals, but not from acute SM individuals, recognized the three receptors. In the presence of the antagonists, there was a reduction in beating rate changes in cultured cardiomyocytes. In addition, binding sites on the extracellular domain functionality of fAABs were identified, and IgG1 and/or IgG3 antibodies were found to be related to fAABs. Conclusion: Our data suggest that fAABs against GPCR play an essential role in vascular activity in chronic SM (hepatic and PAH) and might be involved in the development of hypertensive forms of SM.


Assuntos
Autoanticorpos , Receptores Acoplados a Proteínas G , Autoanticorpos/imunologia , Autoanticorpos/sangue , Humanos , Animais , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Ratos , Masculino , Feminino , Adulto , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/etiologia , Pessoa de Meia-Idade , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Esquistossomose mansoni/imunologia , Schistosoma mansoni/imunologia , Esquistossomose/imunologia
9.
Mol Biol Rep ; 51(1): 775, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904729

RESUMO

Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.


Assuntos
Angiotensina II , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Angiotensina II/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Transdução de Sinais , Angiotensina I/metabolismo , Neovascularização Patológica/metabolismo , Animais , Fragmentos de Peptídeos/metabolismo
10.
Vasc Biol ; 6(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843387

RESUMO

Abstract: Renin-angiotensin system plays a critical role in blood pressure control, and the abnormal activation of the AT1 receptor contributes to the development of renovascular hypertension. This study aimed to evaluate the underlying cellular signaling for AT1 receptor activation by Ang II and to compare this mechanism between aortas from 2K-1C and 2K rats. Effects of antagonists and inhibitors were investigated on Ang II-induced contractions in denuded or intact-endothelium aortas. The AT1 receptor antagonist abolished Ang II-induced contraction in 2K-1C and 2K rat aortas, while AT2 and Mas receptors antagonists had no effect. Endothelial nitric oxide synthase inhibition increased the maximal effect (Emax) of Ang II in 2K, which was not changed in 2K-1C aortas. It was associated with lower eNOS mRNA levels in 2K-1C. Endothelium removal increased the Emax of Ang II in 2K-1C and mainly in 2K rat aortas. Nox and COX inhibition did not alter Ang II-induced contraction in 2K and 2K-1C rat aortas. However, AT1 expression was higher in 2K-1C compared to 2K rat aortic rings, whereas expression of phosphorylated (active) IP3 receptors was lower in 2K-1C than in 2K rats. These results demonstrate that endothelium removal impairs Ang II-stimulated contraction in the aorta of 2K-1C rats, which is associated with the reduction of IP3 receptor phosphorylation and activation. In addition, eNOS plays a critical role in Ang II-induced contraction in 2K rat aortas. It is possible that the high Ang II plasma levels could desensitize AT1 receptor in 2K-1C rats, leading to impaired IP3 receptors activation.

11.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892464

RESUMO

In this study, we investigated whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein may modify angiotensin-converting enzyme 2 (ACE2) activity in the plasma, heart, kidney, liver, lung, and six brain regions (amygdala, brain stem, cortex, hippocampus, hypothalamus, and striatum) of diabetic and hypertensive rats. We determine ACE2 activity in the plasma and lysates of heart, kidney, liver, lung, and six brain regions. MLN-4760 inhibits ACE2 activity in the plasma and all organs. On the other hand, soluble ACE2 (sACE2) activity increased in the plasma of diabetic rats, and there was no change in the plasma of hypertensive rats. ACE2 activity was augmented in the liver, brain stem, and striatum, while it decreased in the kidney, amygdala, cortex, and hippocampus of diabetic rats. ACE2 activity increased in the kidney, liver, and lung, while it decreased in the heart, amygdala, cortex, and hypothalamus of hypertensive rats. We measured the ACE2 content via enzyme-linked immunosorbent assay and found that ACE2 protein levels increased in the heart, while it decreased in the plasma, kidney, brain stem, cortex, hippocampus, hypothalamus, and striatum of diabetic rats. ACE2 protein levels decreased in the brain stem, cortex, hippocampus, and hypothalamus of hypertensive rats. Our data showed that the spike protein enhanced ACE2 activity in the liver and lungs of diabetic rats, as well as in the heart and three of the brain regions (cortex, hypothalamus, and striatum) of hypertensive rats.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hipertensão , Glicoproteína da Espícula de Coronavírus , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Ratos , Glicoproteína da Espícula de Coronavírus/metabolismo , Masculino , Hipertensão/metabolismo , SARS-CoV-2 , Diabetes Mellitus Experimental/metabolismo , Encéfalo/metabolismo , Encéfalo/enzimologia , COVID-19/metabolismo , COVID-19/virologia , Carboxipeptidases/metabolismo , Rim/metabolismo , Rim/enzimologia , Humanos , Imidazóis , Leucina/análogos & derivados
12.
Arch Cardiol Mex ; 2024 May 09.
Artigo em Espanhol | MEDLINE | ID: mdl-38724012

RESUMO

Hypertension is a major risk of morbidity and mortality in patients when it is uncontrolled. In spite of improved therapies currently available for blood pressure control, their complications are far away from being accomplished. Therefore, chronic renal failure is frequently observed in hypertensive patients. Thus, insights on mechanisms that may contribute to arterial pressure control should be studied to prevent life-threatening cardiovascular disorders. Purinergic receptors have been recognized in the physiopathology of hypertension; this review summarizes their participation in the renal abnormalities of the kidney in hypertension. Several studies have suggested the activation of renal purinergic receptors under an elevated interstitial ATP milieu as a fundamental pathway that leads to generation and maintained hypertension. Elevated ATP concentration alters fundamental mechanisms involved in the long-term control of blood pressure such as pressure natriuresis, autoregulation of glomerular filtration rate and renal blood flow, as well as increased tubule-glomerular feedback responses, overall, these alterations decrease sodium excretion; in addition, the expression of ATP receptors is modified. Under a genetical background, ATP induces the production of vasoactive compounds, decreases renal function and induces tubulointerstitial injury before glomerular damage. Simultaneously, a deleterious interaction between angiotensin II and purinergic receptors lead to the progression of renal damage.


La hipertensión arterial descontrolada es un factor de riesgo muy relevante para el desarrollo de complicaciones cardiovasculares graves. A pesar de los recursos disponibles en la actualidad, el control de la hipertensión arterial y sus complicaciones dista mucho de lograrse. Por ello, sus secuelas continúan siendo catastróficas, como la insuficiencia renal crónica. De ahí la relevancia de reconocer factores que pudieran modificarse para evitar esta complicación. Recientemente se ha propuesto que los receptores purinérgicos contribuyen en forma importante en las alteraciones renales que ocurren en la hipertensión arterial; en esta revisión se resume brevemente su papel. En varios estudios se ha demostrado que cuando existen concentraciones elevadas de ATP en el intersticio renal, la activación de los receptores purinérgicos constituye una vía fundamental en la generación y la persistencia de hipertensión arterial. Las concentraciones elevadas de ATP alteran mecanismos fundamentales asociados en el control de la presión arterial, como el mecanismo de natriuresis de presión, la autorregulación del flujo renal y la filtración glomerular, así como el aumento en la sensibilidad del mecanismo de retroalimentación tubuloglomerular. La alteración de estos mecanismos contribuye a la disminución de la excreción urinaria de sodio. Además, se modifica la expresión de receptores de ATP (purinérgicos). Bajo la influencia de alteraciones genéticas, el ATP estimula la producción de compuestos vasoactivos y en conjunto producen una disminución de la función renal y lesión tubulointersticial antes de que se lesione el glomérulo. Al mismo tiempo, la interacción de la angiotensina II y los receptores purinérgicos favorece la progresión del daño renal.

13.
Am J Physiol Cell Physiol ; 326(4): C1203-C1211, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581656

RESUMO

Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.


Assuntos
Angiotensina II , Doenças Cardiovasculares , Humanos , Dipeptidil Peptidase 4 , Peptidil Dipeptidase A , Receptor Tipo 1 de Angiotensina , Inflamação , Fibrose , Angiotensina I
14.
Arch Med Res ; 55(3): 102986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492325

RESUMO

Fatty liver is a multifactorial disease characterized by excessive accumulation of lipids in hepatocytes (steatosis), insulin resistance, oxidative stress, and inflammation. This disease has a major public health impact because it is the first stage of a chronic and degenerative process in the liver that can lead to steatohepatitis, cirrhosis, and liver cancer. Although this disease is mainly diagnosed in patients with obesity, type 2 diabetes mellitus, and dyslipidemia, recent evidence indicates that vasoactive hormones such as angiotensin II (ANGII) not only promote endothelial dysfunction (ED) and hypertension, but also cause fatty liver, increase adipose tissue, and develop a pro-steatotic environment characterized by a low-grade systemic pro-inflammatory and pro-oxidant state, with elevated blood lipid levels. The role of ANGII in lipid accumulation has been little studied, so this review aims to summarize existing reports on the possible mechanism of action of ANGII in inducing lipid accumulation in hepatocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Angiotensina II , Diabetes Mellitus Tipo 2/complicações , Lipídeos , Fígado , Hepatopatia Gordurosa não Alcoólica/etiologia
15.
Arch Cardiol Mex ; 94(3): 373-380, 2024 03 13.
Artigo em Espanhol | MEDLINE | ID: mdl-38478992

RESUMO

Aneurysms are clinical entities that can develop and affect human aorta; and although in most cases they have an asymptomatic course, these pathological dilatations can lead to a lethal outcome when rupture occurs, thus the establishment of predictors is crucial for death prevention. Essential events that take place in the vessel wall have been identified and described, such as inflammation, proteolysis, smooth muscle cell apoptosis, angiogenesis, and vascular remodeling. Porcine and ovine models have been useful for the development and evaluation of endovascular devices of the aorta. However, since the worldwide introduction and adoption of these minimally invasive techniques for aneurysm repair, there is lesser availability of diseased aortic tissue for molecular, cellular, and histopathological analysis, therefore over the last three decades it has been proposed various small species models that have allowed the focal induction of these lesions for the study of physiopathological mechanisms and possible useful biomarkers as diagnostic and therapeutic targets. The present review article presents and discusses the animal models available as their applications, characteristics, advantages, and limitations for the development of preclinical studies, and their importance in the comprehension of this pathology in humans.


Los aneurismas son una de las entidades clínicas que pueden desarrollarse y afectar la aorta humana. Aunque en la mayoría de los casos tienen un carácter asintomático, estas dilataciones patológicas pueden resultar letales cuando se presentan con ruptura, por lo que el reconocimiento de factores predictores de esta complicación es crucial para evitar muertes. Fisiopatológicamente se han identificado eventos esenciales que ocurren en la pared del vaso, como inflamación, proteólisis, apoptosis del músculo liso, angiogénesis y remodelación. Las grandes especies como porcinos y ovinos han sido de utilidad para el desarrollo y evaluación del desempeño de dispositivos endovasculares en la aorta, así como la remodelación; con el advenimiento y disposición de estas técnicas mínimamente invasivas para su reparación existe una menor disponibilidad de tejido aórtico para el análisis molecular, celular e histopatológico, por lo que en las últimas tres décadas se han propuesto e introducido distintos modelos que han permitido, mediante la inducción focal de estas lesiones, el estudio de los mecanismos fisiopatológicos y posibles biomarcadores de utilidad como dianas diagnósticas y terapéuticas. El presente artículo de revisión aborda tipos de modelos animales disponibles, así como sus aplicaciones, consideraciones, ventajas y limitaciones para el desarrollo de estudios preclínicos y su importancia en el entendimiento de esta patología en la especie humana.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma da Aorta Torácica , Modelos Animais de Doenças , Animais , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Torácica/cirurgia , Humanos
16.
Natal; s.n; 21 mar. 2024. 52 p. ilus, tab, graf.
Tese em Português | LILACS, BBO - Odontologia | ID: biblio-1566325

RESUMO

O sistema renina angiotensina (SRA) é de grande importância para o equilíbrio hídrico e regulação da pressão arterial do organismo, além de estar associado ao estimulo de vias próinflamatórias. Seu principal peptídeo é a angiotensina II, que interage principalmente com os receptores do tipo 1 (AT1) e do tipo 2 (AT2). Foi encontrado interrelação entre as doenças cardiovasculares e a periodontite. Este estudo teve como objetivo avaliar os aspectos moleculares em camundongos submetidos a um modelo experimental de periodontite, observando a influência dos receptores de Ang II tipo 1 (AT1(-)) e Ang II tipo 2 (AT2(-)) na periodontite. Métodos: A periodontite experimental foi induzida colocando-se uma ligadura com fio de nylon 5.0 ao redor do segundo molar superior esquerdo de camundongos knockoutAT1(-), AT2(-) e selvagem (WT), subdivididos 2 grupos para cada linhagem: sem ligadura e ligadura, totalizando seis grupos: três controles e três experimentais. Após 15 dias da indução da doença os animais foram submetidos à eutanásia. Com o intuito de avaliar se as variações genéticas teriam influência sobre a periodontite foram realizadas as análises de citocinas, peptídeos e enzimas foram analisados a partir de tecidos gengivais por ELISA e RT-PCR. Resultados: Os animais WT e AT2(-) apresentaram resultados semelhantes em relação às citocinas IL-1ß, IL-6, TNF-α, com aumento dos níveis em relação aos saudáveis (p < 0,001). Houve diferenças significativas em IL-ß entre os grupo AT1(-)-L e WT-L (p < 0,05), e em IL-6 e TNF-α os grupos AT1(-)-L apresentaram diferenças significativas (p < 0,001) tanto quando comparado aos grupo WT-L quanto aos grupos AT2(-)-L. Os níveis de IL-10 foram maiores em WT-L (p < 0,01), enquanto os grupos AT2(-) e AT1(-) não apresentaram alterações significativas em relação a essa citocina. Houve diferenças significativas em Angiotensina II entre os grupos AT2(-)-NL e AT2(-)-L (p < 0,01); e em Angiotensina 1-7 entre os grupos AT1(-)-L e AT2(-)-L (p < 0,05). Para TLR2 houve diferenças entre os grupos WT-NL/WT-L (p < 0,05); AT1(-)-NL/AT1(-)-L (p < 0,01) e AT2(-)-NL/AT2(-) - L (p < 0,01). Para o receptor MAS houve diferenças entre os grupos WT-NL/WT-L (p < 0,001) e AT2(-)-NL/AT2(-)-L (p < 0,001), e também em relação ao grupo WT-L/AT1(-)-L (p < 0,001) e AT1(-)-L/AT2(-)-L (p < 0,001). Para a expressão dos peptídeos ECA e ECA2, houve diferença estatística apenas para ECA entre os tipos de grupos WT-NL/WT-L (p < 0,001). Conclusão: Os animais do grupo AT1(-) apresentaram menor inflamação que as demais linhagens doentes, assim como uma menor expressão do receptor Mas e Ang 1-7. Além disso os animais dos grupos WT e AT2(-) demonstraram resultados próximos em diversas análises, evidenciando que o bloqueio do receptor AT1, sobre os efeitos moleculares, é mais positiva (AU).


The renin angiotensin system (RAS) is of great importance for water balance and regulation of blood pressure in the body, in addition to being associated with the stimulation of proinflammatory pathways. Its main peptide is angiotensin II, which interacts mainly with type 1 (AT1) and type 2 (AT2) receptors. An interrelationship was found between cardiovascular diseases and periodontitis. This study aimed to evaluate the molecular aspects in mice subjected to an experimental model of periodontal disease, observing the influence of Ang II type 1 (AT1(-)) and Ang II type 2 (AT2(-)) receptors on periodontitis. Methods: Experimental periodontitis was induced by placing a ligature with 5.0 nylon thread around the upper left second molar of AT1(-), AT2(-) and wild-type (WT) knockout mice, subdivided into 2 groups for each strain: without ligation and ligation, totaling six groups: three controls and three experimental. After 15 days of disease induction, the animals were euthanized. In order to evaluate whether genetic variations would have an influence on periodontal disease, analyzes of cytokines were carried out, peptides and enzymes were analyzed from gingival tissues by ELISA and RT-PCR. Results: WT and AT2(-) animals showed similar results in relation to the cytokines IL-1ß, IL-6, TNF-α, with increased levels compared to healthy ones (p < 0.001). There were significant differences in IL-ß between the AT1(-)-L and WT-L groups (p < 0.05), and in IL-6 and TNF-α the AT1(-)-L groups showed significant differences (p < 0.001) both when compared to the WT-L and AT2(-)-L groups. IL-10 levels were higher in WT-L (p < 0.01), while the AT2(-) and AT1(-) groups did not show significant changes in relation to this cytokine. There were significant differences in Angiotensin II between the AT2(-)-NL and AT2(-)-L groups (p < 0.01); and in Angiotensin 1-7 between the AT1(-)-L and AT2(-)-L groups (p < 0.05). For TLR2 there were differences between the WT-NL/WT-L groups (p < 0.05); AT1(-)-NL/AT1(-)-L (p < 0.01) and AT2(-)-NL/AT2(-)-L (p < 0.01). For the MAS receptor there were differences between the WT-NL/WT-L (p < 0.001) and AT2(-)-NL/AT2(- )-L (p < 0.001) groups, and also in relation to the WT-L group /AT1(-)-L (p < 0.001) and AT1(-)-L/AT2(-)-L (p < 0.001). For the expression of ACE and ACE2 peptides, there was a statistical difference only for ACE between the types of WT-NL/WT-L groups (p < 0.001). Conclusion: The animals in the AT1(-) group showed less inflammation than the other diseased lines, as well as a lower expression of the Mas and Ang 1-7 receptor. Furthermore, animals from the WT and AT2(-) groups demonstrated similar results in several analyses, showing that the blockade of the AT1 receptor, on molecular effects, is more positive (AU).


Assuntos
Animais , Camundongos , Doenças Periodontais/patologia , Angiotensinas , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/efeitos dos fármacos , Técnicas In Vitro/métodos , Epidemiologia Descritiva , Análise de Variância , Estatísticas não Paramétricas
17.
Clin Exp Nephrol ; 28(5): 359-374, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38170299

RESUMO

BACKGROUND: Post-streptococcal glomerulonephritis (PSGN) is a consequence of the infection by group A beta-hemolytic streptococcus. During this infection, various immunological processes generated by streptococcal antigens are triggered, such as the induction of antibodies and immune complexes. This activation of the immune system involves both innate and acquired immunity. The immunological events that occur at the renal level lead to kidney damage with chronic renal failure as well as resolution of the pathological process (in most cases). Angiotensin II (Ang II) is a molecule with vasopressor and pro-inflammatory capacities, being an important factor in various inflammatory processes. During PSGN some events are defined that make Ang II conceivable as a molecule involved in the inflammatory processes during the disease. CONCLUSION: This review is focused on defining which reported events would be related to the presence of this hormone in PSGN.


Assuntos
Angiotensina II , Glomerulonefrite , Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Glomerulonefrite/imunologia , Glomerulonefrite/microbiologia , Glomerulonefrite/etiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Animais , Rim/imunologia , Rim/patologia
18.
J Affect Disord ; 351: 349-355, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286229

RESUMO

OBJECTIVE: Metformin (MET) is a drug used in the treatment of type 2 diabetes due to its insulin receptor sensitizing properties and anti-hepatic gluconeogenesis effect. One of the comorbidities in diabetes is the depression. This review aimed at summarizing the results of the available MET, depression and diabetes studies to clarify the possible role of MET in the depression during diabetes. METHODS: A bibliographic search on PubMed, Embase, PsycINFO, Web of Science, Cochrane Central for studies referring to MET, depression and diabetes. RESULTS: Several studies have associated depression to the chronic inflammation that characterizes diabetes. Additionally MET is an anti-inflammatory molecule that generally acts by activating AMPK and inhibiting the NF-kB factor. In the context of diabetes, MET can act directly as an anti-inflammatory drug as well as inhibiting other pro-inflammatory molecules. In this regard, MET may inhibit the pro-inflammatory effects of angiotensin II. By facilitating the action of insulin and reducing hepatic gluconeogenesis, MET reduces circulating glucose levels, decreasing the formation of advanced glycation end products and therefore inflammation. During diabetes, the gut microbiota and the permeability of the intestinal barrier are altered, causing high levels of circulating lipopolysaccharides (LPS), which induce inflammation. MET can normalize the microbiota and the intestinal barrier permeability reducing the levels of LPS and inflammation. Clinical and experimental studies show the anti-depressant effect of MET mediated by different mechanisms both at the peripheral level and in the central nervous system. CONCLUSION: Therefore, MET as an anti-inflammatory drug can decrease symptoms of depression and represents a therapeutic approach to improve the psychological state of patients with diabetes. Additionally, insulin also has an anti-inflammatory effect that could act together with MET.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lipopolissacarídeos , Insulina/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
19.
Am J Med Sci ; 367(2): 128-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984736

RESUMO

Cardiovascular diseases (CVD) are the main causes of death in hemodialysis patients, representing a public health challenge. We investigated the effect of different antihypertensive treatments on circulating levels of renin-angiotensin system (RAS) components in end-stage renal disease (ESRD) patients on hemodialysis. ESRD patients were grouped following the prescribed antihypertensive drugs: ß-blocker, ß-blocker+ACEi and ß-blocker+AT1R blocker. ESDR patients under no antihypertensive drug treatment were used as controls. Blood samples were collected before hemodialysis sessions. Enzymatic activities of the angiotensin-converting enzymes ACE and ACE2 were measured through fluorescence assays and plasma concentrations of the peptides Angiotensin II (Ang II) and Angiotensin-(1-7) [Ang-(1-7)] were quantified using mass spectrometry (LC-MS/MS). ACE activity was decreased only in the ß-blocker+ACEi group compared to the ß-blocker+AT1R, while ACE2 activity did not change according to the antihypertensive treatment. Both Ang II and Ang-(1-7) levels also did not change according to the antihypertensive treatment. We concluded that the treatment of ESRD patients on hemodialysis with different antihypertensive drugs do not alter the circulating levels of RAS components.


Assuntos
Anti-Hipertensivos , Falência Renal Crônica , Humanos , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Enzima de Conversão de Angiotensina 2/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sistema Renina-Angiotensina , Peptidil Dipeptidase A/metabolismo , Peptídeos/farmacologia , Falência Renal Crônica/tratamento farmacológico , Angiotensina II/farmacologia , Fragmentos de Peptídeos/metabolismo , Diálise Renal
20.
Int. j. cardiovasc. sci. (Impr.) ; 37: e20230163, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1558112

RESUMO

Abstract Background: Arterial hypertension (AH) is a chronic disease distributed worldwide, and the Angiotensin II receptor type 2 (AGTR2) gene variants are potential DNA markers to study in association with this disease. Objective: This systematic review (SR) aimed to identify single nucleotide variants in the AGTR2 gene as genetic markers associated with AH. Methods: The electronic databases MEDLINE, Web of Science, SCOPUS, Cochrane Central Register, EMBASE, SciELO, and TripDatabase were searched for research up to September 2023. Case-control studies with DNA variants in the AGTR2 gene associated with AH as the outcome were included in the review. Boolean connectors and keywords were used according to each database. Results: After diverse rounds of scrutiny, a final number of eight articles were included for 8911 participants, comprising 5451 cases and 3460 controls. A significant proportion of the selected studies were performed in Asian populations and were heterogeneous. Although 238 variants were shown in the gnomAD v2.1.1 database for September 2023, only six variants were identified in all the analyzed studies. Conclusions: The results obtained were not conclusive that a specific variant located in the AGTR2 gene has a strong association with AH. The study of this gene re-emerged last year as an essential target to investigate due to its participation in the development of agonist therapy to treat mild COVID-19 cases. Future studies with better statistical power are desirable to replicate the primary findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA