Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
1.
J Mech Behav Biomed Mater ; 158: 106678, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096683

RESUMO

OBJECTIVE: Analyze the effects of the functionalization of pre-functionalized GIC particles with chlorhexidine on the physicochemical properties and antimicrobial activity. MATERIALS AND METHODS: Four groups were prepared: (1) GIC (Bioglass R - Biodinamica) - control group; (2) GIC-CHX 1%: Group containing 1% pre-reacted CHX particles; (3) GIC-CHX 2.5%: Group containing 2.5% pre-reacted CHX particles; (4) GIC-CHX 5%: Group containing 5% pre-reacted CHX particles. Hourglass-shaped specimens (10 mm × 2 mm x 1 mm) were fabricated for mechanical tests including cohesive strength (n = 12), modulus of elasticity (n = 12) and microhardness (n = 10). Discs (10 mm × 2 mm) were prepared for the analysis of Ca+2, PO4- and F- ions release (n = 3), and roughness (n = 12). To evaluate the setting time, a Gilmore needle was used according to ISO 9917-1:2016. Disk-shaped specimens (5 × 1mm) were manufactured and subjected to bacterial activity (n = 9) (Streptococcus mutans ATCC 159). RESULTS: Modulus, roughness, setting time and ions release (Ca+2, PO4-, and F-) there were no statistically significant differences among the groups (p > 0.05). The setting time did not change with the incorporation of CHX. The GIC-CHX 2.5% and GIC-CHX 5% groups exhibited superior antibacterial activity compared to the control group and GIC-CHX 1% (p < 0.001). The GIC-CHX 5% group showed the highest microhardness values (p < 0.041), cohesive strength (p < 0.009) when compared to the control group. CONCLUSION: The pre-reacted CHX in GICs was able to confer antimicrobial activity, improve cohesive strength, microhardness, and did not impair ion release, setting time, and roughness.


Assuntos
Clorexidina , Cimentos de Ionômeros de Vidro , Teste de Materiais , Clorexidina/química , Clorexidina/farmacologia , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Streptococcus mutans/efeitos dos fármacos , Dureza , Fenômenos Mecânicos , Propriedades de Superfície , Fenômenos Químicos , Antibacterianos/farmacologia , Antibacterianos/química
2.
Chem Biodivers ; : e202401355, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099184

RESUMO

Melipona beecheii pot-pollen is a natural product that has barely been studied, unlike other hive products such as honey and propolis. Its application has been reported since ancient times in traditional Mayan medicine, and it is also a functional food with high nutritional value. In the present study, samples of ethanolic pot-pollen extracts from five locations in the Yucatán Peninsula were analyzed to determine their antibacterial and antioxidant properties. All the extracts showed activity against five medically important bacteria; Pseudomonas aeruginosa and Listeria monocytogenes were the most susceptible bacteria in all samples. The evaluated antioxidant activity was higher than that reported by other studies. Palmitic, linoleic, and linolenic fatty acids and their respective ethyl ethers were detected by Gas Chromatography-Mass Spectrometry (GC-MS) in all samples in different concentrations. Based on these results, pot-pollen extract from Mama, Yucatán exhibited the best biological activities (Minimum Inhibitory Concentrations (MICs) between 6 and 40 mg/mL, EC50 DPPH 28 µg/mL, EC50 RP 30 µg/mL), which could be related to a higher content of unsaturated fatty acids and their ethyl esters. The present study demonstrates that M. beecheii pot-pollen has therapeutic potential in addition to its benefits as a nutritional supplement.

3.
Antibiotics (Basel) ; 13(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39061332

RESUMO

Campylobacter jejuni is a major cause of global foodborne illnesses. To develop alternative antimicrobial strategies against C. jejuni, this study designed and optimized the green synthesis of metallic nanoparticles (NPs) with intracellular components of the medicinal fungus Ganoderma sessile to provide the needed reducing and stabilizing agents. NPs were characterized by transmission electron microscopy and dynamic light scattering, and the quasi-spherical NPs had sizes of 2.9 ± 0.9 nm for the copper oxide NPs and 14.7 ± 0.6 nm for the silver NPs. Surface charge assessment revealed zeta potentials of -21.0 ± 6.5 mV and -24.4 ± 7.9 mV for the copper oxide and silver NPs, respectively. The growth inhibition of C. jejuni by the NPs occurred through attachment to the outer cell membrane and subsequent intracellular internalization and resulted in minimum inhibitory concentrations of the silver NPs at 6 µg/mL and copper oxide NPs at 10 µg/mL. On the other hand, a differential ROS production caused by silver and copper NPs was observed. In summary, this research presents the first demonstration of using green synthesis with the medicinal fungus G. sessile to produce metallic NPs that effectively inhibit C. jejuni growth, providing a sustainable and effective approach to the traditional use of antimicrobials.

4.
Antibiotics (Basel) ; 13(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061347

RESUMO

In this research, several analyses were carried out on concentrated fractions of Mexican oregano essential oil (Poliomintha longiflora Gray) in order to determine its ability to inhibit the growth and the motility of Escherichia coli (swimming), Pseudomonas aeruginosa (swimming), and Proteus vulgaris (swarming); these Gram-negative bacteria associated with urinary tract infections are motile due to the presence of flagella, which is considered an important virulence factor that favors their motility when trying to reach the target organ and cause an infection. Also, the resistance pattern to antibiotics of each strain was determined. The results showed resistance pattern (8 out of 12 antibiotics tested) for P. aureginosa, while E. coli and P. vulgaris were resistant to 4 antibiotics out of the 12 tested. On the other hand, fractionated oregano caused an inhibition of growth and a reduction in motility, varying between fractions and among bacteria. Fraction 4 showed major growth reduction, with MBC values ranging from 0.002 to 23.7 mg/mL. Treatment with fractionated oregano (F1, F2, F3, F4) reduced the motility by 92-81% for P. vulgaris, 90-83% for E. coli, and 100-8.9% for P. aeruginosa. These results demonstrated a higher performance with a lower application dose due to its high content of Carvacrol and Thymol; unlike other concentrated fractions, this synergy of oxygenated monoterpenes may cause greater antimicrobial activity.

5.
Animals (Basel) ; 14(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998124

RESUMO

Comprehending the immune defense mechanisms of new aquaculture species, such as the Chilean meagre (Cilus gilberti), is essential for sustaining large-scale production. Two bioassays were conducted to assess the impact of acute and intermittent hypoxia on the antibacterial activity of juvenile Chilean meagre epidermal mucus against the potential pathogens Vibrio anguillarum and Vibrio ordalii. Lysozyme and peroxidase activities were also measured. In general, fish exposed to hypoxia showed a 9-30% reduction in mucus antibacterial activity at the end of hypoxic periods and after stimulation with lipopolysaccharide. However, following water reoxygenation, the activity of non-stimulated fish was comparable to that of fish in normoxic conditions, inhibiting bacterial growth by 35-52%. In the case of fish exposed to chronic hypoxia, the response against V. anguillarum increased by an additional 19.8% after 6 days of control inoculation. Lysozyme exhibited a similar pattern, while no modulation of peroxidase activity was detected post-hypoxia. These results highlight the resilience of C. gilberti to dissolved oxygen fluctuations and contribute to understanding the potential of mucus in maintaining the health of cultured fish and the development of future control strategies.

6.
Chem Biodivers ; : e202400645, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923658

RESUMO

Antimicrobial films were prepared with chitosan containing the methanolic extract of M. tenuiflora leaves (FECT20%, FECT30%, and FECT40%), and their antimicrobial activities were evaluated by agar diffusion. The films were characterized by IR spectroscopy, scanning electron microscopy (SEM) and TG/DTG curves. TG/DTG curves showed thermal stability of chitosan-extract films up to 166 ºC. Micrographs of chitosan-extract films revealed an increase in porosity with the addition of extract. The FECT40% film showed inhibition zone diameters (IZ) against Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and B. cereus, ranging from 1.0 ± 0.02 to 0.72 ± 0.09 cm. Only FECT30% and FECT40% inhibited the P. aeruginosa with IZs of 0.68 ± 0.02 and 0.77 ± 0.06 cm, respectively. In turn, the extract showed inhibition against B. subtilis and B. cereus, with IZs values of 0.92 ± 0.2 cm and 0.72 ± 0.05 cm, respectively. Additionally, the crude extract presented antioxidant potential with inhibition percentages of 32.74% ± 0.90 for ABTS and 27.04% ± 1.36 for DPPH. The antimicrobial and antioxidant activities of the crude extract, as well as the antimicrobial property of chitosan-extract films, suggests the potential of these biopolymers for the development of wound healing bandages and new food packaging alternatives.

7.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930979

RESUMO

Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.


Assuntos
Antibacterianos , Cromatografia Gasosa-Espectrometria de Massas , Simbiose , Cromatografia Líquida de Alta Pressão/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolismo Secundário , Photorhabdus/química , Photorhabdus/metabolismo , Xenorhabdus/química , Xenorhabdus/metabolismo , Testes de Sensibilidade Microbiana , Animais
8.
Pharmaceutics ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38931825

RESUMO

Skin lesions are an important health concern, exposing the body to infection risks. Utilizing natural products containing chamomile (Chamomilla recutita L.) holds promise for curative purposes. Additionally, hyaluronic acid (HA), an active ingredient known for its tissue regeneration capacity, can expedite healing. In this study, we prepared and characterized an extract of C. recutita and integrated it into a nanoemulsion system stabilized with HA, aiming at harnessing its healing potential. We assessed the impact of alcoholic strength on flavonoid extraction and chemically characterized the extract using UHPLC/MS while quantifying its antioxidant and antimicrobial capacity. We developed a nanoemulsion loaded with C. recutita extract and evaluated the effect of HA stabilization on pH, droplet size, polydispersity index (PDI), zeta potential, and viscosity. Results indicated that 70% hydroalcoholic extraction yielded a higher flavonoid content. The extract exhibited antioxidant capacity in vitro, a desirable trait for skin regeneration, and demonstrated efficacy against key microbial strains (Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa) associated with skin colonization and infections. Flavonoids spireoside and apiin emerged as the most abundant bioactives. The addition of HA led to increased viscosity while maintaining a suitable pH for topical application. Zeta potential, droplet size, and PDI met acceptable criteria. Moreover, incorporating C. recutita extract into the nanoemulsion enhanced its antimicrobial effect. Hence, the nanoemulsion system loaded with C. recutita and HA stabilization exhibits favorable characteristics for topical application, showing promise in aiding the healing processes.

9.
Polymers (Basel) ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891477

RESUMO

Pomegranate waste poses an environmental challenge in Arequipa. Simultaneously, interest in sustainable materials like natural rubber latex (NRL) is growing, with Peruvian communities offering a promising source. This study explores the green synthesis of silver nanoparticles (AgNPs) using pomegranate peel extract and their incorporation into NRL nanofibers for enhanced functionalities. An eco-friendly process utilized silver nitrate and pomegranate peel extract as a reducing and capping agent to synthesize AgNPs. The resulting AgNPs and NRL/AgNPs nanofibers were characterized using imaging and spectroscopic techniques such as UV-vis, TGA, FTIR, XRD, Raman, SEM, and DLS. Green-synthesized AgNPs were spherical and crystalline, with an average diameter of 59 nm. They showed activity against K. pneumoniae, E. coli, B. cereus, and S. aureus (IC50: 51.32, 4.87, 27.72, and 69.72 µg/mL, respectively). NRL and NRL/AgNPs nanofibers (300-373 nm diameter) were successfully fabricated. The composite nanofibers exhibited antibacterial activity against K. pneumoniae and B. cereus. This study presents a sustainable approach by utilizing pomegranate waste for AgNP synthesis and NRL sourced from Peruvian communities. Integrating AgNPs into NRL nanofibers produced composites with antimicrobial properties. This work has potential applications in smart textiles, biomedical textiles, and filtration materials where sustainability and antimicrobial functionality are crucial.

10.
Pharmaceutics ; 16(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794287

RESUMO

Pleopeltis crassinervata is a fern documented in ethnobotanical records for its use in Mexican traditional medicine to treat gastric disorders and mouth ulcers. Consequently, conducting biological and pharmacological assays is crucial to validate the therapeutic efficacy of this plant within the context of traditional medicine. In the present study, we investigated the biological activity of extracts and fractions obtained from P. crassinervata organs against bacteria (Salmonella typhimurium, Salmonella typhi, Staphylococcus aureus, Proteus mirabilis, Shigella flexneri, Bacillus subtilis, Escherichia coli) and Trichomonas vaginalis using in vitro models. The precipitate fraction obtained from the frond methanolic extract showed significant antibacterial activity (minimal inhibitory concentration [MIC] 120 µg/mL) against the Staphylococcus aureus strain and was effective against both Gram-positive and Gram-negative bacteria. The hexane fraction also obtained from frond methanolic extract, showed a trichomonacidal effect with an IC50 of 82.8 µg/mL and a low cytotoxic effect. Hsf6 exhibited the highest activity against T. vaginalis, and the GC-MS analysis revealed that the predominant compound was 16-pregnenolone. The remaining identified compounds were primarily terpene-type compounds.

11.
Plants (Basel) ; 13(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38794482

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that is especially dominant in people with cystic fibrosis; the drug resistance expressed by this pathogen and its capacity for adaptation poses a significant challenge to its treatment and control, thereby increasing morbidity and mortality rates globally. In this sense, the search for new treatment alternatives is imminent today, with products of plant origin being an excellent alternative for use. The objective of this research was to evaluate the antibacterial and antibiofilm potential and to explore the possible effect of ethanolic extracts from the wood and bark of Duguetia vallicola on the cell membrane. Microdilution assays showed the inhibition of bacterial growth by more than 50%, with the lowest concentration (62.5 µg/mL) of both extracts evaluated. Furthermore, we report the ability of both extracts to inhibit mature biofilms, with inhibition percentages between 48.4% and 93.7%. Intracellular material leakage experiments (260/280 nm), extracellular pH measurements, and fluorescence microscopy with acridine orange (AO) and ethidium bromide (EB) showed cell membrane damage. This indicates that the antibacterial action of ethanolic extracts of D. vallicola is associated with damage to the integrity of the cell membrane and consequent death of these pathogens. These results serve as a reference for future studies in establishing the mechanisms of action of these extracts.

12.
J Sci Food Agric ; 104(13): 7731-7753, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38578668

RESUMO

Acute diarrheal diseases are a leading cause of childhood mortality and morbidity worldwide. Psidium guajava has been globally used for its antidiarrheal potential. We conducted a systematic review of scientific articles published up to the year 2021, which included in vivo pre-clinical tests and clinical trials involving patients with acute infectious diarrhea to verify the antidiarrheal, antibacterial and antispasmodic effects of galenic preparations or phytopharmaceuticals from P. guajava. PRISMA and Rayyan were used as tools for the selection of studies collected in four databases (Pubmed, Scopus, Web of Science and Science Direct). The keywords used to carry out the search were: 'Psidium guajava', 'guava', 'antidiarrhe*' and 'diarrhe*', joined by Boolean operators 'OR' or 'AND'. The characteristics of studies in animal models of acute diarrhea induction, as well as in vivo and in vitro motility and microbiological tests linked with its main pathophysiological mechanisms, were collected. Twenty-three articles were included. Twenty (87%) of these reported heterogenic preclinical studies, predominating pharmacological studies of efficacy against conventional antidiarrheal agents, which utilized relevant outcomes and models of infectious diarrhea from the top pathogens in the clinic along with classical castor oil-induced diarrhea associated with motility tests. Only three articles (13%) corresponded to clinical trials investigating the efficacy, dose and safety of these preparations. Most studies reported positive results and significant mechanistic evidence from antibacterial, anti-motility, anti-secretory and protective/anti-inflammatory perspectives. However, further studies are needed to define the clinical significance and safety treatment with P. guajava extracts. © 2024 Society of Chemical Industry.


Assuntos
Antidiarreicos , Diarreia , Extratos Vegetais , Psidium , Diarreia/tratamento farmacológico , Antidiarreicos/farmacologia , Psidium/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Animais , Doença Aguda
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 6975-6987, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38619589

RESUMO

To evaluate the antibacterial, antibiofilm and antivirulence potential of the main diterpenes from Copaifera spp. oleoresins against multidrug-resistant (MDR) bacteria. Antimicrobial assays included determination of the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Inhibitory Concentration of Biofilm (MICB50), as well as synergistic and antivirulence assays for eight diterpenes against MDR. The tests revealed that two diterpenes (named 1 and 5) showed the best results, with MIC and MBC between 12.5 and 50 µg/mL against most MDR bacteria. These diterpenes exhibited promising MICB50 in concentration between 3.12-25 µg/mL but showed no synergistic antimicrobial activity. In the assessment of antivirulence activity, diterpenes 1 and 5 inhibited only one of the virulence factors evaluated (Dnase) produced by some strains of S. aureus at subinhibitory concentration (6.25 µg/mL). Results obtained indicated that diterpenes isolated from Copaifera oleoresin plays an important part in the search of new antibacterial and antibiofilm agents that can act against MDR bacteria.


Assuntos
Antibacterianos , Biofilmes , Diterpenos , Farmacorresistência Bacteriana Múltipla , Fabaceae , Testes de Sensibilidade Microbiana , Extratos Vegetais , Biofilmes/efeitos dos fármacos , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fabaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Virulência/efeitos dos fármacos
14.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612435

RESUMO

This study presents the synthesis of four series of novel hybrid chalcones (20,21)a-g and (23,24)a-g and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (28-33)a-g and the evaluation of their anticancer, antibacterial, antifungal, and cytotoxic properties. Chalcones 20b,d, 21a,b,d, 23a,d-g, 24a-g and the pyrimido[4,5-b][1,4]diazepines 29e,g, 30g, 31a,b,e-g, 33a,b,e-g exhibited outstanding anticancer activity against a panel of 60 cancer cell lines with GI50 values between 0.01 and 100 µM and LC50 values in the range of 4.09 µM to >100 µM, several of such derivatives showing higher activity than the standard drug 5-fluorouracil (5-FU). On the other hand, among the synthesized compounds, the best antibacterial properties against N. gonorrhoeae, S. aureus (ATCC 43300), and M. tuberculosis were exhibited by the pyrimido[4,5-b][1,4]diazepines (MICs: 0.25-62.5 µg/mL). The antifungal activity studies showed that triazinylamino-chalcone 29e and triazinyloxy-chalcone 31g were the most active compounds against T. rubrum and T. mentagrophytes and A. fumigatus, respectively (MICs = 62.5 µg/mL). Hemolytic activity studies and in silico toxicity analysis demonstrated that most of the compounds are safe.


Assuntos
Chalconas , Isocianatos , Mycobacterium tuberculosis , Chalconas/farmacologia , Antifúngicos/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Azepinas/farmacologia , Fluoruracila , Neisseria gonorrhoeae , Triazinas/farmacologia
15.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611509

RESUMO

A rapid, eco-friendly, and simple method for the synthesis of long-lasting (2 years) silver nanoparticles (AgNPs) is reported using aqueous leaf and petal extracts of Tagetes erecta L. The particles were characterized using UV-Visible spectrophotometry and the analytical and crystallographic techniques of transmission electron microscopy (TEM). The longevity of the AgNPs was studied using UV-Vis and high-resolution TEM. The antibacterial activity of the particles against Erwinia amylovora was evaluated using the Kirby-Bauer disk diffusion method. The results were analyzed using ANOVA and Tukey's test (p ≤ 0.05). Both the leaf and petal extracts produced AgNPs, but the leaf extract (1 mL) was long-lasting and quasi-spherical (17.64 ± 8.87 nm), with an absorbance of UV-Vis λmax 433 and a crystalline structure (fcc, 111). Phenols, flavonoids, tannins, and terpenoids which are associated with -OH, C=O, and C=C were identified in the extracts and could act as reducing and stabilizing agents. The best antibacterial activity was obtained with a nanoparticle concentration of 50 mg AgNPs L-1. The main contribution of the present research is to present a sustainable method for producing nanoparticles which are stable for 2 years and with antibacterial activity against E. amylovora, one of most threatening pathogens to pear and apple productions.

16.
Plant Foods Hum Nutr ; 79(2): 351-358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517668

RESUMO

An environmentally friendly method for the release of cocoa bean shell (CBS) extracts is proposed in this paper. This work aims to investigate the effect of pulsed electric field (PEF) pre-treatment on subsequent solid-liquid extraction (SLE) of metabolites with choline chloride-lactic acid natural deep eutectic solvent (NaDES) and bioactivity of cocoa bean shell (CBS) extract. Two different media for PEF application were evaluated: water and chlorine chloride-lactic acid. Total polyphenols (TPC), total flavonoids (TFC), individual major compounds, and antioxidant and antibacterial activity of CBS extracts were assessed. The performance of PEF-assisted extraction was compared with SLE and ultrasound-assisted extraction (UAE). The proposed method improved the release of TPC up to 45% and TFC up to 48% compared with the conventional extraction. The CBS extract showed medium growth inhibition of Escherichia coli and high growth inhibition of Salmonella sp, Listeria monocytogenes, and Staphylococcus aureus. Thus, an extract with enhanced antioxidant and antibacterial properties was obtained.


Assuntos
Antibacterianos , Antioxidantes , Cacau , Colina , Solventes Eutéticos Profundos , Flavonoides , Ácido Láctico , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Cacau/química , Antibacterianos/farmacologia , Flavonoides/análise , Polifenóis/análise , Polifenóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Eletricidade
17.
Front Chem ; 12: 1347370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361747

RESUMO

The present work reports the influence of the presence of different ions (Cl-, Br-, NO3 -, or SO4 2-) on the formation and proprieties of Cu(II) complexes with pyridoxal-benzoylhydrazone (PLBHZ). Four new complexes were successfully synthesized, [CuCl2(PLBHZ)] (1), [CuBr2(PLBHZ)] (2), [CuCl(PLBHZ)H2O]⋅NO3⋅H2O (3), and [CuSO4(PLBHZ)H2O]⋅3H2O (4), and characterized by spectroscopic and physicochemical methods. A single-crystal X-ray study reveals the Schiff base coordinated to the metal center tridentate by the ONS-donor system, resulting in distorted square pyramidal coordination geometries. Noncovalent interactions were investigated by 3D Hirshfeld surface analysis by the d norm function, 2D fingerprint plots, and full interaction maps. The ion exchange is important in forming three-dimensional networks with π⋅⋅⋅π stacking interactions and intermolecular hydrogen bonds. The in vitro biological activity of the free ligand and metal complexes was evaluated against Gram-positive and Gram-negative bacterial strains and the free pyridoxal-hydrazone ligand showed higher activity than their Cu(II) complexes. Molecular docking was used to predict the inhibitory activity of the ligand and complexes against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria.

18.
Food Res Int ; 180: 114091, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395568

RESUMO

In recent years, lignin has drawn increasing attention due to its intrinsic antibacterial and antioxidant activities, biodegradability, and biocompatibility. Yet, like several other biogenic structures, its compositional heterogeneity represents a challenge to overcome. In addition, there are few studies regarding food applications of lignin. Herein, we evaluate the antimicrobial and antioxidant effects of lignin from two different sources. These lignins were characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and hydrogen nuclear magnetic resonance (1H NMR) spectroscopies. Their antibacterial and antioxidant capacities (DPPH and Folin-Ciocalteu methods) were also investigated. Susceptibility tests were performed with the minimal inhibitory (MIC) and bactericidal (MBC) concentrations using the micro-broth dilution technique. Kraft lignin presented higher radical-scavenging and antibacterial activities than alkali lignin, indicating the dependence of antioxidant and antibacterial activities on the precursor biomass. Scanning electron microscopy shows morphologic changes in the bacteria after exposure to lignin, while confocal microscopy suggests that kraft lignin has affinity towards bacterial surfaces and the ability to cause cell membrane destabilization. Lignin inhibited the growth of Staphylococcus aureus and Salmonella Enteritidis in skimmed milk, herein taken as food model. Our results suggest that lignins are promising candidates for green additives to improve quality and safety within the food chain.


Assuntos
Antioxidantes , Lignina , Animais , Lignina/farmacologia , Lignina/química , Antioxidantes/farmacologia , Antioxidantes/química , Leite , Rios , Antibacterianos/farmacologia
19.
Int J Biol Macromol ; 263(Pt 1): 130292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382775

RESUMO

The insertion of hydrophobic and hydrophilic chains in the chitosan molecule can improve its antibacterial activity, expanding its range of application in several areas of medical-pharmaceutical sciences. Thus, this work aimed to increase the antibacterial activity of chitosan through the modification reaction with phthalic anhydride (QF) and subsequent reaction with ethylenediamine (QFE). The chitosan and derivatives obtained were characterized by elemental analysis, 13C Nuclear Magnetic Resonance (13C NMR), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TG), where it was possible to prove the chemical modification. Both materials showed a greater antibacterial inhibitory effect against Gram-positive bacteria, Staphylococcus aureus, emphasizing antibacterial activity against Gram-negative bacteria, Escherichia coli, with values above 70 % of the inhibitory effect, which is a promising result. Assays with human fibroblast cells by the [3-(4,5-dimethylthiazolyl)-2,5-diphenyl tetrazolium (MTT)] bromide reduction test did not indicate toxicity in the materials. Thus, the derived materials showed promise for biomedical applications since they combined excellent antibacterial activity against gram-positive and gram-negative strains and did not show cytotoxicity.


Assuntos
Quitosana , Humanos , Quitosana/química , Anidridos Ftálicos/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Etilenodiaminas/farmacologia , Difração de Raios X
20.
Braz J Microbiol ; 55(1): 699-710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253975

RESUMO

Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Weissella , Humanos , Weissella/genética , Weissella/metabolismo , Brasil , Células CACO-2 , Fazendas , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA