Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Recent Pat Biotechnol ; 16(2): 155-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34994338

RESUMO

BACKGROUND: From the fruits and seeds of the species of Pterodon, it is possible to obtain two main products: essential oil and oleoresin. In oleoresin, numerous vouacapan compounds have been demonstrated to have biological potential, including insecticidal activity. OBJECTIVE: In silico studies were performed to identify potential candidates for natural insecticides among the vouacapans present in the genus Pterodon. MATERIALS AND METHODS: Molecular docking and molecular dynamics studies were performed to analyze the interaction of vouacapan compounds with acetylcholinesterase of Drosophila melanogaster. Pharmacokinetic parameters regarding physicochemical properties, plasma protein binding, and activity in the central nervous system were evaluated. The toxicological properties of the selected molecules were predicted using malathion as the reference compound. RESULTS: 6α,7ß-dimethoxivouacapan-17-ene (15) showed a high number of interactions and scores in molecular docking studies. These results suggested that this compound exhibits an inhibitory activity of the enzyme acetylcholinesterase. This compound showed the best results regarding physicochemical properties, besides presenting low cutaneous permeability values, suggesting null absorption. Molecular dynamics studies demonstrated few conformational changes in the structure of the complex formed by compound 4 and acetylcholinesterase enzyme throughout the simulation time. CONCLUSION: It was determined that compound 4 (vouacapan 6α,7ß,17ß,19-tetraol) could be an excellent candidate for usage as a natural insecticide.


Assuntos
Fabaceae , Inseticidas , Acetilcolinesterase , Animais , Diterpenos , Drosophila melanogaster , Fabaceae/química , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Patentes como Assunto
2.
Electron. j. biotechnol ; Electron. j. biotechnol;18(6): 399-405, Nov. 2015. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-772282

RESUMO

Background An endophytic fungus lives within a healthy plant during certain stages of, or throughout, its life cycle. Endophytic fungi do not always cause plant disease, and they include fungi that yield different effects, including mutual benefit, and neutral and pathogenic effects. Endophytic fungi promote plant growth, improve the host plant's resistance to biotic and abiotic stresses, and can produce the same or similar biologically active substances as the host. Thus, endophytic fungal products have important implications in drug development. Result Among the numerous endophytic fungi, we identified two strains, L10Q37 and LQ2F02, that have anti-acetylcholinesterase activity, but the active compound was not huperzine A. The aim of this study was to investigate the anti-acetylcholinesterase activity of secondary metabolites isolated from the endophytic fungi of Huperzia serrata. Microbial cultivation and fermentation were used to obtain secondary metabolites. Active components were then extracted from the secondary metabolites, and their activities were tracked. Two compounds that were isolated from endophytic fungi of H. serrata were identified and had acetylcholine inhibitory activities. In conclusion, endophytic fungal strains were found in H. serrata that had the same anti-acetylcholinesterase activity. Conclusion We isolated 4 compounds from the endophytic fungus L10Q37, among them S1 and S3 are new compounds. 6 compounds were isolated from LQ2F02, all 6 compounds are new compounds. After tested anti acetylcholinesterase activity, S5 has the best activity. Other compounds' anti acetylcholinesterase activity was not better compared with huperzine A.


Assuntos
Inibidores da Colinesterase , Huperzia , Endófitos , Desenvolvimento de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA