Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Sci Rep ; 14(1): 15565, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971851

RESUMO

Lactic acid bacteria (LAB) isolated from medicinal herb Murraya koenigii, commonly known as curry leaf, which promotes the growth and maintenance of gut microbiota, were studied for their probiotic potential. The key objective of this research was to isolate and evaluate probiotic characteristics, test adherence capabilities, and confirm their safety. Lactococcus lactis (MKL8), isolated from Murraya koenigii, was subjected to in vitro analysis to assess its resistance to the gastric environment, ability to adhere Caco-2 cells, anti-microbial activity, hydrophobicity, auto-aggregation, and safety profiling through MTT assay and hemolytic. MKL8 exhibited growth at 0.5% phenol concentrations (> 80%) and was able to survive in conditions with high bile concentrations (> 79%) and a relatively low pH (72%-91%). It shows high tolerance to high osmotic conditions (> 73%) and simulated gastric juice (> 72%). Additionally, MKL8 demonstrated strong hydrophobicity (85%), auto-aggregation (87.3%-91.7%), and adherence to Caco-2 cells. Moreover, it had an inhibitory effect against pathogens too. By performing the hemolytic and MTT assays, the non-toxicity of MKL8 isolate was examined, and it exhibited no harmful characteristics. Considering MKL8's resistance to gastrointestinal tract conditions, high surface hydrophobicity, non-toxicity, and ability to inhibit the tested pathogens, it can be concluded that MKL8 demonstrated promising probiotic properties and has potential for use in the food industry.


Assuntos
Aderência Bacteriana , Lactococcus lactis , Murraya , Probióticos , Humanos , Células CACO-2 , Lactococcus lactis/isolamento & purificação , Aderência Bacteriana/efeitos dos fármacos , Murraya/química , Interações Hidrofóbicas e Hidrofílicas , Antibacterianos/farmacologia
2.
Front Microbiol ; 15: 1388439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860216

RESUMO

Fusarium oxysporum f. sp. capsici (Foc) poses a significant position in agriculture that has a negative impact on chili plant in terms of growth, fruit quality, and yield. Biological control is one of the promising strategies to control this pathogen in crops. Chili is considered as one of the most important crops in the Hyderabad region that is affected by Fusarium wilt disease. The pathogen was isolated from the infected samples in the region and was confirmed by morphological characteristics and PCR with a band of 488 bp. The bacterial strains were isolated from the rhizosphere soil of healthy plant and also confirmed by PCR with a band of 1,542 bp.The molecular characterization of the fungal and bacterial strain has shown 99.9% homology with the retrieved sequences of Fusarium oxysporum f. sp. capsici and Bacillus subtilis from NCBI. The 1-month-old Ghotki chili plants were inoculated with 1×105 cfu spore/ml-1 suspension and confirmed that the FOC-1 is responsible for chili Fusarium wilt disease. Subsequently, among the 33 screened Bacillus strains, only 11 showed antagonistic activity against F. oxysporum. Out of these, only two strains (AM13 and AM21) have shown maximum antagonistic activity against the pathogen by reducing the infection and promoting growth parameters of chili plants under both in vitro and greenhouse conditions. The study suggested that biological control is the most promising control strategy for the management of Fusarium wilt of chili in the field.

3.
Syst Appl Microbiol ; 47(4): 126516, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772267

RESUMO

The tolerance of ash trees against the pathogen Hymenoscyphus fraxineus seems to be associated with the occurrence of specific microbial taxa on leaves. A group of bacterial isolates, primarily identified on tolerant trees, was investigated with regard to their taxonomic classification and their potential to suppress the ash dieback pathogen. Examination of OGRI values revealed a separate species position. A phylogenomic analysis, based on orthologous and marker genes, indicated a separate genus position along with the species Achromobacter aestuarii. Furthermore, analysis of the ratio of average nucleotide identities and genome alignment fractions demonstrated genomic dissimilarities typically observed for inter-genera comparisons within this family. As a result of these investigations, the strains are considered to represent a separate species within a new genus, for which the name Schauerella fraxinea gen. nov., sp. nov. is proposed, with the type strain B3P038T (=LMG 33092 T = DSM 115926 T). Additionally, a reclassification of the species Achromobacter aestuarii as Schauerella aestuarii comb. nov. is proposed. In a co-cultivation assay, the strains were able to inhibit the growth of a H. fraxineus strain. Accordingly, a functional analysis of the genome of S. fraxinea B3P038T revealed genes mediating the production of antifungal substances. This potential, combined with the prevalent presence in the phyllosphere of tolerant ash trees, makes this group interesting for an inoculation experiment with the aim of controlling the pathogen in an integrative approach. For future field trials, a strain-specific qPCR system was developed to establish an efficient method for monitoring the inoculation success.


Assuntos
DNA Bacteriano , Filogenia , Doenças das Plantas , RNA Ribossômico 16S , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Genoma Bacteriano/genética , Achromobacter/genética , Achromobacter/classificação , Achromobacter/isolamento & purificação , Folhas de Planta/microbiologia , Apiaceae/microbiologia
4.
World J Microbiol Biotechnol ; 40(7): 202, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743315

RESUMO

Currently, heavy metal-resistant (HMR) marine actinomycetes have attracted much attention worldwide due to their unique capabilities. In this study, 27 marine-derived actinomycetes were isolated from coastal beaches in the Arabian Gulf of Al-Jubail in Saudi Arabia and screened for resistance to 100 mg/L of the heavy metals Cd2+, Cr6+, Cu2+, Fe2+, Pb2+, and Ni2+ using different assay techniques. Six isolates were selected as HMRs, of which two isolates, JJB5 and JJB11, exhibited the highest maximum tolerance concentrations (200- > 300 mg/L). Both isolates were the highest among six-HMR screened for their biodegradation potential of plastics low-density polyethylene, polystyrene, and polyvinyl chloride, recording the highest weight loss (15 ± 1.22 - 65 ± 1.2%) in their thin films. They also showed the highest biodegradability of the pesticides acetamiprid, chlordane, hexachlorocyclohexane, indoxacarb and lindane, indicating promising removal capacities (95.70-100%) for acetamiprid and indoxacarb using HPLC analysis. Additionally, the cell-free filtrate (CFF) of both isolates displayed the highest antimicrobial activity among the six-HMR screened against a variety of microbial test strains, recording the highest inhibition zone diameters (13.76 ± 0.66 - 26.0 ± 1.13 mm). GC‒MS analyses of the ethyl acetate extract of their CFFs revealed the presence of diverse chemical compounds with a multitude of remarkable biological activities. Based on their spore morphology and wall-chemotype, they were assigned to the nocardioform-actinomycetes. Furthermore, their phenotypic characteristics, together with 16S rRNA gene sequencing (OR121525-OR121526), revealed them as Nocardia harenae JJB5 and Amycolatopsis marina JJB11. Our results suggest that marine HMR actinomycetes are promising candidates for various biotechnological applications.


Assuntos
Biodegradação Ambiental , Metais Pesados , Testes de Sensibilidade Microbiana , Nocardia , RNA Ribossômico 16S , Metais Pesados/metabolismo , RNA Ribossômico 16S/genética , Nocardia/isolamento & purificação , Nocardia/genética , Nocardia/metabolismo , Arábia Saudita , Antibacterianos/farmacologia , Filogenia , Actinobacteria/metabolismo , Actinobacteria/isolamento & purificação , Actinobacteria/genética , Actinobacteria/classificação , Poluentes Químicos da Água/metabolismo , Água do Mar/microbiologia , Praguicidas/metabolismo , Farmacorresistência Bacteriana
5.
J Fungi (Basel) ; 10(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667955

RESUMO

Pythium-induced damping-off of cucumber is a major constraint to cucumber production in different parts of the world. Although chemical fungicides are used for managing this disease, they have many drawbacks to the environment. The ability of the antagonistic fungi isolated from the rhizosphere and endosphere of Dactyloctenium robecchii and Moraea sisyrinchium in the control of soilborne pathogen Pythium aphanidermatum was inspected. Native Trichoderma isolates, Trichoderma ghanense and Trichoderma citrinoviride, were isolated from plant stem and soil samples collected from Al-Seeb, Oman. Using a dual culture technique, the antagonistic activity of the fungal isolates against P. aphanidermatum was examined in vitro. Among Trichoderma isolates, T. ghanense was more efficient in restraining the mycelial growth of P. aphanidermatum, causing an inhibition percentage of 44.6%. Further, T. citrinoviride induced significantly lower cessation of P. aphanidermatum mycelial growth (31.3%). Microscopic and electrolyte leakage inspection of the pathogen mycelia depicted extreme morphological malformations in their mycelium, which can be attributed to the antifungal metabolites of antagonists. Greenhouse studies demonstrated the effectivity of T. ghanense in controlling Pythium damping-off of cucumber plants, where the number of surviving plants was over 90% when the biocontrol agents were used compared to 0 in the control plants. Furthermore, treatment of the plants with the antagonists promoted growth characteristics of plants compared to uninoculated plants. This included improvements in shoot and root lengths, leaf length and width, and dry weight. These findings suggest that T. ghanense and T. citrinoviride can be developed as alternatives to synthetic chemical fungicides to manage soilborne pathogens of cucumber. This research is also the first to clarify the biocontrol ability of T. citrinoviride and T. ghanense against cucumber damping-off caused by P. aphanidermatum.

6.
BioTech (Basel) ; 13(2)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651488

RESUMO

In response to the escalating demand for sustainable agricultural methodologies, the utilization of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as a viable eco-friendly alternative. Microbial volatiles exhibit rapid diffusion rates, facilitating prompt chemical interactions. Moreover, microorganisms possess the capacity to emit volatiles constitutively, as well as in response to biological interactions and environmental stimuli. In addition to volatile compounds, these bacteria demonstrate the ability to produce soluble metabolites with antifungal properties, such as APE Vf, pyoverdin, and fragin. In this study, we identified two Pseudomonas strains (BJa3 and MCal1) capable of inhibiting the in vitro mycelial growth of the phytopathogenic fungus Aspergillus flavus, which serves as the causal agent of diseases in sugarcane and maize. Utilizing GC/MS analysis, we detected 47 distinct VOCs which were produced by these bacterial strains. Notably, certain volatile compounds, including 1-heptoxydecane and tridecan-2-one, emerged as primary candidates for inhibiting fungal growth. These compounds belong to essential chemical classes previously documented for their antifungal activity, while others represent novel molecules. Furthermore, examination via confocal microscopy unveiled significant morphological alterations, particularly in the cell wall, of mycelia exposed to VOCs emitted by both Pseudomonas species. These findings underscore the potential of the identified BJa3 and MCal1 Pseudomonas strains as promising agents for fungal biocontrol in agricultural crops.

7.
Braz J Microbiol ; 55(2): 1883-1896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609692

RESUMO

BACKGROUND: Biocontrol is regarded as a viable alternate technique for managing sugarcane wilt disease caused by Fusarium sacchari. Many fungal antagonists against F. sacchari, have been reported, but the potential of bacterial antagonists was explored to a limited extent, so the present study evaluated the antagonistic potential of rhizoplane Bacillus species and their mode of action. RESULTS: A total of twenty Bacillus isolates from the rhizoplane of commercially grown sugarcane varieties were isolated. The potential isolate SRB2 had shown inhibition of 52.30, 33.33, & 44.44% and SRB20 of 35.00, 33.15, & 36.85% in direct, indirect, and remote confrontation respectively against F. sacchari. The effective strains were identified as Bacillus inaquosorum strain SRB2 and B. vallismortis strain SRB20, by PCR amplification of 16S-23S intergenic region. The biochemical studies on various direct and indirect biocontrol mechanisms revealed the production of IAA, Protease, Cellulase, Siderophores, and P solubilization. The molecular analysis revealed the presence of antimicrobial peptides biosynthetic genes like fenD (Fengycin), bmyB (Bacyllomicin) ituC (Iturin) and spaS (Subtilin) which provided a competitive edge to these isolates compared to other Bacillus strains. Under greenhouse experiments, the sett bacterization with SRB2, significantly (P < 0.001) reduced the seedling mortality by > 70% followed by SRB20 in F. sacchari inoculated pots. CONCLUSION: The study revealed that the isolates B. inaquosorum SRB2 and B. vallismortis SRB20 can be used as potential bioagents against sugarcane Fusarium wilt.


Assuntos
Bacillus , Fusarium , Doenças das Plantas , Saccharum , Saccharum/microbiologia , Fusarium/genética , Fusarium/fisiologia , Bacillus/genética , Bacillus/fisiologia , Bacillus/metabolismo , Bacillus/isolamento & purificação , Bacillus/classificação , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Antibiose , Agentes de Controle Biológico , Filogenia , Rizosfera , Microbiologia do Solo
8.
J Food Sci Technol ; 61(5): 983-989, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487290

RESUMO

The biodiversity of enterococci from pastirma (a traditional Turkish dry-cured meat product) by genotypic identification and the antagonistic activities of strains were investigated. Pastirma samples taken from 20 different small-scale factories were subjected to microbiological and physicochemical analysis. A hundred enterococci isolates were identified by 16S rRNA gene sequence analysis. To determine antagonistic activity of strains, Listeria monocytogenes and Staphylococcus aureus were used. The lactic acid bacteria and Micrococcus/Staphylococcus counts were ≥ 6 log cfu/g in 55% of the samples and 75% of the samples, respectively. Enterobacteriaceae was generally below the detectable level (< 2 log cfu/g). The enterococci count was higher than 6 log cfu/g in 30-35% of the samples, depending on the medium used. The enterococci isolates (100 isolates) were identified as E. faecium (80 strains), E. faecalis (19 strains) and E. hirae (1 strain) in genotypic identification. The nine E. faecium strains showed antagonistic activity against L. monocytogenes in the well diffusion test. In contrast, in the same antagonistic activity test, all of the strains had no antagonistic activity against S. aureus. Further studies could be planned to characterize E. faecium strains that show antagonistic activity against L. monocytogenes.

9.
Front Plant Sci ; 15: 1287184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313804

RESUMO

Despite regulatory and technological measures, edible sprouts are still often involved in foodborne illness and are considered a high-risk food. The present study explored the potential of spore-forming Bacillus isolates to mitigate Salmonella and Escherichia coli contamination of alfalfa sprouts. Food-derived Bacillus strains were screened for antagonistic activity against S. enterica serovar Typhimurium SL1344 (STm) and enteropathogenic E. coli O55:H7. Over 4 days of sprouting, levels of STm and E. coli on contaminated seeds increased from 2.0 log CFU/g to 8.0 and 3.9 log CFU/g, respectively. Treatment of the contaminated seeds with the most active Bacillus isolate, strain BX77, at 7 log CFU/g seeds resulted in substantial reductions in the levels of STm (5.8 CFU/g) and E. coli (3.9 log CFU/g) in the sprouted seeds, compared to the control. Similarly, co-culturing STm and BX77 in sterilized sprout extract at the same ratio resulted in growth inhibition and killed the Salmonella. Confocal-microscopy experiments using seeds supplemented with mCherry-tagged Salmonella revealed massive colonization of the seed coat and the root tip of 4-day-old sprouted seeds. In contrast, very few Salmonella cells were observed in sprouted seeds grown with BX77. Ca-hypochlorite disinfection of seeds contaminated with a relatively high concentration of Salmonella (5.0 log CFU/g) or treated with BX77 revealed a mild inhibitory effect. However, disinfection followed by the addition of BX77 had a synergistic effect, with a substantial reduction in Salmonella counts (7.8 log CFU/g) as compared to untreated seeds. These results suggest that a combination of chemical and biological treatments warrants further study, toward its potential application as a multi-hurdle strategy to mitigate Salmonella contamination of sprouted alfalfa seeds.

10.
BMC Plant Biol ; 24(1): 118, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368386

RESUMO

BACKGROUND: Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS: Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION: Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.


Assuntos
Bipolaris , Hordeum , Hypocreales , Nanopartículas , Titânio , Trichoderma , Hordeum/genética , Doenças das Plantas/microbiologia
11.
J Agric Food Chem ; 72(9): 4834-4848, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38401001

RESUMO

Bacillus has been widely studied for its potential to protect plants from pathogens. Here, we report the whole genome sequence of Bacillus subtilis H2, which was isolated from the tea garden soil of Guiyang Forest Park. Strain H2 showed a broad spectrum of antagonistic activities against many plant fungal pathogens and bacteria pathogens, including the rice blast fungus Magnaporthe oryzae, and showed a good field control effect against rice blast. The complete genome of B. subtilis H2 contained a 4,160,635-bp circular chromosome, with an average G + C content of 43.78%. Through the genome mining of strain H2, we identified 7 known antimicrobial compound biosynthetic gene clusters (BGCs) including sporulation killing factor, surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. Palmitic acid (PA), a secondary metabolite, was detected and identified in the H2 strain through genome mining analysis and gas chromatography-mass spectrometry (GC-MS). Additionally, we propose, for the first time, that the type II fatty acid synthesis (FAS) pathway in Bacillus is responsible for PA biosynthesis. This finding was confirmed by studying the antimicrobial activity of PA and conducting reverse transcription-quantitative polymerase chain reaction (RT-qPCR) experiments. We also identified numerous genes associated with plant-bacteria interactions in the H2 genome, including more than 94 colonization-related genes, more than 34 antimicrobial genes, and more than 13 plant growth-promoting genes. These findings contribute to our understanding of the biocontrol mechanisms of B. subtilis H2 and have potential applications in crop disease control.


Assuntos
Anti-Infecciosos , Ascomicetos , Bacillus , Bacillus subtilis/metabolismo , Ácido Palmítico/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , China , Bacillus/genética , Anti-Infecciosos/metabolismo , Percepção
12.
Artigo em Inglês | MEDLINE | ID: mdl-38381263

RESUMO

Lactic acid bacteria (LAB) found in Ethiopian traditional fermented foods and beverages have potential antagonistic effects against foodborne pathogens due to their capacity to produce various antimicrobial metabolites. This study evaluated the antagonistic activity of LAB isolated from Ethiopian traditional fermented foods and beverages against foodborne pathogens and characterized their antimicrobial substances. A total of 180 traditional fermented foods and beverages were collected, and the antagonistic activities of LAB were evaluated against selected foodborne pathogens. The effects of pH, temperature, enzymes, and food additives on the antagonistic effects of cell-free supernatant produced by LAB were investigated. LAB identification and characterization were conducted using an integrated phenotypic approach and MALDI TOF MS spectrum analysis, and data were analyzed using one-way ANOVA and Tukey post hoc analysis. A total of 956 LAB were isolated, of which seventeen (17 LAB) isolates of Pediococcus pentosaceus (Pc. pentosaceus (n = 7)), Pediococcus acidilactici (Pc. acidilactici (n = 2)), Enterococcus faecium (Ec. faecium (n = 6)), and Lactococcus lactis (Lc. lactis (n = 2)) were screened for antagonistic activity based on their ability to produce bacteriocins, probiotic activity, and preservative potential. Pc. pentosaceus JULABB16, Pc. pentosaceus JULABB01, and Ec. faecium JULABBr39 showed strong antagonistic activity against all pathogens, with mean inhibition zone diameters ranging from 23.50 to 35.50 mm. Lc. lactis, Pc. pentosaceus, Pc. acidilactici, and Ec. faecium produced bioactive metabolites that were sensitive to proteolytic enzymes and capable of withstanding high temperatures (80-100 °C) and acid concentrations (pH 2-10). The CFS produced by Lc. lactis, Pc. pentosaceus, Pc. acidilactici, and Ec. faecium showed the most impending antagonistic activity against all pathogens. The bioactive substances produced by LAB isolates had promising effects against food spoilage and pathogenic bacteria, making them potential natural food preservatives.

13.
Environ Sci Technol ; 58(6): 2817-2829, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291630

RESUMO

Over the past few decades, extensive research has indicated that exposure to bisphenol A (BPA) increases the health risks in humans. Toxicological studies have demonstrated that BPA can bind to the androgen receptor (AR), resulting in endocrine-disrupting effects. In recent investigations, many alternatives to BPA have been detected in various environmental media as major pollutants. However, related experimental evaluations of BPA alternatives have not been systematically implemented for the assessment of chemical safety and the effects of structural characteristics on the antagonistic activity of the AR. To promote the green development of BPA alternatives, high-throughput toxicological screening is fundamental for prioritizing chemical tests. Therefore, we proposed a hybrid deep learning architecture that combines molecular descriptors and molecular graphs to predict AR antagonistic activity. Compared to previous models, this hybrid architecture can extract substantial chemical information from various molecular representations to improve the model's generalization ability for BPA alternatives. Our predictions suggest that lignin-derivable bisguaiacols, as alternatives to BPA, are likely to be nonantagonist for AR compared to bisphenol analogues. Additionally, molecular dynamics (MD) simulations identified the dihydrotestosterone-bound pocket, rather than the surface, as the major binding site of bisphenol analogues. The conformational changes of key helix H12 from an agonistic to an antagonistic conformation can be evaluated qualitatively by accelerated MD simulations to explain the underlying mechanism. Overall, our computational study is helpful for toxicological screening of BPA alternatives and the design of environmentally friendly BPA alternatives.


Assuntos
Simulação de Dinâmica Molecular , Fenóis , Receptores Androgênicos , Humanos , Receptores Androgênicos/metabolismo , Compostos Benzidrílicos , Aprendizado de Máquina
14.
Antonie Van Leeuwenhoek ; 117(1): 16, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189906

RESUMO

The unique eco-environment of the Qinghai-Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 107 cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and ß-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress.


Assuntos
Bacillus amyloliquefaciens , Cyperaceae , Bacillus amyloliquefaciens/genética , Rizosfera , Pradaria , Cloreto de Sódio , Peptídeo Hidrolases
15.
Pest Manag Sci ; 80(2): 724-733, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37774135

RESUMO

BACKGROUND: The phytopathogens Xylella fastidiosa and Verticillium dahliae present an unparalleled threat to olive agriculture. However, there is no efficient field treatment available today for either pest. Spore-forming bacteria (i.e., the sporobiota) are known for their extraordinary resistance properties and antimicrobial activity. The aim of this study was thus to identify potential novel sustainable spore-forming biocontrol agents derived from the culturable olive microbiome, termed the sporobiota, in general and in particular against X. fastidiosa and V. dahliae. RESULTS: We demonstrate the wide-ranging antimicrobial profile of 415 isolates from the culturable olive sporobiota towards human and plant pathogens. We further identified five candidates with antagonistic activity against X. fastidiosa and V. dahliae. These belong to the Bacillus subtilis, Bacillus cereus and Peribacillus simplex clade. The activity was related to the species and their relative origin (soil versus leaf endophytic). It is of particular interest that two of these candidates are already naturally present at the site of disease-development that is, plant interior. We further confirmed the presence of lipopeptide genes potentially associated with the reported bioactivity. CONCLUSIONS: The study provides insights into how members of the olive sporobiota may support the olive plant to ward off detrimental pathogens. It further yields five promising candidates for the development of eco-friendly, multi-active biocontrol agents in olive agriculture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Anti-Infecciosos , Olea , Humanos , Olea/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Agricultura , Bacillus cereus
16.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469381

RESUMO

Abstract Fructooligosaccharide is used widely in many foods and pharmaceutical industries and produced by using different ways such as extracting it from plants or producing it by using plants and microorganisms enzymes. In a previous study, we extracted Fructosyltransferase (Ftase) enzyme from pineapple residue and produced FOS. In this study, we measured the antagonistic activity of two synbiotics, the first synbiotic containing Lactobacillus acidophilus and the produced FOS, the second synbiotic containing Lactobacillus acidophilus and standard FOS, against pathogenic bacteria (P. aeruginosa, E. coli, S. aureus and B cereus). The results showed that the antagonistic activity of both synbiotic types was very close, as there were no significant differences between them except in the antagonistic activity against S. aureus, there was a significant difference between the synbiotic containing the standard FOS, which was the highest in its antagonistic activity compared to the synbiotic containing the produced FOS in this study. The activity of the fructooligosaccharide (FOS) extracted from pineapple residue was evident in enhancing the activity of the probiotic bacteria (L. acidophilus), which had a major role in the production of acids and compounds that inhibited the pathogenic bacteria. The diameters of inhibition areas in the current study ranged between 19.33-28 mm, and E. coli was more susceptible to inhibition, followed by S. aureus, P. aeruginosa, and B. cereus, respectively.


Resumo O fruto-oligossacarídeo (FOS) é amplamente utilizado em muitos alimentos e indústrias farmacêuticas, e é produzido por meio de diferentes maneiras, como extraí-lo de plantas ou produzi-lo usando enzimas de plantas e microrganismos. Em um estudo anterior, extraímos a enzima frutosiltransferase (Ftase) do resíduo de abacaxi e produzimos FOS. Neste estudo, medimos a atividade antagônica de dois simbióticos: o primeiro simbiótico contendo Lactobacillus acidophilus e o FOS produzido, e o segundo simbiótico contendo Lactobacillus acidophilus e o FOS padrão, contra bactérias patogênicas (P. aeruginosa, E. coli, S. aureus e B. cereus). Os resultados mostraram que a atividade antagônica de ambos os tipos simbióticos foi muito próxima, pois não houve diferenças significativas entre eles, exceto na atividade antagônica contra S. aureus, em que houve uma diferença significativa entre o simbiótico contendo o FOS padrão, que foi o mais alto em sua atividade antagônica, em comparação com o simbiótico contendo o FOS produzido neste estudo. A atividade do fruto-oligossacarídeo (FOS) extraído do resíduo de abacaxi ficou evidente no aumento da atividade da bactéria probiótica (L. acidophilus), que teve papel importante na produção de ácidos e compostos inibidores das bactérias patogênicas. Os diâmetros das áreas de inibição no estudo atual variaram entre 19,33 e 28 mm, e E. coli foi mais suscetível à inibição, seguida por S. aureus, P. aeruginosa e B. cereus, respectivamente.

17.
Braz. j. biol ; 84: e258277, 2024. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364531

RESUMO

Fructooligosaccharide is used widely in many foods and pharmaceutical industries and produced by using different ways such as extracting it from plants or producing it by using plants and microorganisms' enzymes. In a previous study, we extracted Fructosyltransferase (Ftase) enzyme from pineapple residue and produced FOS. In this study, we measured the antagonistic activity of two synbiotics, the first synbiotic containing Lactobacillus acidophilus and the produced FOS, the second synbiotic containing Lactobacillus acidophilus and standard FOS, against pathogenic bacteria (P. aeruginosa, E. coli, S. aureus and B cereus). The results showed that the antagonistic activity of both synbiotic types was very close, as there were no significant differences between them except in the antagonistic activity against S. aureus, there was a significant difference between the synbiotic containing the standard FOS, which was the highest in its antagonistic activity compared to the synbiotic containing the produced FOS in this study. The activity of the fructooligosaccharide (FOS) extracted from pineapple residue was evident in enhancing the activity of the probiotic bacteria (L. acidophilus), which had a major role in the production of acids and compounds that inhibited the pathogenic bacteria. The diameters of inhibition areas in the current study ranged between 19.33-28 mm, and E. coli was more susceptible to inhibition, followed by S. aureus, P. aeruginosa, and B. cereus, respectively.


O fruto-oligossacarídeo (FOS) é amplamente utilizado em muitos alimentos e indústrias farmacêuticas, e é produzido por meio de diferentes maneiras, como extraí-lo de plantas ou produzi-lo usando enzimas de plantas e microrganismos. Em um estudo anterior, extraímos a enzima frutosiltransferase (Ftase) do resíduo de abacaxi e produzimos FOS. Neste estudo, medimos a atividade antagônica de dois simbióticos: o primeiro simbiótico contendo Lactobacillus acidophilus e o FOS produzido, e o segundo simbiótico contendo Lactobacillus acidophilus e o FOS padrão, contra bactérias patogênicas (P. aeruginosa, E. coli, S. aureus e B. cereus). Os resultados mostraram que a atividade antagônica de ambos os tipos simbióticos foi muito próxima, pois não houve diferenças significativas entre eles, exceto na atividade antagônica contra S. aureus, em que houve uma diferença significativa entre o simbiótico contendo o FOS padrão, que foi o mais alto em sua atividade antagônica, em comparação com o simbiótico contendo o FOS produzido neste estudo. A atividade do fruto-oligossacarídeo (FOS) extraído do resíduo de abacaxi ficou evidente no aumento da atividade da bactéria probiótica (L. acidophilus), que teve papel importante na produção de ácidos e compostos inibidores das bactérias patogênicas. Os diâmetros das áreas de inibição no estudo atual variaram entre 19,33 e 28 mm, e E. coli foi mais suscetível à inibição, seguida por S. aureus, P. aeruginosa e B. cereus, respectivamente.


Assuntos
Probióticos , Ananas , Simbióticos , Lactobacillus acidophilus , Antibacterianos
18.
Curr Res Microb Sci ; 5: 100206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089002

RESUMO

Serratia rubidaea is an opportunistic Gram-negative pathogen that has developed antimicrobial resistance to a variety of commercial antibiotics. The spread of this multidrug-resistant pattern predicts that it will get harder and harder to treat S. rubidaea infections in the future. For this perception, antimicrobial proteins might represent a safe, effective, and biodegradable alternative because their site of action is on cyclic peptides. In this study, one candidate Bacillus amyloliquefaciens subsp. amyloliquefaciens was isolated from the soil of Sundarban mangrove forest, and its identification was confirmed both using the PCR (Polymerase chain reaction) method and the BIOLOG™ microbial identification system. The antibacterial protein, which has a molecular mass of about 50 kDa, was isolated from B. amyloliquefaciens subsp. amyloliquefaciens. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to confirm the extracted protein's purity. This potential protein was discovered to develop and exhibit antagonistic activity throughout a broad temperature, pH, and salinity range. At doses ranging from 300 to 400 µg/ml, this protein has antagonistic activity against multidrug resistant S. rubidaea and a wide range of other resistant pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and so on. The research provides new insights to develop bio-control agents that can be applied for prevent, treat, and control infectious diseases caused by multidrug resistant S. rubidaea, as well as other pathogenic bacteria.

19.
Front Microbiol ; 14: 1296755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130944

RESUMO

Chinese plum (Prunus salicina Lindl.) is a nutritionally and economically important stone fruit widely grown around the world. Anthracnose, caused by Collectotrichum spp., is one of the primary biotic stress factors limiting plum production. Medicinal plants may harbor rhizospheric or endophytic microorganisms that produce bioactive metabolites that can be used as anthracnose biocontrol agents. Here, 27 bacterial isolates from the medicinal plant A. conyzoides with diverse antagonistic activities against C. fructicola were screened. Based on morphological, physiological, biochemical, and molecular characterization, 25 of these isolates belong to different species of genus Bacillus, one to Pseudomonas monsensis, and one more to Microbacterium phyllosphaerae. Eight representative strains showed high biocontrol efficacy against plum anthracnose in a pot experiment. In addition, several Bacillus isolates showed a broad spectrum of inhibitory activity against a variety of fungal phytopathogens. Analysis of the volatile organic compound profile of these eight representative strains revealed a total of 47 compounds, most of which were ketones, while the others included alkanes, alkenes, alcohols, pyrazines, and phenols. Overall, this study confirmed the potential value of eight bacterial isolates for development as anthracnose biocontrol agents.

20.
Plants (Basel) ; 12(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38140485

RESUMO

Peanut root rot, caused by Fusarium spp., is a devastating fungal disease. As part of a program to obtain a biocontrol agent to control peanut root rot in the field, a bacterial strain LY-1 capable of inhibiting the growth of the fungus in vitro was isolated from rhizosphere soil samples collected from wild mint by agar disk dilution and dual-culture assay. Strain LY-1 was identified as Bacillus subtilis based on morphological characteristics, 16S rDNA, and gyrA sequence analyses. The bacterial suspension and cell-free culture filtrate of LY-1 could significantly inhibit the growth of Fusarium oxysporum, Fusarium proliferatum and Fusarium solani, but volatile organic compounds from the cultures had only a weak effect on mycelial growth. The percentage inhibition of 20% concentration of the cell-free culture filtrate of LY-1 on conidium production of each of the three Fusarium species was greater than 72.38%, and the percentage inhibition by the culture filtration on the germination of conidia of the three species was at least 62.37%. The production of extracellular enzyme activity by LY-1 was studied in functional assays, showing protease, cellulase, amylase, chitinase, and ß-1,3-glucanase activity, while LY-1 contained a gene encoding iturin, an antifungal lipopeptide. In addition, under pot culture in a greenhouse, culture filtrate of LY-1 significantly promoted the growth of peanut, increasing the fresh and dry mass of the plant by 30.77% and 27.27%, respectively, in comparison with the no-filtrate control. The culture filtrate of LY-1 increased the resistance of peanut plants to F. oxysporum, with the biocontrol efficiency reaching 44.71%. In conclusion, B. subtilis LY-1, a plant-growth-promoting rhizobacterium, was able to protect peanuts from Fusarium spp. infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...