Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38746545

RESUMO

Numerous genomic methods developed over the past two decades have enabled the discovery and extraction of orthologous loci to help resolve phylogenetic relationships across various taxa and scales. Genome skimming (or low-coverage genome sequencing) is a promising method to not only extract high-copy loci but also 100s to 1000s of phylogenetically informative nuclear loci (e.g., ultraconserved elements [UCEs] and exons) from contemporary and museum samples. The subphylum Anthozoa, including important ecosystem engineers (e.g., stony corals, black corals, anemones, and octocorals) in the marine environment, is in critical need of phylogenetic resolution and thus might benefit from a genome-skimming approach. We conducted genome skimming on 242 anthozoan corals collected from 1886 to 2022. Using existing target-capture baitsets, we bioinformatically obtained UCEs and exons from the genome-skimming data and incorporated them with data from previously published target-capture studies. The mean number of UCE and exon loci extracted from the genome skimming data was 1837 ± 662 SD for octocorals and 1379 ± 476 SD loci for hexacorals. Phylogenetic relationships were well resolved within each class. A mean of 1422 ± 720 loci was obtained from the historical specimens, with 1253 loci recovered from the oldest specimen collected in 1886. We also obtained partial to whole mitogenomes and nuclear rRNA genes from >95% of samples. Bioinformatically pulling UCEs, exons, mitochondrial genomes, and nuclear rRNA genes from genome skimming data is a viable and low-cost option for phylogenetic studies. This approach can be used to review and support taxonomic revisions and reconstruct evolutionary histories, including historical museum and type specimens.

2.
Ecol Evol ; 14(4): e11222, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628921

RESUMO

In nearly all animals, light-sensing mediated by opsin visual pigments is important for survival and reproduction. Eyeless light-sensing systems, though vital for many animals, have received relatively less attention than forms with charismatic or complex eyes. Despite no single light-sensing organ, the sea anemone Nematostella vectensis has 29 opsin genes and multiple light-mediated behaviors throughout development and reproduction, suggesting a deceptively complex light-sensing system. To characterize one aspect of this light-sensing system, we analyzed larval swimming behavior at high wavelength resolution across the ultraviolet and visual spectrum. N. vectensis larvae respond to light at least from 315 to 650 nm, which is a broad sensitivity range even compared to many animals with complex eyes. Planktonic swimming is induced by ultraviolet (UV) and violet wavelengths until 420 nm. Between 420 and 430 nm a behavioral switch occurs where at wavelengths longer than 430 nm, larvae respond to light by swimming down. Swimming down toward the substrate is distinct from light avoidance, as animals do not exhibit positive or negative phototaxis at any wavelength tested. At wavelengths longer than 575 nm, animals in the water column take increasingly longer to respond and this behavior is more variable until 650 nm where larval response is no different from the dark, suggesting these longer wavelengths lie outside of their sensitivity range. Larval swimming is the only motile stage in the life history of N. vectensis, and increased planktonic swimming could lead to greater dispersal range in potentially damaging shallow environments with short-wavelength light exposure. Longer wavelength environments may indicate more suitable substrates for metamorphosis into the polyp stage, where the individual will remain for the rest of its life. Future work will test whether this robust behavior is mediated by multiple opsins.

3.
Evodevo ; 14(1): 14, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735470

RESUMO

BACKGROUND: Opsins are the primary proteins responsible for light detection in animals. Cnidarians (jellyfish, sea anemones, corals) have diverse visual systems that have evolved in parallel with bilaterians (squid, flies, fish) for hundreds of millions of years. Medusozoans (e.g., jellyfish, hydroids) have evolved eyes multiple times, each time independently incorporating distinct opsin orthologs. Anthozoans (e.g., corals, sea anemones,) have diverse light-mediated behaviors and, despite being eyeless, exhibit more extensive opsin duplications than medusozoans. To better understand the evolution of photosensitivity in animals without eyes, we increased anthozoan representation in the phylogeny of animal opsins and investigated the large but poorly characterized opsin family in the sea anemone Nematostella vectensis. RESULTS: We analyzed genomic and transcriptomic data from 16 species of cnidarians to generate a large opsin phylogeny (708 sequences) with the largest sampling of anthozoan sequences to date. We identified 29 opsins from N. vectensis (NvOpsins) with high confidence, using transcriptomic and genomic datasets. We found that lineage-specific opsin duplications are common across Cnidaria, with anthozoan lineages exhibiting among the highest numbers of opsins in animals. To establish putative photosensory function of NvOpsins, we identified canonically conserved protein domains and amino acid sequences essential for opsin function in other animal species. We show high sequence diversity among NvOpsins at sites important for photoreception and transduction, suggesting potentially diverse functions. We further examined the spatiotemporal expression of NvOpsins and found both dynamic expression of opsins during embryonic development and sexually dimorphic opsin expression in adults. CONCLUSIONS: These data show that lineage-specific duplication and divergence has led to expansive diversity of opsins in eyeless cnidarians, suggesting opsins from these animals may exhibit novel biochemical functions. The variable expression patterns of opsins in N. vectensis suggest opsin gene duplications allowed for a radiation of unique sensory cell types with tissue- and stage-specific functions. This diffuse network of distinct sensory cell types could be an adaptive solution for varied sensory tasks experienced in distinct life history stages in Anthozoans.

4.
Zool Stud ; 62: e29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37772164

RESUMO

Sea anemones (Cnidaria, Actiniaria) are a successful group of marine invertebrates found in a diverse range of environments globally. In spite of their ubiquity, identities for many sea anemones remain unverified, especially those from the Indo-West Pacific region. Here, we clarify the taxonomy of the poorly known Macrodactyla aspera, a shallow-water species first described from the Torres Straits in northern Australia. We re-describe M. aspera based on new morphological and molecular data gathered from the type specimen, other museum vouchers, and from fresh material collected from Singapore. We tested the monophyly of Macrodactyla using three mitochondrial (12S, 16S and cox3) and one nuclear (28S) marker based on three congeners, recovering this genus to be polyphyletic. As a consequence, we transferred M. doreensis to the genus Heteractis, and describe a new species, Macrodactyla fautinae sp. nov. While both M. aspera and M. fautinae sp. nov. share the same arrangement and number of complete mesenteries, a similar distribution of cnidae, and are not symbiotically associated with any other biota, M. fautinae sp. nov. has perforated, lobe-like verrucae on its column, and lacks nematocyst batteries on its tentacles, unlike M. aspera. These two species also occur in similar habitats in Singapore. Finally, because M. aspera strongly resembles Dofleinia armata, the latter species flagged as a danger to public health due to its ability to inflict painful stings, we tested the relationship between these species and found them not to be closely related. However, tentacles of M. aspera, like D. armata, are densely covered with nematocyst batteries and harbour large nematocysts; we infer that M. aspera may also be capable of delivering stings that endanger public health. This study builds upon a growing number of studies that aim to ascertain identities and systematics of sea anemones historically reported from the Indo-West Pacific. Our findings will facilitate accurate species identification, which is crucial for advancing research, formulating conservation measures, and protecting public health.

5.
R Soc Open Sci ; 10(6): 230152, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325595

RESUMO

Cnidarians exhibit incredible reproductive diversity, with most capable of sexual and asexual reproduction. Here, we investigate factors that influence asexual reproduction in the burrowing sea anemone Nematostella vectensis, which can propagate asexually by transverse fission of the body column. By altering culture conditions, we demonstrate that the presence of a burrowing substrate strongly promotes transverse fission. In addition, we show that animal size does not affect fission rates, and that the plane of fission is fixed along the oral-aboral axis of the polyp. Homeobox transcription factors and components of the TGFß, Notch, and FGF signalling pathways are differentially expressed in polyps undergoing physal pinching suggesting they are important regulators of transverse fission. Gene ontology analyses further suggest that during transverse fission the cell cycle is suppressed, and that cell adhesion and patterning mechanisms are downregulated to promote separation of the body column. Finally, we demonstrate that the rate of asexual reproduction is sensitive to population density. Collectively, these experiments provide a foundation for mechanistic studies of asexual reproduction in Nematostella, with implications for understanding the reproductive and regenerative biology of other cnidarian species.

6.
Mol Phylogenet Evol ; 186: 107867, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348770

RESUMO

A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (less than 38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.


Assuntos
Antozoários , Animais , Filogenia , Antozoários/genética , Transcriptoma , Genoma , Núcleo Celular
7.
Mar Drugs ; 20(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36547877

RESUMO

Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary impact of this relationship on the venom composition of the host is still unknown. Here, we investigate the potential of this symbiotic relationship to shape the venom profiles of the sea anemones that host clownfish. We use transcriptomic data to identify differences and similarities in venom profiles of six sea anemone species, representing the three known clades of clownfish-hosting sea anemones. We recovered 1121 transcripts matching verified toxins across all species, and show that hemolytic and hemorrhagic toxins are consistently the most dominant and diverse toxins across all species examined. These results are consistent with the known biology of sea anemones, provide foundational data on venom diversity of these species, and allow for a review of existing hierarchical structures in venomic studies.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Venenos de Cnidários/genética , Venenos de Cnidários/química , Transcriptoma , Anêmonas-do-Mar/genética , Evolução Biológica , Simbiose
8.
Proc Biol Sci ; 289(1984): 20221576, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36196541

RESUMO

Colour patterns in fish are often used as an important medium for communication. Anemonefish, characterized by specific patterns of white bars, inhabit host anemones and defend the area around an anemone as their territory. The host anemone is used not only by the anemonefish, but also by other fish species that use anemones as temporary shelters. Anemonefish may be able to identify potential competitors by their colour patterns. We first examined the colour patterns of fish using host anemones inhabited by Amphiprion ocellaris as shelter and compared them with the patterns of fish using surrounding scleractinian corals. There were no fish with bars sheltering in host anemones, although many fish with bars were found in surrounding corals. Next, two fish models, one with white bars and the other with white stripes on a black background, were presented to an A. ocellaris colony. The duration of aggressive behaviour towards the bar model was significantly longer than that towards the stripe model. We conclude that differences in aggressive behaviour by the anemonefish possibly select the colour patterns of cohabiting fish. This study indicates that colour patterns may influence not only intraspecific interactions but also interspecific interactions in coral reef ecosystems.


Assuntos
Anemone , Antozoários , Anêmonas-do-Mar , Animais , Cor , Recifes de Corais , Ecossistema , Peixes , Simbiose
9.
PeerJ ; 10: e12770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047238

RESUMO

Exaiptasia diaphana, a tropical sea anemone known as Aiptasia, is a tractable model system for studying the cellular, physiological, and ecological characteristics of cnidarian-dinoflagellate symbiosis. Aiptasia is widely used as a proxy for coral-algal symbiosis, since both Aiptasia and corals form a symbiosis with members of the family Symbiodiniaceae. Laboratory strains of Aiptasia can be maintained in both the symbiotic (Sym) and aposymbiotic (Apo, without algae) states. Apo Aiptasia allow for the study of the influence of symbiosis on different biological processes and how different environmental conditions impact symbiosis. A key feature of Aiptasia is the ease of propagating both Sym and Apo individuals in the laboratory through a process called pedal laceration. In this form of asexual reproduction, small pieces of tissue rip away from the pedal disc of a polyp, then these lacerates eventually develop tentacles and grow into new polyps. While pedal laceration has been described in the past, details of how tentacles are formed or how symbiotic and nutritional state influence this process are lacking. Here we describe the stages of development in both Sym and Apo pedal lacerates. Our results show that Apo lacerates develop tentacles earlier than Sym lacerates, while over the course of 20 days, Sym lacerates end up with a greater number of tentacles. We describe both tentacle and mesentery patterning during lacerate development and show that they form through a single pattern in early stages regardless of symbiotic state. In later stages of development, Apo lacerate tentacles and mesenteries progress through a single pattern, while variable patterns were observed in Sym lacerates. We discuss how Aiptasia lacerate mesentery and tentacle patterning differs from oral disc regeneration and how these patterning events compare to postembryonic development in Nematostella vectensis, another widely-used sea anemone model. In addition, we demonstrate that Apo lacerates supplemented with a putative nutrient source developed an intermediate number of tentacles between un-fed Apo and Sym lacerates. Based on these observations, we hypothesize that pedal lacerates progress through two different, putatively nutrient-dependent phases of development. In the early phase, the lacerate, regardless of symbiotic state, preferentially uses or relies on nutrients carried over from the adult polyp. These resources are sufficient for lacerates to develop into a functional polyp. In the late phase of development, continued growth and tentacle formation is supported by nutrients obtained from either symbionts and/or the environment through heterotrophic feeding. Finally, we advocate for the implementation of pedal lacerates as an additional resource in the Aiptasia model system toolkit for studies of cnidarian-dinoflagellate symbiosis.


Assuntos
Antozoários , Dinoflagellida , Lacerações , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/fisiologia , Simbiose/fisiologia , Meio Ambiente , Dinoflagellida/fisiologia
10.
Cells ; 10(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34685672

RESUMO

The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.


Assuntos
Modelos Animais , Regeneração/fisiologia , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/fisiologia , Animais , Hemostasia , Filogenia , Reprodução , Anêmonas-do-Mar/genética
11.
Front Microbiol ; 12: 726795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707584

RESUMO

Microbial communities confer multiple beneficial effects to their multicellular hosts. To evaluate the evolutionary and ecological implications of the animal-microbe interactions, it is essential to understand how bacterial colonization is secured and maintained during the transition from one generation to the next. However, the mechanisms of symbiont transmission are poorly studied for many species, especially in marine environments, where the surrounding water constitutes an additional source of microbes. Nematostella vectensis, an estuarine cnidarian, has recently emerged as model organism for studies on host-microbes interactions. Here, we use this model organism to study the transmission of bacterial colonizers, evaluating the contribution of parental and environmental transmission to the establishment of bacterial communities of the offspring. We induced spawning in adult male and female polyps of N. vectensis and used their gametes for five individual fertilization experiments. While embryos developed into primary polyps, we sampled each developmental stage and its corresponding medium samples. By analyzing the microbial community compositions of all samples through 16S rRNA gene amplicon sequencing, we showed that all host tissues harbor microbiota significantly different from the surrounding medium. Interestingly, oocytes and sperms are associated with distinct bacterial communities, indicating the specific vertical transmission of bacterial colonizers by the gametes. These differences were consistent among all the five families analyzed. By overlapping the identified bacterial ASVs associated with gametes, offspring and parents, we identified specific bacterial ASVs that are well supported candidates for vertical transmission via mothers and fathers. This is the first study investigating bacteria transmission in N. vectensis, and among few on marine spawners that do not brood larvae. Our results shed light on the consistent yet distinct maternal and paternal transfer of bacterial symbionts along the different life stages and generations of an aquatic invertebrate.

12.
Zoological Lett ; 7(1): 12, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488893

RESUMO

Symmetry in the arrangement of body parts is a distinctive phylogenetic feature of animals. Cnidarians show both bilateral and radial symmetries in their internal organs, such as gastric pouches and muscles. However, how different symmetries appear during the developmental process remains unknown. Here, we report intraspecific variations in the symmetric arrangement of gastric pouches, muscles, and siphonoglyphs, the Anthozoan-specific organ that drives water into the organism, in D. lineata (Diadumenidae, Actiniaria). We found that the positional arrangement of the internal organs was apparently constrained to either biradial or bilateral symmetries depending on the number of siphonoglyphs. Based on the morphological observations, a mathematical model of internal organ positioning was employed to predict the developmental backgrounds responsible for the biradial and bilateral symmetries. In the model, we assumed that the specification of gastric pouches is orchestrated by lateral inhibition and activation, which results in different symmetries depending on the number of siphonoglyphs. Thus, we propose that a common developmental program can generate either bilateral or biradial symmetries depending on the number of siphonoglyphs formed in the early developmental stages.

13.
Biology (Basel) ; 10(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206888

RESUMO

Members of genus Iridogorgia Verrill, 1883 are the typical deep-sea megabenthos with only seven species reported. Based on an integrated morphological-molecular approach, eight sampled specimens of Iridogorgia from seamounts in the tropical Western Pacific are identified as three new species, and two known species I. magnispiralis Watling, 2007 and I. densispicula Xu, Zhan, Li and Xu, 2020. Iridogorgia flexilis sp. nov. is unique in having a very broad polyp body base with stout and thick scales. Iridogorgia densispiralis sp. nov. can be distinguished by rods present in both polyps and coenenchyme, and I. verrucosa sp. nov. is characterized by having numerous verrucae in coenenchyme and irregular spindles and scales in the polyp body wall. Phylogenetic analysis based on the nuclear 28S rDNA indicated that I. densispiralis sp. nov. showed close relationships with I. splendens Watling, 2007 and I. verrucosa sp. nov., and I. flexilis sp. nov. formed a sister clade with I. magnispiralis. In addition, due to Rhodaniridogorgia fragilis Watling, 2007 nested into the Iridogorgia clade in mtMutS-COI trees and shared highly similar morphology to the latter, we propose to eliminate the genus Rhodaniridogorgia by establishing a new combination Iridogorgia fragilis (Watling, 2007) comb. nov. and resurrecting I. superba Nutting, 1908.

14.
Mol Phylogenet Evol ; 163: 107233, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139346

RESUMO

Genome-level sequencing is the next step in understanding species-level relationships within Anthozoa (soft corals, anemones, stony corals, and their kin) as morphological and PCR-directed (single-locus) sequencing methods often fall short of differentiating species. The sea anemone genus Metridium is a common northern temperate sea anemone whose species are difficult to differentiate using morphology alone. Here we use Metridium as a case study to confirm the low level of information available in six loci for species differentiation commonly sequenced for Actiniaria and explore and compare the efficacy of ddRAD and sequence-capture methods in species-level systematics and biogeographic studies. We produce phylogenetic trees from concatenated datasets and perform DAPC and STRUCTURE analyses using SNP data. The six conventional loci are not able to consistently differentiate species within Metridium. The sequence-capture dataset resulted in high support and resolution for both current species and relationships between geographic areas. The ddRAD datasets displayed ambiguity among species, and support between major geographic groupings was not as high as the sequence-capture datasets. The level of resolution and support resulting from the sequence-capture data, combined with the ability to add additional individuals and expand beyond the genus Metridium over time, emphasizes the utility of sequence-capture methods for both systematics and future biogeographic studies within anthozoans. We discuss the strengths and weaknesses of the genomic approaches in light of our findings and suggest potential implications for the biogeography of Metridium based on our sampling.


Assuntos
Antozoários , Anêmonas-do-Mar , Animais , Antozoários/genética , Genoma , Genômica , Humanos , Filogenia , Anêmonas-do-Mar/genética
15.
Biology (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35053037

RESUMO

Coral forests are vulnerable marine ecosystems formed by arborescent corals (e.g., Anthozoa of the orders Alcyonacea and Antipatharia). The population structure of the habitat-forming corals can inform on the status of the habitat, representing an essential aspect to monitor. Most Mediterranean corals live in the mesophotic and aphotic zones, and their population structures can be assessed by analyzing images collected by underwater vehicles. This is still not possible in whip-like corals, whose colony lengths and flexibilities impede the taking of direct length measurements from images. This study reports on the occurrence of a monospecific forest, of the whip coral Viminella flagellum in the Aeolian Archipelago (Southern Tyrrhenian Sea; 149 m depth), and the assessment of its population structure through an ad-hoc, non-invasive method to estimate a colony height based on its width. The forest of V. flagellum showed a mean density of 19.4 ± 0.2 colonies m-2 (up to 44.8 colonies m-2) and no signs of anthropogenic impacts. The population was dominated by young colonies, with the presence of large adults and active recruitment. The new model proved to be effective for non-invasive monitoring of this near threatened species, representing a needed step towards appropriate conservation actions.

16.
Zootaxa ; 4878(2): zootaxa.4878.2.1, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33311152

RESUMO

In this study we provide an updated checklist of benthic Cnidaria from SW Atlantic Ocean that comprised the Marine Protected Areas Namuncurá I and II, located at Burdwood bank, and other neighbouring locations. A total of 88 taxa was recorded: 36 hydrozoans and 52 anthozoans from which 32 were octocorals, 10 scleractinian corals, 8 sea anemones and 2 zoanthids. Burdwood bank presented the highest richness considering that 87% of the recorded species inhabit this plateau or its slope. Besides some common species widely distributed in the studied sub-areas, at least 24 species represent new distributional records while few were exclusively recorded at Burdwood bank. The inventory here provided will help to identify key habitat-forming species in a complex habitat where marine animal forests and vulnerable marine ecosystems were previously detected. It will be also a very valuable tool for the management and monitoring of the sub-areas under protection.


Assuntos
Antozoários , Hidrozoários , Anêmonas-do-Mar , Animais , Oceano Atlântico , Ecossistema
17.
Zookeys ; 989: 1-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223893

RESUMO

Explorations of seamounts in the Western Pacific Ocean and South China Sea resulted in collecting 18 specimens of golden gorgonians. Based on the morphology and the genetic analysis of mtMutS, they are described as one new species, Chrysogorgia carolinensis sp. nov., and four known species, including Chrysogorgia dendritica Xu, Zhan & Xu, 2020, Metallogorgia melanotrichos (Wright & Studer, 1889), Metallogorgia macrospina Kükenthal, 1919, and Pseudochrysogorgia bellona Pante & France, 2010. Chrysogorgia carolinensis belongs to the Chrysogorgia "group A, Spiculosae" with rods or spindles distributed in the polyp-body wall and tentacles, and differs from all of its congeners except C. dendritica by the 1/3L branching sequence and amoeba-shaped sclerites at the basal polyp body. The mtMutS sequence of C. carolinensis sp. nov. has six deletion mutations compared to those of its congeners, supporting the establishment of the new species. Although no genetic variability was observed between the closely related species C. dendritica and C. abludo Pante & Watling, 2012, the former is different from the latter by the apparently irregular sclerites in the polyp body wall. The two specimens of Metallogorgia melanotrichos match well with the original description except for relatively larger polyps, while the M. macrospina specimens have slightly smaller polyps than the holotype. The juvenile of Metallogorgia has an obvious morphological difference with the adults in the colony shape and branches, but they can be unified by the same polyps and sclerites as well as mitochondrial MutS sequences. Thus, the generic diagnosis of Metallogorgia is slightly extended to include the morphology of juveniles. The morphology of Pseudochrysogorgia bellona Pante & France, 2010, as a new record for the South China Sea, matches well with that of the original description. In the phylogenetic trees, the Chrysogorgia species are separated into two clades, and while Metallogorgia and Pseudochrysogorgia formed a sister clade.

18.
Zootaxa ; 4766(4): zootaxa.4766.4.3, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33056582

RESUMO

The family Hormathiidae Carlgren, 1932 is one of the largest families of sea anemones with ca. 130 species around the world, mostly in the deep sea. In Brazilian waters, only six species have been reported so far. Herein we record four hormathiids from deep-sea sites at the Potiguar Basin continental slope at Northeast Brazil. Monactis vestita (Gravier, 1918) and Phelliactis robusta Carlgren, 1928 represent the first records of both genera for the Brazilian coast. The new species Paraphelliactis labiata n. sp. is described. We also found another species of the genus, Phelliactis sp. The new species possesses fourth and fifth cycles of incomplete mesenteries, unlike all other Paraphelliactis species. These results increase the total number of hormathiid sea anemones in Brazil to nine and contribute to the knowledge of the Brazilian deep sea, still little explored.


Assuntos
Anêmonas-do-Mar , Animais , Brasil
19.
Zootaxa ; 4764(1): zootaxa.4764.1.1, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33056614

RESUMO

The Litophyton species of Australia are described. Of the 33 species dealt with three were previously described and 30 are considered new. For convenience the species described are divided into five distinct morphological groups. The new species are compared with previously described species from neighbouring Indonesia. L. pyramidalis (Kükenthal, 1895) is synonymized with L. elongatum (Kükenthal, 1895).


Assuntos
Antozoários , Animais , Austrália
20.
Mar Drugs ; 18(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764303

RESUMO

Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins.


Assuntos
Cnidários/genética , Venenos de Cnidários/genética , Perfilação da Expressão Gênica , Transcriptoma , Animais , Cnidários/metabolismo , Venenos de Cnidários/metabolismo , Venenos de Cnidários/farmacologia , Regulação da Expressão Gênica , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...