Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 777
Filtrar
1.
J Appl Microbiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991986

RESUMO

AIM: The high incidence of virus-related infections and the large diffusion of drug-resistant pathogens stimulate the search and identification of new antiviral agents with a broad spectrum of action. Antivirals can be designed to act on a single target by interfering with a specific step in the viral lifecycle. On the contrary, antiviral peptides (AVPs) are known for acting on a wide range of viruses, with a diversified mechanism of action targeting virus and/or host cell. In the present study, we evaluated the antiviral potential of the peptide Hylin-a1 secreted by the frog Hypsiobas albopunctatus against members of the Herpesviridae family. METHODS AND RESULTS: The inhibitory capacity of the peptide was evaluated in vitro by plaque assays in order to understand the possible mechanism of action. The results were also confirmed by Real-Time PCR and Western blot evaluating the expression of viral genes. Hylin-a1 acts to block the herpetic infection interfering at the early stages of both herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infection. Its mechanism is mainly directed on the membrane, probably by damaging the viral envelope. The same effect was also observed against HSV-1 strains resistant to acyclovir. CONCLUSIONS: The data presented in this study, such as the increased activity of the peptide when combined to acyclovir, a weak hemolytic profile, an anti-inflammatory effect, and a tolerable half-life in serum, indicates Hylin-a1 as a novel antiherpetic molecule with promising potential in the clinical setting.

2.
Front Vet Sci ; 11: 1377207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988986

RESUMO

Introduction: Feline Infectious Peritonitis (FIP) has historically been a fatal coronavirus disease in cats. In recent years, the therapeutic agent GS-441524, developed by Gilead Sciences, was found to be a successful treatment for FIP in most patients in clinical trials. However, this particular drug has remained stalled in the therapeutic pipeline, leaving patients and cat owners without a licensed medication. In the meantime, online social media platforms began to emerge, connecting cat owners with a community of citizen non-veterinary professionals sourcing unlicensed GS-441524. Methods: This study prospectively followed participants (N = 141) that successfully completed 12 weeks of treatment, capturing their treatment experiences with self-administered GS-441524-like medication. A one-time survey was administered to enrolled participants with mixed format of questions (open-ended and multiple-choice) asking about treatment administration techniques, observed side effects of GS-441524, accrued cost, veterinarian involvement, impact on the cat-human bond, and social media usage. Results: Our results show cat owners experienced a shift in treatment modality from injectable GS-441524 to pill formulation across the treatment period. The average total cost of medication has decreased since 2021 to approximately USD 3100, and participants reported the human-animal bond being affected negatively. Additionally, there was an increased trend in veterinarian awareness of GS-441524-like therapeutics and monitoring of clients undergoing treatment. Social media usage was reported as being important at the beginning of treatment to establish treatment administration but lessened by the end of treatment. Discussion: This study is the first detailed, prospective account of owner experiences with unlicensed GS-441524, raising an important discussion surrounding citizen veterinary medicine.

3.
J Ethnopharmacol ; 334: 118521, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969152

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY: Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS: Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using plaque reduction and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by Western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS: The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-ß, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-ß, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS: SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.

4.
Antiviral Res ; 229: 105948, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972604

RESUMO

Respiratory syncytial virus (RSV) causes respiratory disease and complications in infants, the elderly and the immunocompromised. While three vaccines and two prophylactic monoclonal antibodies are now available, only one antiviral, ribavirin, is currently approved for treatment. This review aims to summarize the current state of treatments directly targeting RSV. Two major viral processes are attractive for RSV-specific antiviral drug discovery and development as they play essential roles in the viral cycle: the entry/fusion process carried out by the fusion protein and the replication/transcription process carried out by the polymerase complex constituted of the L, P, N and M2-1 proteins. For each viral target resistance mutations to small molecules of different chemotypes seem to delineate definite binding pockets in the fusion proteins and in the large proteins. Elucidating the mechanism of action of these inhibitors thus helps to understand how the fusion and polymerase complexes execute their functions. While many inhibitors have been studied, few are currently in clinical development for RSV treatment: one is in phase III, three in phase II and two in phase I. Progression was halted for many others because of strategic decisions, low enrollment, safety, but also lack of efficacy. Lessons can be learnt from the halted programs to increase the success rate of the treatments currently in development.

5.
Res Sq ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947049

RESUMO

Background: Nirmatrelvir/ritonavir (NM/r) is a safe and effective oral antiviral therapeutic used for treatment of mild-to-moderate COVID-19. Case reports described a clinical rebound syndrome whereby individuals experience a relapse of symptoms shortly after completing successful treatment. There is a lack of information on frequency of COVID-19 rebound after NM/r in routine clinical care, contributing factors, and clinical outcomes. Methods: We reviewed electronic medical records to verify COVID-19 diagnosis, symptoms, and treatment with NM/r from January-June 2022. We defined COVID-19 clinical rebound as clear improvement in symptoms followed by recurrence or worsening of symptoms within 30 days of a five-day course of NM/r. Results: We studied 268 adults with median age 57 (IQR 47, 68), 80% White race, 85% non-Hispanic ethnicity, 55% female, 80% vaccinated and boosted against SARS-CoV-2, and 68% with any co-morbidity. Sixteen (6.0%) of studied patients were determined to have COVID-19 clinical rebound. The median time from starting NM/r to rebound was 11 days (IQR 9, 13). Notable demographic and clinical factors with higher proportion (not statistically significant) among COVID-19 rebound patients were female sex (75% rebound vs 54.5% no rebound), Black race (12.5% rebound vs 4.9% no rebound), presence of at least one co-morbidity (81.3% rebound vs 67.5% no rebound), and lack of prior SARS-CoV-2 infection (100% rebound vs 92.9% no rebound). Only one patient (6.25%) was hospitalized after COVID-19 rebound. Conclusions: COVID-19 clinical rebound after treatment with NM/r is mild with favorable outcomes and more common than previously reported from real-world clinical care studies.

6.
Int J Biol Macromol ; : 133496, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986999

RESUMO

Dengue virus (DENV) infection poses a global health threat, leading to severe conditions with the potential for critical outcomes. Currently, there are no specific drugs available whereas the vaccine does not offer comprehensive protection across all DENV serotypes. Therefore, the development of potential anti-viral agents is necessary to reduce the severity risk and interrupt the transmission circuit. The search for effective antiviral agents against DENV has predominantly focused on natural resources, particularly those demonstrating diverse biological activities and high safety profiles. Cyanobacteria and algae including Leptolyngbya sp., Spirulina sp., Chlorella sp., and Sargassum spp., which are prevalent species in Thailand, have been reported for their diverse biological activities and high safety profile but not specifically for anti-DENV activity. In this study, the screening assay was performed to compare the anti-viral activity against DENV of crude polysaccharide and ethanolic extracts derived from 4 species of cyanobacteria and algae in Vero cells. Polysaccharide extracts from Sargassum spp. exhibited the most effective in inhibiting DENV-2 infection at co-infection conditions where the virus was exposed to the extract at the time of infection. Treatment of the extract significantly reduced the ability of DENV to bind to the host cells to 47.87 ±â€¯3.88 % while treatment upon virus binding step had no anti-viral effect suggesting the underlaying mechanism of the extract on interfering virus binding step. Fucoidan, a key bioactive substance in Sargassum polysaccharide, showed to reduce DENV-2 infection to 26.59 ±â€¯5.01 %, 20.46 ±â€¯6.58 % in co-infection condition in Vero cells and A549 cell line, respectively. In accompanied with Sargassum polysaccharide, fucoidan disturbed the virus binding to the host cells. These findings warrant further development and exploration of the Sargassum-derived polysaccharide, fucoidan, as a promising candidate for combating DENV infections.

7.
Elife ; 132024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941138

RESUMO

SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape the early innate immune response. The delay has been attributed to a deficiency in the ability of cells to sense viral replication upon infection, which in turn hampers activation of the antiviral state in bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection as a function of virus and host-dependent parameters. The model suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a consequence of high sensitivity to slight variations in biological parameters near a critical threshold. It further suggests that within-host viral proliferation can be curtailed by the presence of remarkably few cells that are primed for IFN production. Thus, the observed heterogeneity in defense readiness of cells reflects a remarkably cost-efficient strategy for protection.


Assuntos
COVID-19 , SARS-CoV-2 , SARS-CoV-2/fisiologia , Humanos , COVID-19/virologia , COVID-19/imunologia , Replicação Viral , Imunidade Inata , Células Epiteliais/virologia , Interferons/metabolismo
8.
Virology ; 597: 110144, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38943782

RESUMO

Sarracenia purpurea is a carnivorous plant historically used to treat smallpox infections. Our previous data found S. purpurea had broad spectrum antiviral activity in vitro. S. purpurea is one of several hundred identified carnivorous species of plants. Carnivorous plants have evolved through convergent evolution in at least ten independent events, usually in response to harsh environments where nutrition from prey is required for growth. These prey are known vectors of plant viruses that might introduce novel biotic stressors and defense pathways in carnivorous plants. This study evaluated the antiviral activity of several non-carnivorous and carnivorous plants from four evolutionarily distinct clades. Results demonstrated that carnivorous plants have evolved antiviral activity, a trait that is not present in related species of non-carnivorous plants. The antiviral trait may be due to the plant-prey relationship with insect vectors and an evolutionary need for carnivorous plants to have more robust antiviral defense systems.

9.
Front Microbiol ; 15: 1415449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841065

RESUMO

Phosphorylation is a major post-translation modification (PTM) of proteins which is finely tuned by the activity of several hundred kinases and phosphatases. It controls most if not all cellular pathways including anti-viral responses. Accordingly, viruses often induce important changes in the phosphorylation of host factors that can either promote or counteract viral replication. Among more than 500 kinases constituting the human kinome only few have been described as important for the hepatitis B virus (HBV) infectious cycle, and most of them intervene during early or late infectious steps by phosphorylating the viral Core (HBc) protein. In addition, little is known on the consequences of HBV infection on the activity of cellular kinases. The objective of this study was to investigate the global impact of HBV infection on the cellular phosphorylation landscape early after infection. For this, primary human hepatocytes (PHHs) were challenged or not with HBV, and a mass spectrometry (MS)-based quantitative phosphoproteomic analysis was conducted 2- and 7-days post-infection. The results indicated that while, as expected, HBV infection only minimally modified the cell proteome, significant changes were observed in the phosphorylation state of several host proteins at both time points. Gene enrichment and ontology analyses of up- and down-phosphorylated proteins revealed common and distinct signatures induced by infection. In particular, HBV infection resulted in up-phosphorylation of proteins involved in DNA damage signaling and repair, RNA metabolism, in particular splicing, and cytoplasmic cell-signaling. Down-phosphorylated proteins were mostly involved in cell signaling and communication. Validation studies carried out on selected up-phosphorylated proteins, revealed that HBV infection induced a DNA damage response characterized by the appearance of 53BP1 foci, the inactivation of which by siRNA increased cccDNA levels. In addition, among up-phosphorylated RNA binding proteins (RBPs), SRRM2, a major scaffold of nuclear speckles behaved as an antiviral factor. In accordance with these findings, kinase prediction analysis indicated that HBV infection upregulates the activity of major kinases involved in DNA repair. These results strongly suggest that HBV infection triggers an intrinsic anti-viral response involving DNA repair factors and RBPs that contribute to reduce HBV replication in cell culture models.

10.
Antiviral Res ; 227: 105907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772503

RESUMO

Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology.


Assuntos
Antivirais , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Animais , Humanos , Replicação Viral/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Ovinos , Farmacorresistência Viral , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Virais/genética , Pulmão/virologia
11.
Front Immunol ; 15: 1338218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742109

RESUMO

Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.


Assuntos
Movimento Celular , Receptor de Morte Celular Programada 1 , Infecções por Retroviridae , Linfócitos T Citotóxicos , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/genética , Sistemas CRISPR-Cas , Citotoxicidade Imunológica , Vírus da Leucemia Murina de Friend/imunologia , Técnicas de Inativação de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Infecções por Retroviridae/imunologia , Linfócitos T Citotóxicos/imunologia
12.
Placenta ; 152: 39-52, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788480

RESUMO

INTRODUCTION: Several factors influence transmission of 2019-nCoV from mother to fetus during pregnancy, thus the dynamics of vertical transmission is unclear. The role of cellular protective factors, namely a 90 KDa glycoprotein, Early pregnancy-associated protein (Epap-1), expressed by placental endothelial cells in women during early pregnancy would provide an insight into role of placental factors in virus transmission. Since viral spike protein binding to the ACE2 receptors of the host cells promotes virus invasion in placental tissue, an analysis of effects of Epap-1 on the Spike-ACE2 protein binding was studied. METHODS: Epap-1 was isolated from MTP placental tissue. Molecular interaction of Epap-1 and variants of the spike was analyzed in silco. The interaction of Epap-1 with Spike and RBD were analyzed using ELISA and immunofluorescence studies. RESULTS: The results in silico showed an interaction of Epap-1 with S-protein at RBD region involving K417, Y449, Y453, Y456, Y473, Q474, F486, Q498, N501 residues of spike with Y61, F287, I302, N303, N305, S334, N465, G467, N468 residues of Epap-1 leading to interference of S-protein and ACE2 interaction [1]. Further, the interaction is conserved among the variants. The studies in vitro confirm that Epap-1 affects S protein-ACE2 and RBD- ACE2 binding, thus suggesting that during early pregnancy, SARS CoV-2 infection may be protected by Epap-1 protein present in placental tissue. The results were further confirmed by pseudovirus expressing Spike and RBD in an infection assay. DISCUSSION: Epap-1 interferes with Spike and RBD interaction with ACE2, suggesting a possible mechanism of the antiviral environment during pregnancy.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Transmissão Vertical de Doenças Infecciosas , Placenta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Feminino , Humanos , Gravidez , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , COVID-19/transmissão , COVID-19/metabolismo , Placenta/metabolismo , Placenta/virologia , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/virologia , Ligação Proteica , Proteínas da Gravidez/metabolismo , Betacoronavirus/metabolismo , Peptidil Dipeptidase A/metabolismo , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Pneumonia Viral/metabolismo , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Pandemias
13.
J Virol ; 98(6): e0053124, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38709106

RESUMO

Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE: The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Camelídeos Americanos , Infecções por Coronavirus , Coronavirus Humano OC43 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Carga Viral , Animais , Anticorpos de Domínio Único/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Coronavirus Humano OC43/imunologia , Humanos , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Feminino , Epitopos/imunologia , Cristalografia por Raios X , Internalização do Vírus/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
14.
Mar Drugs ; 22(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786581

RESUMO

Influenza A virus (IAV) can cause infection and illness in a wide range of animals, including humans, poultry, and swine, and cause annual epidemics, resulting in thousands of deaths and millions of hospitalizations all over the world. Thus, there is an urgent need to develop novel anti-IAV drugs with high efficiency and low toxicity. In this study, the anti-IAV activity of a marine-derived compound mycophenolic acid methyl ester (MAE) was intensively investigated both in vitro and in vivo. The results showed that MAE inhibited the replication of different influenza A virus strains in vitro with low cytotoxicity. MAE can mainly block some steps of IAV infection post adsorption. MAE may also inhibit viral replication through activating the cellular Akt-mTOR-S6K pathway. Importantly, oral treatment of MAE can significantly ameliorate pneumonia symptoms and reduce pulmonary viral titers, as well as improving the survival rate of mice, and this was superior to the effect of oseltamivir. In summary, the marine compound MAE possesses anti-IAV effects both in vitro and in vivo, which merits further studies for its development into a novel anti-IAV drug in the future.


Assuntos
Antivirais , Vírus da Influenza A , Ácido Micofenólico , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Ácido Micofenólico/farmacologia , Camundongos , Replicação Viral/efeitos dos fármacos , Humanos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Camundongos Endogâmicos BALB C , Cães , Feminino , Células Madin Darby de Rim Canino , Células A549 , Organismos Aquáticos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia
15.
Cell Mol Immunol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684766

RESUMO

Innate lymphocytes (ILCs) rapidly respond to and protect against invading pathogens and cancer. ILCs include natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells and include type I, type II, and type III immune cells. While NK cells have been well recognized for their role in antiviral immunity, other ILC subtypes are emerging as players in antiviral defense. Each ILC subset has specialized functions that uniquely impact the antiviral immunity and health of the host depending on the tissue microenvironment. This review focuses on the specialized functions of each ILC subtype and their roles in antiviral immune responses across tissues. Several viruses within infection-prone tissues will be highlighted to provide an overview of the extent of the ILC immunity within tissues and emphasize common versus virus-specific responses.

16.
Cureus ; 16(3): e56025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38606261

RESUMO

Ivermectin was first discovered in the 1970s by Japanese microbiologist Satoshi Omura and Irish parasitologist William C. Campbell. Ivermectin has become a versatile pharmaceutical over the past 50 years. Ivermectin is a derivative of avermectin originally used to treat parasitic infections. Emerging literature has suggested that its role goes beyond this and may help treat inflammatory conditions, viral infections, and cancers. Ivermectin's anti-parasitic, anti-inflammatory, anti-viral, and anticancer effects were explored. Its traditional mechanism of action in parasitic diseases, such as scabies and malaria, rests on its ability to interfere with the glutamate-gated chloride channels in invertebrates and the lack of P-glycoprotein in many parasites. More recently, it has been discovered that the ability of ivermectin to block the nuclear factor kappa-light-chain enhancer of the activated B (NF-κB) pathway that modulates the expression and production of proinflammatory cytokines is implicated in its role as an anti-inflammatory agent to treat rosacea. Ivermectin has also been evaluated for treating infections caused by viruses, such as SARS-CoV-2 and adenoviruses, through inhibition of viral protein transportation and acting on the importin α/ß1 interface. It has also been suggested that ivermectin can inhibit the proliferation of tumorigenic cells through various pathways that lead to the management of certain cancers. The review aimed to evaluate its multifaceted effects and potential clinical applications beyond its traditional use as an anthelmintic agent.

17.
Adv Healthc Mater ; : e2304186, 2024 Apr 27.
Artigo em Catalão | MEDLINE | ID: mdl-38676697

RESUMO

In viral infections, natural killer (NK) cells exhibit anti-viral activity by inducing apoptosis in infected host cells and impeding viral replication through heightened cytokine release. Extracellular vesicles derived from NK cells (NK-EVs) also contain the membrane composition, homing capabilities, and cargo that enable anti-viral activity. These characteristics, and their biocompatibility and low immunogenicity, give NK-EVs the potential to be a viable therapeutic platform. This study characterizes the size, EV-specific protein expression, cell internalization, biocompatibility, and anti-viral miRNA cargo to evaluate the anti-viral properties of NK-EVs. After 48 h of NK-EV incubation in inflamed A549 lung epithelial cells, or conditions that mimic lung viral infections such as during COVID-19, cells treated with NK-EVs exhibit upregulated anti-viral miRNA cargo (miR-27a, miR-27b, miR-369-3p, miR-491-5p) compared to the non-treated controls and cells treated with control EVs derived from lung epithelial cells. Additionally, NK-EVs effectively reduce expression of viral RNA and pro-inflammatory cytokine (TNF-α, IL-8) levels in SARS-CoV-2 infected Vero E6 kidney epithelial cells and in infected mice without causing tissue damage while significantly decreasing pro-inflammatory cytokine compared to non-treated controls. Herein, this work elucidates the potential of NK-EVs as safe, anti-viral nanomaterials, offering a promising alternative to conventional NK cell and anti-viral therapies.

18.
J Infect ; 88(5): 106151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582127

RESUMO

BACKGROUND: Immunological non-responders (INRs) among people living with HIV have inherently higher mortality and morbidity rates. The underlying immunological mechanisms whereby failure of immune reconstitution occurs in INRs require elucidation. METHOD: HIV-1 DNA and HIV-1 cell-associated RNA (CA-HIV RNA) quantifications were conducted via RT-qPCR. Transcriptome sequencing (RNA-seq), bioinformatics, and biological verifications were performed to discern the crosstalk between host and viral factors. Flow cytometry was employed to analyze cellular activation, proliferation, and death. RESULTS: HIV-1 DNA and CA-HIV RNA levels were observed to be significantly higher in INRs compared to immunological responders (IRs). Evaluation of CD4/CD8 ratios showed a significantly negative correlation with HIV-1 DNA in IRs, but not in INRs. Bioinformatics analyses and biological verifications showed IRF7/INF-α regulated antiviral response was intensified in INRs. PBMCs of INRs expressed significantly more HIV integrase-mRNA (p31) than IRs. Resting (CD4+CD69- T-cells) and activated (CD4+CD69+ T-cells) HIV-1 reservoir harboring cells were significantly higher in INRs, with the co-occurrence of significantly higher cellular proliferation and cell death in CD4+ T-cells of INRs. CONCLUSION: In INRs, the systematic crosstalk between the HIV-1 reservoir and host cells tends to maintain a persistent antiviral response-associated inflammatory environment, which drives aberrant cellular activation, proliferation, and death of CD4+ T-cells.


Assuntos
Proliferação de Células , Infecções por HIV , HIV-1 , Fator Regulador 7 de Interferon , Humanos , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Transcriptoma , Morte Celular , Masculino , RNA Viral , Homeostase , Adulto , DNA Viral/genética , Feminino , Linfócitos T CD4-Positivos/imunologia , Pessoa de Meia-Idade , Linfócitos T/imunologia , Ativação Linfocitária , Relação CD4-CD8 , Carga Viral
19.
Comput Biol Med ; 175: 108487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653064

RESUMO

Drug repurposing is promising in multiple scenarios, such as emerging viral outbreak controls and cost reductions of drug discovery. Traditional graph-based drug repurposing methods are limited to fast, large-scale virtual screens, as they constrain the counts for drugs and targets and fail to predict novel viruses or drugs. Moreover, though deep learning has been proposed for drug repurposing, only a few methods have been used, including a group of pre-trained deep learning models for embedding generation and transfer learning. Hence, we propose DeepSeq2Drug to tackle the shortcomings of previous methods. We leverage multi-modal embeddings and an ensemble strategy to complement the numbers of drugs and viruses and to guarantee the novel prediction. This framework (including the expanded version) involves four modal types: six NLP models, four CV models, four graph models, and two sequence models. In detail, we first make a pipeline and calculate the predictive performance of each pair of viral and drug embeddings. Then, we select the best embedding pairs and apply an ensemble strategy to conduct anti-viral drug repurposing. To validate the effect of the proposed ensemble model, a monkeypox virus (MPV) case study is conducted to reflect the potential predictive capability. This framework could be a benchmark method for further pre-trained deep learning optimization and anti-viral drug repurposing tasks. We also build software further to make the proposed model easier to reuse. The code and software are freely available at http://deepseq2drug.cs.cityu.edu.hk.


Assuntos
Antivirais , Aprendizado Profundo , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Software , Benchmarking
20.
Microbiol Spectr ; 12(6): e0351623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687064

RESUMO

Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE: In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.


Assuntos
COVID-19 , Coinfecção , Células Epiteliais , Interferon Tipo I , Interleucina-17 , SARS-CoV-2 , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , COVID-19/imunologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Masculino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Feminino , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Adulto , Mucosa Nasal/imunologia , Mucosa Nasal/microbiologia , Idoso , Nasofaringe/microbiologia , Candidíase/imunologia , Candidíase/microbiologia , Micoses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...