Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.425
Filtrar
1.
Environ Sci Technol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958666

RESUMO

Southern Hemisphere humpback whales accumulate persistent and toxic chemicals, which are transported to Antarctica through distant sources and in situ usage. The extreme seasonal migration-associated fast of humpback whales results in the remobilization of persistent and lipophilic environmental contaminants from liberated fat stores. Mitochondria play a key role in lipid metabolism, and any disruption to mitochondrial function is expected to influence whole-organism bioenergetics. It is therefore of interest to advance understanding of the impact of known contaminants of the Antarctic sea-ice ecosystem upon humpback whale cellular bioenergetics. Using cell line-based in vitro testing, this study employed the Seahorse Extracellular Flux Analyzer to study cellular metabolic activity in live humpback whale fibroblast cells. The assay, based on oxygen consumption rate, provides insights into the cause of cellular bioenergetic disruption. Immortalized skin fibroblasts were exposed to four priority environmental chemicals found in the Antarctic sea-ice ecosystem. Our findings reveal chemical-dependent functional alterations and varying bioenergetic profile responses. Chlorpyrifos was observed to decrease mitochondrial basal oxygen consumption; dieldrin increased basal oxygen consumption; trifluralin's impact was dose-specific, and endosulfan displayed no effect. Our results provide unique insights into environmental chemical mechanisms of action on cellular bioenergetics, generating much-needed taxa-specific chemical effect data in support of evidence-based conservation policy and management.

2.
Sci Total Environ ; 946: 174354, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955269

RESUMO

Passive samplers are enabling the scaling of environmental DNA (eDNA) biomonitoring in our oceans, by circumventing the time-consuming process of water filtration. Designing a novel passive sampler that does not require extensive sample handling time and can be connected to ocean-going vessels without impeding normal underway activities has potential to rapidly upscale global biomonitoring efforts onboard the world's oceanic fleet. Here, we demonstrate the utility of an artificial sponge sampler connected to the continuous pump underway seawater system as a means to enable oceanic biomonitoring. We compared the performance of this passive sampling protocol with standard water filtration at six locations during a research voyage from New Zealand to Antarctica in early 2023. Eukaryote metabarcoding of the mitochondrial COI gene revealed no significant difference in phylogenetic α-diversity between sampling methods and both methods delineated a progressive reduction in number of Zero-Radius Operational Taxonomic Units (ZOTUs) with increased latitudes. While both sampling methods revealed comparable trends in geographical community compositions, distinct clusters were identified for passive samplers and water filtration at each location. Additionally, greater variability between replicates was observed for passive samplers, resulting in an increased estimated level of replication needed to recover 90 % of the biodiversity. Furthermore, traditional water filtration failed to detect three phyla observed by passive samplers and extrapolation analysis estimated passive samplers recover a larger number of ZOTUs compared to water filtration for all six locations. Our results demonstrate the potential of this passive eDNA sampler protocol and highlight areas where this emerging technology could be improved, thereby enabling large-scale offshore marine eDNA biomonitoring by leveraging the world's oceanic fleet without interfering with onboard activities.

3.
Sci Rep ; 14(1): 14536, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977717

RESUMO

Accelerated warming since the 1950s has caused dramatic change to ice shelves and outlet glaciers on the Antarctic Peninsula. Long observational records of ice loss in Antarctica are rare but essential to accurately inform mass balance estimates of glaciers. Here, we use aerial images from 1968 to reveal glacier configurations in the Larsen B region. We use structure-from-motion photogrammetry to construct high-resolution (3.2 m at best) elevation models covering up to 91% of Jorum, Crane, Mapple, Melville and Flask Glaciers. The historical elevation models provide glacier geometries decades before the Larsen B Ice Shelf collapse in 2002, allowing the determination of pre-collapse and post-collapse elevation differences. Results confirm that these five tributary glaciers of the former Larsen B Ice Shelf were relatively stable between 1968 and 2001. However, the net surface elevation differences over grounded ice between 1968 and 2021 equate to 35.3 ± 1.2 Gt of ice loss related to dynamic changes after the ice shelf removal. Archived imagery is an underutilised resource in Antarctica and was crucial here to observe glacier geometry in high-resolution decades before significant changes to ice dynamics.

4.
Microbiol Resour Announc ; : e0113023, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990023

RESUMO

Sediments in cryoconite holes and meltwater streams in the McMurdo Dry Valleys, Antarctica, provide both substrates and conditions that support life in an arid polar desert. Here, we report the genomic sequences of eight environmental, bacterial isolates from Canada Glacier cryoconite holes and stream. These isolates span three major phyla.

5.
Ann Bot ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982647

RESUMO

BACKGROUND AND AIMS: The complexity of fossil forest ecosystems is difficult to reconstruct due to the fragmentary nature of the fossil record. However, detailed morpho-anatomical studies of well-preserved individual fossils can provide key information on tree growth and ecology, including in biomes with no modern analog such as the lush forests that developed in the polar regions during past greenhouse climatic episodes. METHODS: We describe an unusual-looking stem from Middle Triassic (ca 240 Ma) deposits of Antarctica with over 100 very narrow growth-rings and conspicuous persistent vascular traces through the wood. Sections of the specimen were prepared using the cellulose acetate peel technique to determine its systematic affinities and analyse its growth. KEY RESULTS: The new fossil shows similarities with the form genus Woodworthia and with conifer stems from the Triassic of Antarctica, and is assigned to the conifers. Vascular traces are interpreted as those of small branches retained on the trunk. Growth-ring analyses reveal one of the slowest growth rates reported in the fossil record, with an average of 0.2 mm/season. While the tree was growing within the Triassic polar circle, sedimentological data and growth-ring information from other fossil trees, including from the same locality, support the presence of favorable conditions in the region. CONCLUSIONS: The specimen is interpreted as a dwarf conifer tree that grew under a generally favorable regional climate but whose growth was suppressed due to stressful local site conditions. This is the first time that a tree with suppressed growth is identified as such in the fossil record, providing new insights on the structure of polar forests under greenhouse climates and, more generally, on the complexity of tree communities in deep time.

7.
Front Plant Sci ; 15: 1409116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38916036

RESUMO

Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa's unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.

8.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38877650

RESUMO

Polar environments pose extreme challenges for life due to low temperatures, limited water, high radiation, and frozen landscapes. Despite these harsh conditions, numerous macro and microorganisms have developed adaptive strategies to reduce the detrimental effects of extreme cold. A primary survival tactic involves avoiding or tolerating intra and extracellular freezing. Many organisms achieve this by maintaining a supercooled state by producing small organic compounds like sugars, glycerol, and amino acids, or through increasing solute concentration. Another approach is the synthesis of ice-binding proteins, specifically antifreeze proteins (AFPs), which hinder ice crystal growth below the melting point. This adaptation is crucial for preventing intracellular ice formation, which could be lethal, and ensuring the presence of liquid water around cells. AFPs have independently evolved in different species, exhibiting distinct thermal hysteresis and ice structuring properties. Beyond their ecological role, AFPs have garnered significant attention in biotechnology for potential applications in the food, agriculture, and pharmaceutical industries. This review aims to offer a thorough insight into the activity and impacts of AFPs on water, examining their significance in cold-adapted organisms, and exploring the diversity of microbial AFPs. Using a meta-analysis from cultivation-based and cultivation-independent data, we evaluate the correlation between AFP-producing microorganisms and cold environments. We also explore small and large-scale biotechnological applications of AFPs, providing a perspective for future research.


Assuntos
Proteínas Anticongelantes , Bactérias , Biotecnologia , Proteínas Anticongelantes/metabolismo , Bactérias/metabolismo , Congelamento , Gelo , Temperatura Baixa , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
9.
Sci Total Environ ; 946: 174189, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936712

RESUMO

The fabric of the Antarctic lacustrine system has a crucial role in assimilating the anthropogenic inputs and mitigating their long time impacts on climate change. Here, we present the changes in the concentrations of major ions and trace metals in the surface water of the lacustrine system to understand the extent of anthropogenic impacts from the adjacent Schirmacher Hills, East Antarctica. The results show that the land-locked lakes (closed-basin lakes surrounded by topographical barriers such as mountains or bedrock formations) in the region have a moderate enrichment in elemental concentrations compared to the pro-glacial lakes (marginal freshwater bodies that form at the terminus of a glacier or ice sheet). The water quality index (WQI: 7.58-12.63) and pollution evaluation index (PEI: 1.36-2.35) remained normal, indicating that the water in these lake are of good quality. However, a significant correlation between lithogenic elements (Al, Fe) and potentially toxic elements (Cd, Cr, and Ba), suggests an increase in the anthropogenic impacts. Based on the principal component analysis (PCA), the source of trace metals to the lacustrine systems appears to be the surrounding environment, followed by aerosol dust particles. Hierarchical cluster analysis (HCA) revealed that regional topography significantly impacts the supply of major ions/trace metals to these lakes. The present study provides baseline data and can be used to estimate and forecast future local and/or global anthropogenic contaminations in the lacustrine system of Schirmacher Hills, East Antarctica. Moreover, the presence of research stations (Maitri and Novolazarevskaya), tourist activities, and the potential for anthropogenic stressors necessitate continued monitoring and impact assessment programs within the Schirmacher Hills lacustrine systems. These programs are crucial for safeguarding this pristine ecosystem from future environmental disturbances under a changing Antarctic climate, as mandated by the Antarctic Treaty System and the Indian Antarctic Act.

10.
Mitochondrial DNA B Resour ; 9(6): 701-706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835641

RESUMO

The striped notothen Trematomus hansoni is an Antarctic fish species belonging to the family Nototheniidae (cod icefishes) that is distributed throughout the Southern Ocean. In this study, the complete mitochondrial genome of T. hansoni was sequenced using an Illumina MiSeq platform. The circular mitochondrial genome is 19,218 bp long and contains 13 protein-coding genes, 23 tRNA genes, two rRNA genes, and one control region. Notably, there are two trnG-UCC genes and the second gene, located between trnE-UUC and trnI-GAU, has no D-arm structure. The base composition is 56.18% of A + T and 43.82% of G + C. The phylogenetic analysis supports that T. hansoni is grouped into a single clade with T. bernacchii. This study will be a valuable resource for further research on the phylogeny and evolution of the genus Trematomus.

11.
Arch Microbiol ; 206(7): 323, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907777

RESUMO

Ten strains of psychrotolerant methylotrophic bacteria were isolated from the samples collected in Larsemann and Bunger Hills (Antarctica). Most of the isolates are assigned to the genus Pseudomonas, representatives of the genera Janthinobacterium, Massilia, Methylotenera and Flavobacterium were also found. Majority of isolates were able to grow on a wide range of sugars, methylamines and other substrates. Optimal growth temperatures for the isolated strains varied from 6 °C to 28 °C. The optimal concentration of NaCl was 0.5-2.0%. The optimal pH values of the medium were 6-7. It was found that three strains synthesized indole-3-acetic acid on a medium with L-tryptophan reaching 11-12 µg/ml. The values of intracellular carbohydrates in several strains exceeded 50 µg/ml. Presence of calcium-dependent and lanthanum-dependent methanol dehydrogenase have been shown for some isolates. Strains xBan7, xBan20, xBan37, xBan49, xPrg27, xPrg48, xPrg51 showed the presence of free amino acids. Bioprospection of Earth cryosphere for such microorganisms has a potential in biotechnology.


Assuntos
Biotecnologia , Regiões Antárticas , Filogenia , Ácidos Indolacéticos/metabolismo , Methylobacteriaceae/genética , Methylobacteriaceae/isolamento & purificação , Methylobacteriaceae/metabolismo , Methylobacteriaceae/classificação , Methylobacteriaceae/enzimologia , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Temperatura Baixa , Cloreto de Sódio/metabolismo , Meios de Cultura/química , Triptofano/metabolismo
12.
Extremophiles ; 28(2): 30, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907846

RESUMO

This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI24%) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI24% > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.


Assuntos
Fungos , Sedimentos Geológicos , Lagos , Regiões Antárticas , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Fungos/enzimologia , Fungos/isolamento & purificação , Fungos/metabolismo , Tensoativos/metabolismo , Proteínas Fúngicas/metabolismo , Celulase/metabolismo , Esterases/metabolismo
13.
Biology (Basel) ; 13(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38927294

RESUMO

In this study, we evaluated the fungal diversity present associated with cores of Oligocene rocks using a DNA metabarcoding approach. We detected 940,969 DNA reads grouped into 198 amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Mucoromycota, Rozellomycota, Blastocladiomycota, Monoblepharomycota, Zoopagomycota, Aphelidiomycota (Fungi) and the fungal-like Oomycota (Stramenopila), in rank abundance order. Pseudogymnoascus pannorum, Penicillium sp., Aspergillus sp., Cladosporium sp., Aspergillaceae sp. and Diaporthaceae sp. were assessed to be dominant taxa, with 22 fungal ASVs displaying intermediate abundance and 170 being minor components of the assigned fungal diversity. The data obtained displayed high diversity indices, while rarefaction indicated that the majority of the diversity was detected. However, the diversity indices varied between the cores analysed. The endolithic fungal community detected using a metabarcoding approach in the Oligocene rock samples examined contains a rich and complex mycobiome comprising taxa with different lifestyles, comparable with the diversity reported in recent studies of a range of Antarctic habitats. Due to the high fungal diversity detected, our results suggest the necessity of further research to develop strategies to isolate these fungi in culture for evolutionary, physiological, and biogeochemical studies, and to assess their potential role in biotechnological applications.

14.
Integr Zool ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858828

RESUMO

Penguin tarsometatarsi are shortened and flattened, and studies devoted to the internal characteristics of these composite bones are very limited. Therefore, we present here a comprehensive, x-ray-microscopy-based analysis based on tarsometatarsi of Eocene stem Sphenisciformes from Seymour Island (Antarctic Peninsula) as well as recent Aptenodytes forsteri, A. patagonicus, and Pygoscelis adeliae penguins. Our study focuses on four aspects: size variability of the medullary cavities, vascularization patterns with emphasis on diaphyseal vessels, cross-sectional anisotropy, and diaphyseal resistance to bending forces. Small-sized Eocene penguins (Delphinornis and Marambiornopsis) show well-developed tarsometatarsal medullary cavities, whereas the cavities of "giant" early Sphenisciformes are either smaller (Palaeeudyptes) or show a conspicuous intermetatarsal size gradient (Anthropornis). Extant penguins exhibit a decrease in cavity dimensions as their body size increases. Distributional tendencies of primary diaphyseal nutrient foramina are quite similar in the smaller Delphinornis, Marambiornopsis, and extant Pygoscelis on one side and in Palaeeudyptes and extant Aptenodytes on the other. Anthropornis shows a unique, plesiomorphic pattern with a prevalence of plantar blood supply to the metatarsals. The diaphyseal nutrient canals diverge in orientation, some obliquely away from the proximal part, others with disparate trajectories. Cross-sectional anisotropy along the tarsometatarsal shaft generally appears to be rather low. Clustering of coherency curves along certain tarsometatarsal segments may reflect a selection process that exerts a significant influence within biomechanically crucial sections. Diaphyseal resistance to mediolateral bending forces is explicitly more efficient in extant penguins than in Eocene Sphenisciformes. This can be interpreted as an adaptation to the waddling gait of extant penguins.

15.
Sleep Adv ; 5(1): zpae025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737795

RESUMO

In November 1965, Michel Jouvet accepted me into his laboratory in Lyon as a medical student at a time when sleep research was an adventure. After 4 years of investigations in cats, I obtained my medical doctorate. Being a military physician, I was posted to Antarctica for wintering over and was initiated by Jean Rivolier into the psychology of small isolated human groups. I recorded 180 polysomnographic (PSG) nights in eight of my companions. This was my first contribution to research on human sleep under extreme environments and conditions. I then entered René Hénane's military thermophysiology laboratory, where I analyzed thermal exchanges during human sleep in the heat. Back to the cold, I spent 2 years in Canada and analyzed sleep during the Arctic winter under the direction of Manny W. Radomski, who headed the Defense and Civil Institute of Environmental Medicine and judged my PhD dissertation along with my first two mentors. Throughout my career, I worked in collaboration with Manny Radomski under the auspices of the Franco-Canadian Accord for Defence Research. We studied sleep and exercise, sleep deprivation, and recovery with and without chemical help. He also gave me support during several investigations in Africa. There, I studied normal sleep under various tropical climates (warm and dry in Niger, warm and humid in Côte d'Ivoire and Congo, temperate mid-mountain in Angola). I determined that human African trypanosomiasis, the ravaging sleeping sickness or tsetse disease, is not a hypersomnia, but a disorder of circadian rhythms, notably in the sleep-wake cycle.

16.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791124

RESUMO

The use of lipase immobilized on an octyl-agarose support to obtain the optically pure enantiomers of chiral drugs in reactions carried out in organic solvents is a great challenge for chemical and pharmaceutical sciences. Therefore, it is extremely important to develop optimal procedures to achieve a high enantioselectivity of the biocatalysts in the organic medium. Our paper describes a new approach to biocatalysis performed in an organic solvent with the use of CALB-octyl-agarose support including the application of a polypropylene reactor, an appropriate buffer for immobilization (Tris base-pH 9, 100 mM), a drying step, and then the storage of immobilized lipases in a climatic chamber or a refrigerator. An immobilized lipase B from Candida antarctica (CALB) was used in the kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification with methanol, reaching a high enantiomeric excess (eep = 89.6 ± 2.0%). As part of the immobilization optimization, the influence of different buffers was investigated. The effect of the reactor material and the reaction medium on the lipase activity was also studied. Moreover, the stability of the immobilized lipases: lipase from Candida rugosa (CRL) and CALB during storage in various temperature and humidity conditions (climatic chamber and refrigerator) was tested. The application of the immobilized CALB in a polypropylene reactor allowed for receiving over 9-fold higher conversion values compared to the results achieved when conducting the reaction in a glass reactor, as well as approximately 30-fold higher conversion values in comparison with free lipase. The good stability of the CALB-octyl-agarose support was demonstrated. After 7 days of storage in a climatic chamber or refrigerator (with protection from humidity) approximately 60% higher conversion values were obtained compared to the results observed for the immobilized form that had not been stored. The new approach involving the application of the CALB-octyl-agarose support for reactions performed in organic solvents indicates a significant role of the polymer reactor material being used in achieving high catalytic activity.


Assuntos
Biocatálise , Enzimas Imobilizadas , Proteínas Fúngicas , Lipase , Sefarose , Lipase/química , Lipase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sefarose/química , Propionatos/química , Estereoisomerismo , Cinética , Esterificação , Temperatura , Estabilidade Enzimática , Candida/enzimologia , Solventes/química , Saccharomycetales
17.
Sci Rep ; 14(1): 11976, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796616

RESUMO

Hydrocarbon contamination, including contamination with polycyclic aromatic hydrocarbons (PAHs), is a major concern in Antarctica due to the toxicity, recalcitrance and persistence of these compounds. Under the Antarctic Treaty, nonindigenous species are not permitted for use in bioremediation at polluted sites in the Antarctic region. In this study, three bacterial consortia (C13, C15, and C23) were isolated from Antarctic soils for phenanthrene degradation. All isolated bacterial consortia demonstrated phenanthrene degradation percentages ranging from 45 to 85% for 50 mg/L phenanthrene at 15 â„ƒ within 5 days. Furthermore, consortium C13 exhibited efficient phenanthrene degradation potential across a wide range of environmental conditions, including different temperature (4-30 â„ƒ) and water availability (without polyethylene glycol (PEG) 6000 or 30% PEG 6000 (w/v)) conditions. Sequencing analysis of 16S rRNA genes revealed that Pseudomonas and Pseudarthrobacter were the dominant genera in the phenanthrene-degrading consortia. Moreover, six cultivable strains were isolated from these consortia, comprising four strains of Pseudomonas, one strain of Pseudarthrobacter, and one strain of Paeniglutamicibacter. These isolated strains exhibited the ability to degrade 50 mg/L phenanthrene, with degradation percentages ranging from 4 to 22% at 15 â„ƒ within 15 days. Additionally, the constructed consortia containing Pseudomonas spp. and Pseudarthrobacter sp. exhibited more effective phenanthrene degradation (43-52%) than did the individual strains. These results provide evidence that Pseudomonas and Pseudarthrobacter can be potential candidates for synergistic phenanthrene degradation at low temperatures. Overall, our study offers valuable information for the bioremediation of PAH contamination in Antarctic environments.


Assuntos
Biodegradação Ambiental , Fenantrenos , Pseudomonas , Fenantrenos/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Temperatura Baixa , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo/metabolismo , Regiões Antárticas , Consórcios Microbianos , Filogenia
18.
Sci Total Environ ; 933: 173187, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750762

RESUMO

Cryoconite holes (water and sediment-filled depressions), found on glacier surfaces worldwide, serve as reservoirs of microbes, carbon, trace elements, and nutrients, transferring these components downstream via glacier hydrological networks. Through targeted amplicon sequencing of carbon and nitrogen cycling genes, coupled with functional inference-based methods, we explore the functional diversity of these mini-ecosystems within Antarctica and the Himalayas. These regions showcase distinct environmental gradients and experience varying rates of environmental change influenced by global climatic shifts. Analysis revealed a diverse array of photosynthetic microorganisms, including Stramenopiles, Cyanobacteria, Rhizobiales, Burkholderiales, and photosynthetic purple sulfur Proteobacteria. Functional inference highlighted the high potential for carbohydrate, amino acid, and lipid metabolism in the Himalayan region, where organic carbon concentrations surpassed those in Antarctica by up to 2 orders of magnitude. Nitrogen cycling processes, including fixation, nitrification, and denitrification, are evident, with Antarctic cryoconite exhibiting a pronounced capacity for nitrogen fixation, potentially compensating for the limited nitrate concentrations in this region. Processes associated with the respiration of elemental sulfur and inorganic sulfur compounds such as sulfate, sulfite, thiosulfate, and sulfide suggest the presence of a complete sulfur cycle. The Himalayan region exhibits a higher potential for sulfur cycling, likely due to the abundant sulfate ions and sulfur-bearing minerals in this region. The capability for complete iron cycling through iron oxidation and reduction reactions was also predicted. Methanogenic archaea that produce methane during organic matter decomposition and methanotrophic bacteria that utilize methane as carbon and energy sources co-exist in the cryoconite, suggesting that these niches support the complete cycling of methane. Additionally, the presence of various microfauna suggests the existence of a complex food web. Collectively, these results indicate that cryoconite holes are self-sustaining ecosystems that drive elemental cycles on glaciers and potentially control carbon, nitrogen, sulfur, and iron exports downstream.


Assuntos
Camada de Gelo , Camada de Gelo/química , Regiões Antárticas , Ciclo do Nitrogênio , Ciclo do Carbono , Ecossistema , Carbono/metabolismo , Nitrogênio/análise
19.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697936

RESUMO

In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.


Assuntos
Bactérias , Carbono , Microbiota , Nitrogênio , Nutrientes , Microbiologia do Solo , Solo , Regiões Antárticas , Nitrogênio/metabolismo , Bactérias/genética , Bactérias/enzimologia , Bactérias/metabolismo , Nutrientes/metabolismo , Solo/química , Carbono/metabolismo , Biodiversidade , RNA Ribossômico 16S/genética
20.
Sci Rep ; 14(1): 10206, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702334

RESUMO

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Assuntos
Altitude , Hipóxia , Leptina , Transdução de Sinais , Leptina/metabolismo , Leptina/sangue , Animais , Ratos , Masculino , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Humanos , Doença da Altitude/metabolismo , Doença da Altitude/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Adulto , Coração/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...