Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Chem Phys Lipids ; 262: 105405, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795837

RESUMO

At present, consumers increasingly favored the natural food preservatives with fewer side-effects on health. The green tea catechins and black tea theaflavins attracted considerable interest, and their antibacterial effects were extensively reported in the literature. Epicatechin (EC), a green tea catechin without a gallate moiety, showed no bactericidal activity, whereas the theaflavin (TF), also lacking a gallate moiety, exhibited potent bactericidal activity, and the antibacterial effects of green tea catechins and black tea theaflavins were closely correlated with their abilities to disrupt the bacterial cell membrane. In our present study, the mechanisms of membrane interaction modes and behaviors of TF and EC were explored by molecular dynamics simulations. It was demonstrated that TF exhibited markedly stronger affinity for the POPG bilayer compared to EC. Additionally, the hydrophobic interactions of tropolone/catechol rings with the acyl chain part could significantly contribute to the penetration of TF into the POPG bilayer. It was also found that the resorcinol/pyran rings were the key functional groups in TF for forming hydrogen bonds with the POPG bilayer. We believed that the findings from our current study could offer useful insights to better understand the stronger antibacterial effects of TF compared to EC.


Assuntos
Biflavonoides , Catequina , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Catequina/química , Catequina/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Biflavonoides/química , Biflavonoides/metabolismo , Biflavonoides/farmacologia , Ligação de Hidrogênio
2.
Future Microbiol ; 19: 355-372, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38440873

RESUMO

Staphylococcus aureus can cause localized infections such as abscesses and pneumonia, as well as systemic infections such as bacteremia and sepsis. Especially, methicillin-resistant S. aureus often presents multidrug resistance, which becomes a major clinical challenge. One of the most common reasons for methicillin-resistant S. aureus antibiotic resistance is the presence of biofilms. Natural antimicrobial peptides derived from different species have shown effectiveness in combating S. aureus biofilms. In this review, we summarize the inhibitory activity of antimicrobial peptides against S. aureus planktonic cells and biofilms. We also summarize the possible inhibitory mechanisms, involving cell adhesion inhibition, membrane fracture, biofilm disruption and DNA disruption. We believe this can provide the basis for further research against S. aureus biofilm-associated infections.


When a bacterial infection is treated, sometimes not all bacteria are killed. This is because they have ways to evade the treatment's action. Therefore, it is important to develop new drugs, although this is difficult, expensive and time-consuming. This paper summarizes new types of natural antimicrobials that could be used against bacteria, how they work and how well.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Infecções Estafilocócicas/tratamento farmacológico , Biofilmes , Testes de Sensibilidade Microbiana
3.
J Ethnopharmacol ; 326: 117981, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38417599

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sanchen powder is a traditional Tibetan medicine comprising Bambusae Concretio Silicea, Carthami Flos, and Bovis Calculus Artifactus. Bambusae Concretio Silicea is the dried mass of secreted fluid in the stalks of Gramineae plants such as Bambusa textilis McClure or Schizostachyum chinense Rendle. Carthami Flos is the dried flower of Carthamus tinctorius L. in the Compositae plant. Bovis Calculus Artifactus is made from ox bile powder, cholic acid, hyodeoxycholic acid, taurine, bilirubin, cholesterol, and trace elements. Research has evidenced the antibacterial efficacy of Sanchen powder, albeit its active constituents for this effect are yet to be established. AIM OF THE STUDY: To investigate effective compounds, potential targets, and molecular mechanism of Sanchen powder for its antibacterial properties by using network pharmacology combined with in vitro validation, with the aims of observing the action of effective compounds in Sanchen powder and exploring new therapeutic strategies for antibacterial. MATERIALS AND METHODS: In this study, UPLC-Q-TOF-MS was utilized to identify the chemical composition in Sanchen powder and its blood-borne chemical ingredients post-oral intake. A network pharmacology analysis was used to establish the chemical compound in the blood following oral administration-target-disease network. The study aimed to identify antibacterial active ingredients, which were then subjected to molecular docking and pharmacodynamic experiments to verify their efficacy. RESULTS: The findings demonstrate that following oral administration, the blood contains seven key components of Sanchen powder, including bilirubin, glycochenodeoxycholic acid, glycocholic acid, taurocholic acid, phenylalanine, safflomin A, and tryptophan. Additionally, the network pharmacology and molecular docking study results indicate the potential antibacterial effects of bilirubin, glycocholic acid, and glycochenodeoxycholic acid. In vitro antibacterial experiments revealed that bilirubin, glycocholic acid, and glycochenodeoxycholic acid could restrict the growth of the Staphylococcus aureus cell membrane at a certain concentration. Moreover, they exhibited antibacterial effects on Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Escherichia coli. CONCLUSIONS: Bilirubin, glycocholic acid, and glycochenodeoxycholic acid could be effective therapeutic ingredients for the antibacterial effects of Sanchen powder. These results offer a foundation for further clinical application and research on the antibacterial effect of Sanchen powder, a Traditional Tibetan Medicine.


Assuntos
Cálculos , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Tibetana , Pós , Simulação de Acoplamento Molecular , Ácido Glicoquenodesoxicólico , Antibacterianos/farmacologia , Bilirrubina , Medicamentos de Ervas Chinesas/farmacologia
4.
Mar Drugs ; 22(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38393049

RESUMO

Eleven new brominated depsidones, namely spiromastixones U-Z5 (1-11) along with five known analogues (12-16), were isolated from a deep-sea-derived fungus Spiromastix sp. through the addition of sodium bromide during fermentation. Their structures were elucidated by extensive analysis of the spectroscopic data including high-resolution MS and 1D and 2D NMR data. Compounds 6-10 and 16 exhibited significant inhibition against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) with MIC values ranging from 0.5 to 2.0 µM. Particularly, tribrominated 7 displayed the strongest activity against MRSA and VRE with a MIC of 0.5 and 1.0 µM, respectively, suggesting its potential for further development as a new antibacterial agent.


Assuntos
Depsídeos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Lactonas/farmacologia , Fungos , Testes de Sensibilidade Microbiana
5.
Biosci Biotechnol Biochem ; 88(5): 546-554, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38409797

RESUMO

Human lysozyme (hLYZ) has attracted considerable research attention due to its natural and efficient antibacterial abilities and widespread uses. In this study, hLYZ was modified to enhance its enzyme activity and expressed in a Pichia pastoris expression system. A combination mutant HZM(2R-K)-N88D/V110S demonstrated the highest enzyme activity (6213 ± 164 U/mL) in shake flasks, which was 4.07-fold higher when compared with the original strain. Moreover, the recombinant P. pastoris was inducted in a 3 L bioreactor plus methanol/sorbitol co-feeding. After 120 h induction, the antibacterial activity of hLYZ reached 2.23 ± 0.12 × 105 U/mL, with the specific activity increasing to 1.89 × 105 U/mg, which is currently the highest specific activity obtained through recombinant expression of hLYZ. Also, hLYZ supernatants showed 2-fold inhibitory effects toward Staphylococcus aureus and Micrococcus lysodeikticus when compared with HZM(2R-K). Our research generated a hLYZ mutant with high antibacterial capabilities and provided a method for screening of high-quality enzymes.


Assuntos
Antibacterianos , Muramidase , Proteínas Recombinantes , Staphylococcus aureus , Muramidase/genética , Muramidase/farmacologia , Muramidase/metabolismo , Antibacterianos/farmacologia , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Reatores Biológicos , Micrococcus/efeitos dos fármacos , Expressão Gênica , Mutação , Saccharomycetales/genética , Testes de Sensibilidade Microbiana
6.
Adv Healthc Mater ; 13(6): e2303244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37934913

RESUMO

Wound management remains a critical healthcare issue due to the rising incidence of chronic diseases leading to persistent wounds. Traditional dressings have their limitations, such as potential for further damage during changing and suboptimal healing conditions. Recently, hydrogel-based dressings have gained attention due to their biocompatibility, biodegradability, and ability to fill wounds. Particularly, polysaccharide-based hydrogels have shown potential in various medical applications. This study focuses on the development of a novel hydrofilm wound dressing produced from a blend of chia seed mucilage (CSM) and polyvinyl alcohol (PVA), termed CSMP. While the individual properties of CSM and PVA are well-documented, their combined potential in wound management is largely unexplored. CSMP, coupled with sorbitol and glycerin, and cross-linked using ultraviolet light, results in a flexible, adhesive, and biocompatible hydrofilm demonstrating superior water absorption, moisturizing, and antibacterial properties. This hydrofilm promotes epithelial cell migration, enhanced collagen production, and outperforms existing commercial dressings in animal tests. The innovative CSMP hydrofilm offers a promising, cost-effective approach for improved wound care, bridging existing gaps in dressing performance and preparation simplicity. Future research can unlock further applications of such polysaccharide-based hydrofilm dressings.


Assuntos
Antibacterianos , Cicatrização , Animais , Bandagens , Movimento Celular , Glicerol/farmacologia , Hidrogéis/farmacologia
7.
Gene ; 898: 148108, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38141691

RESUMO

Serum amyloid A (SAA) predominantly synthesized by hepatocytes is a classical acute phase protein and has been extensively studied in mammals. However, the studies on the structure and properties of fish SAA are limited although SAA genes have been cloned and identified from various fishes. In the present study, a cDNA of grass carp (Ctenopharyngodon idella) SAA (gcSAA) was cloned and characterized, displaying a high homology with its counterparts in vertebrates. gcSAA mRNA was expressed with highest abundance in the liver and its levels were increased by a 24-hour infection of Aeromonas hydrophila (A. hydrophila) for more than 5 folds in the intestine, 15 folds in the spleen, 75 folds in the head kidney and 100 folds in the liver, implying that it is an acute phase protein in grass carp. Subsequently, recombinant gcSAA protein (rgcSAA) was prepared from a prokaryotic expression system after codon optimization of its coding sequence. The direct antibacterial activity assay and the plate count assay disclosed that gcSAA inhibited the growth and survival of A. hydrophila but not Edwardsiella piscicida (E. piscicida) which both are common bacterial pathogens in aquaculture. The propidium iodide (PI) uptake assay confirmed the bactericidal property of gcSAA, showing that it is able to enhance the uptake of PI in A. hydrophila but not E. piscicida. These findings revealed the molecular features of gcSAA and its roles in host defense against bacterial infection.


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Imunidade Inata , Proteína Amiloide A Sérica , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Carpas/genética , Carpas/metabolismo , Proteínas Recombinantes/genética , Aeromonas hydrophila/metabolismo , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
8.
ACS Appl Bio Mater ; 6(11): 4814-4827, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37886889

RESUMO

Bacterial infections and persistent inflammation can impede the intrinsic healing process of wounds. To combat this issue, researchers have delved into the potential use of carbon dots (CDs) in the regulation of inflammation and counteract infections. These CDs were synthesized using a microwave-assisted hydrothermal process and have demonstrated outstanding antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria. Additionally, CDs displayed biocompatibility at therapeutic concentrations and the ability to specifically target mitochondria. CD treatment effectively nullified lipopolysaccharide-triggered reactive oxygen species production by macrophages, while simultaneously promoting macrophage polarization toward an anti-inflammatory phenotype (M2), leading to a reduction in inflammation and an acceleration in wound healing. In vitro scratch assays also revealed that CDs facilitated the tissue-repairing process by stimulating epithelial cell migration during reepithelialization. In vivo studies using CDs topically applied to lipopolysaccharide (LPS)-stimulated wounds in C57/BL6 mice demonstrated significant improvements in wound healing due to enhanced fibroblast proliferation, angiogenesis, and collagen deposition. Crucially, histological investigations showed no indications of systemic toxicity in vital organs. Collectively, the application of CDs has shown immense potential in speeding up the wound-healing process by regulating inflammation, preventing bacterial infections, and promoting tissue repair. These results suggest that further clinical translation of CDs should be considered.


Assuntos
Antibacterianos , Infecções Bacterianas , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Lipopolissacarídeos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cicatrização , Macrófagos , Inflamação
9.
Photodiagnosis Photodyn Ther ; 44: 103860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884107

RESUMO

BACKGROUND: In recent years, light has been used for bacterial control of periodontal diseases. This in vitro study evaluated the effects of light-emitting diode (LED) irradiation at different wavelengths on both Porphyromonas gingivalis and human gingival fibroblasts (HGF-1). METHODS: P. gingivalis suspension was irradiated with LEDs of 365, 405, 450, 470, 565, and 625 nm at 50, 100, 150, and 200 mW/cm2 for 3 min (radiant exposure: 9, 18, 27, 36 J/cm2, respectively). Treated samples were anaerobically cultured on agar plates, and the number of colony-forming units (CFUs) was determined. Reactive oxygen species (ROS) levels were measured after LED irradiation. The viability and damage of HGF-1 were measured through WST-8 and lactate dehydrogenase assays, respectively. Gene expression in P. gingivalis was evaluated through quantitative polymerase chain reaction. RESULTS: The greatest reduction in P. gingivalis CFUs was observed on irradiation at 365 nm with 150 mW/cm2 for 3 min (27 J/cm2), followed by 450 and 470 nm under the same conditions. While 365-nm irradiation significantly decreased the viability of HGF-1 cells, the cytotoxic effects of 450- and 470-nm irradiation were comparatively low and not significant. Further, 450-nm irradiation indicated increased ROS production and downregulated the genes related to gingipain and fimbriae. The 565- and 625-nm wavelength groups exhibited no antibacterial effects; rather, they significantly activated HGF-1 proliferation. CONCLUSIONS: The 450- and 470-nm blue LEDs showed high antibacterial activity with low cytotoxicity to host cells, suggesting promising bacterial control in periodontal therapy. Additionally, blue LEDs may attenuate the pathogenesis of P. gingivalis.


Assuntos
Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Porphyromonas gingivalis , Fibroblastos
10.
Food Res Int ; 173(Pt 1): 113257, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803569

RESUMO

Cronobacter sakazakii is a major foodborne pathogen that is mainly transmitted through powdered infant formula (PIF) and has a high mortality rate of up to 80%, particularly in fetuses and neonates. Bacteriophages have emerged as an effective biocontrol agent for antibiotic-resistant bacteria. In this study, lytic phage SG01 was newly characterized and loaded into collagen peptide/trehalose-based powders to develop an antibacterial agent against C. sakazakii contamination in PIF. The phage belongs to the Siphoviridae family, has an icosahedral head and a flexible tail, and showed rapid and persistent antibacterial activity up to 17 h. It was specifically active against C. sakazakii and also exhibited effective anti-biofilm properties. The phage was freeze-dried to a collagen peptide/trehalose-based powder and the phage was tested for viability, storage stability, and antibacterial activity. The optimal composition was 5% (w/v) collagen peptides and 1% (w/v) trehalose, which demonstrated the highest phage viability after freeze-drying. The phage remained stable in the collagen peptide/trehalose-based powder for up to four weeks at 4 °C and 25 °C, indicating that this is a desirable formulation for phage protection. Furthermore, the phage powder showed significant antibacterial efficacy in PIF, with a 4-log CFU/mL reduction within 6 h. Overall, the tested phage powder has the potential to be used as an antimicrobial agent in the food industry, particularly in powdered foods such as PIF.


Assuntos
Bacteriófagos , Cronobacter sakazakii , Humanos , Lactente , Recém-Nascido , Pós , Trealose , Microbiologia de Alimentos , Fórmulas Infantis/microbiologia , Antibacterianos , Peptídeos/farmacologia
11.
Food Sci Anim Resour ; 43(5): 751-766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701745

RESUMO

Helicobacter pylori is a bacterium that naturally thrives in acidic environments and has the potential to induce various gastrointestinal disorders in humans. The antibiotic therapy utilized for treating H. pylori can lead to undesired side effects, such as dysbiosis in the gut microbiota. The objective of our study was to explore the potential antibacterial effects of nisin and lactic acid (LA) in yogurt against H. pylori. Additionally, we investigated the anti-inflammatory effects of nisin and LA in human gastric (AGS) cells infected with H. pylori. Nisin and LA combination showed the strongest inhibitory activity, with confirmed synergy at 0.375 fractional inhibitory concentration index. Also, post-fermented yogurt with incorporation of nisin exhibited antibacterial effect against H. pylori. The combination of nisin and LA resulted in a significant reduction of mRNA levels of bacterial toxins of H. pylori and pro-inflammatory cytokines in AGS cells infected with H. pylori. Furthermore, this also increased bacterial membrane damage, which led to DNA and protein leakage in H. pylori. Overall, the combination of nisin and LA shows promise as an alternative therapy for H. pylori infection. Additionally, the incorporation of nisin into foods containing LA presents a potential application. Further studies, including animal research, are needed to validate these findings and explore clinical applications.

12.
Bioorg Chem ; 141: 106836, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774436

RESUMO

Alzheimer's diseases (AD) and other infectious diseases caused by drug-resistance bacteria have posed a serious threat to human lives and global health. With the aim to search for human acetylcholinesterase (hAChE) inhibitors and antibacterial agents from medicinal plants, 16 phloroglucinol oligomers, including two new phloroglucinol monomers (1a and 1b), four new phloroglucinol dimers (3a, 3b, 4b, and 5a), six new phloroglucinol trimers (6a, 6b, 7a, 7b, 8a, and 8b), and two naturally occurring phloroglucinol monomers (2a and 2b), along with two known congeners (4a and 5b), were purified from the leaves of tropic Rhodomyrtus tomentosa. The structures and absolute configurations of these new isolates were unequivocally established by comprehensive analyses of their spectroscopic data (NMR and HRESIMS), ECD calculation, and single crystal X-ray diffraction. Structurally, 3a/3b shared a rare C-5' formyl group, whereas 6a/6b possessed a unique C-7' aromatic ring. In addition, 7a/7b and 8a/8b were rare phloroglucinol trimers with a bis-furan and a C-6' hemiketal group. Pharmacologically, the mixture of 3a and 3b showed the most potent human acetylcholinesterase (hAChE) inhibitory activity with an IC50 value of 1.21 ± 0.16 µM. The molecular docking studies of 3a and 3b in the hAChE binding sites were performed, displaying good agreement with the in vitro inhibitory effects. In addition, the mixture of 3a and 3b displayed the most significant anti-MRSA (methicillin-resistant Staphylococcus aureus) with MIC and MBC values of both 0.50 µg/mL, and scanning electron microscope (SEM) studies revealed that they could destroy the biofilm structures of MRSA. The findings provide potential candidates for the further development of anti-AD and anti-bacterial agents.


Assuntos
Antibacterianos , Inibidores da Colinesterase , Staphylococcus aureus Resistente à Meticilina , Floroglucinol , Humanos , Acetilcolinesterase , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Floroglucinol/análogos & derivados , Floroglucinol/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/química
13.
Chemosphere ; 344: 140277, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769912

RESUMO

The photocatalytic efficiency is commonly restrained by inferior charge separation rate. Herein, the S-scheme MIL-100(Fe)/NH2-MIL-125(Ti) (MN) photo-Fenton catalyst with the built-in electric field (BEF) was successfully constructed by a simple ball-milling technique. As a result, the MN-3 (the mass ratio of MIL-100(Fe) to NH2-MIL-125(Ti) was 3) composite presented the best visible-light-induced photocatalytic ability, in contrast to pure MIL-100(Fe) and NH2-MIL-125(Ti). The reduction efficiency of Cr(VI) almost reached 100% within 35 min of illumination. Moreover, the MN-3 heterojunction also exhibited the highest antibacterial activity, and about 100% E. coli and more than 90% S. aureus were killed within 60 min of illumination. In photo-Fenton system, In the photo-Fenton system, e-, O2•- and Fe2+ played vital roles for Cr(VI) reduction, and •OH, h+ and O2•- and 1O2 were responsible for sterilization. Additionally, 5 cyclic tests and relevant characterizations confirmed the excellent repeatability and stability of the composite. Also, the S-scheme charge transfer process was put forward. This work offers a novel idea for establishing the MOF-on-MOF photo-Fenton catalyst for high-efficiency environmental mitigation.


Assuntos
Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Cromo
14.
Cureus ; 15(7): e42401, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37621826

RESUMO

Background Silver possesses cytotoxic properties against many microorganisms and is regularly used in wound care. Current evidence supporting the use of one type of silver-containing wound dressing (SCWD) is insufficient. Materials and methods To examine the ability of selected SCWDs to inhibit the growth of two strains of bacteria (Escherichia coli and Staphylococcus aureus) commonly found in wounds, an in vitro wound model was used. Bacteria were applied to the surface of nutrient agar, and a piece of each SCWD was applied to the bacteria. The plates were incubated at 37°C overnight. The zone of inhibition (ZI) around each SCWD was measured in cm2. Results The mean ZI for Acticoat Flex-3 on E. coli was 1.59 ± 0.15 cm2, which was significantly greater than that observed for Aquacel Ag (p<0.001), Mepilex Ag (p<0.0001), Mepitel Ag (p<0.001), Optifoam (p<0.0001), and Tegaderm Alginate Ag (p<0.01), but statistically indistinguishable from Maxorb II Ag. The mean ZI on S. aureus was 1.21 ± 0.16 cm2, which was greater than Aquacel Ag (p<0.05), Mepilex (p<0.0001), Optifoam (p<0.0001), and Tegaderm Alginate Ag (p<0.05), but statistically indistinguishable from Maxorb II Ag or Mepitel Ag. Conclusion Of the SCWDs tested, Acticoat Flex-3 demonstrated the most robust antimicrobial effect. Herein, we show that Acticoat Flex-3 may provide the most wound protection against bacterial infection. In conclusion, these data provide clinicians with additional independent evidence to inform their clinical practice on the use of specific wound dressings.

15.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37631005

RESUMO

The objective of this study was to develop an innovative gallic-acid (GA) drug delivery system that could be administered transdermally, resulting in enhanced therapeutic benefits and minimal negative consequences. The method employed involved the preparation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with GA through nanoprecipitation-denoted GA@PLGANPs. The results reveal that this strategy led to perfectly spherical, homogeneous, and negatively charged particles, which are suitable for administration via skin patches or ointments. A further analysis indicates that these GA@PLGANPs exhibit remarkable antioxidant activity as well as potent antibacterial effects against a diverse range of microorganisms, making them ideal candidates for numerous applications. Additionally, it has been observed that these nanoparticles can effectively mitigate oxidative stress while also significantly inhibiting microbial growth by exerting detrimental effects on bacterial cell walls or membranes. In conclusion, on the basis of the findings presented in this study, there is strong evidence supporting the potential use of GA@PLGANPs as an effective therapy option with reduced side effects compared to conventional drug delivery methods.

16.
Biomater Adv ; 151: 213488, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285725

RESUMO

In chronic wound (CW) scenarios, Staphylococcus aureus-induced infections are very prevalent. This leads to abnormal inflammatory processes, in which proteolytic enzymes, such as human neutrophil elastase (HNE), become highly expressed. Alanine-Alanine-Proline-Valine (AAPV) is an antimicrobial tetrapeptide capable of suppressing the HNE activity, restoring its expression to standard rates. Here, we proposed the incorporation of the peptide AAPV within an innovative co-axial drug delivery system, in which the peptide liberation was controlled by N-carboxymethyl chitosan (NCMC) solubilization, a pH-sensitive antimicrobial polymer effective against Staphylococcus aureus. The microfibers' core was composed of polycaprolactone (PCL), a mechanically resilient polymer, and AAPV, while the shell was made of the highly hydrated and absorbent sodium alginate (SA) and NCMC, responsive to neutral-basic pH (characteristic of CW). NCMC was loaded at twice its minimum bactericidal concentration (6.144 mg/mL) against S. aureus, while AAPV was loaded at its maximum inhibitory concentration against HNE (50 µg/mL), and the production of fibers with a core-shell structure, in which all components could be detected (directly or indirectly), was confirmed. Core-shell fibers were characterized as flexible and mechanically resilient, and structurally stable after 28-days of immersion in physiological-like environments. Time-kill kinetics evaluations revealed the effective action of NCMC against S. aureus, while elastase inhibitory activity examinations proved the ability of AAPV to reduce HNE levels. Cell biology testing confirmed the safety of the engineered fiber system for human tissue contact, with fibroblast-like cells and human keratinocytes maintaining their morphology while in contact with the produced fibers. Data confirmed the engineered drug delivery platform as potentially effective for applications in CW care.


Assuntos
Quitosana , Infecções Estafilocócicas , Humanos , Alginatos/farmacologia , Quitosana/farmacologia , Quitosana/química , Elastase de Leucócito/metabolismo , Elastase de Leucócito/farmacologia , Peptídeos/farmacologia , Polímeros/farmacologia , Staphylococcus aureus/metabolismo , Valina/farmacologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/microbiologia , Ferimentos e Lesões/terapia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
17.
Int J Food Microbiol ; 402: 110295, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37352774

RESUMO

Salmonella spp., one of the most frequently reported bacteria, causes foodborne illness and economic losses. Due to the threat of increasing antibiotic resistant foodborne pathogens, application of bacteriophages as novel antibacterial agents in food matrices has become an emerging strategy. In this study, a novel Salmonella phage PS3-1 with high lytic activity against Salmonella Typhimurium was identified from previously isolated phages. PS3-1 belonged to the class Caudoviricetes with a broad host range, and had relatively short latent period (15 min), large burst size (92 PFU/cell), high pH stability (pH 3.0-11.0) and thermal tolerance (4-60 °C). Genome sequencing analysis showed that PS3-1 genome consisted of 107,110 bp DNA, without antibiotic resistance and virulence related genes. The results of growth curve and time-kill assay showed that PS3-1 not only inhibited the growth of S. Typhimurium, but also effectively decreased the viable cell counts (0.30-4.72 log) after 24-h incubation at 7, 25 and 37 °C (P < 0.05). Moreover, >1.28 log of established biofilm cells were effectively removed after 24-h treatment with PS3-1. Besides, PS3-1 significantly reduced the viability of S. Typhimurium in milk, lettuce, raw pork meat and ready-to-eat steamed-chicken breast at different temperatures (P < 0.05). These results demonstrated that PS3-1 may be an excellent antibacterial agent for controlling S. Typhimurium in food industry.


Assuntos
Bacteriófagos , Carne de Porco , Carne Vermelha , Fagos de Salmonella , Animais , Suínos , Salmonella typhimurium , Bacteriófagos/genética , Galinhas , Lactuca/microbiologia , Especificidade de Hospedeiro , Leite , Carne/microbiologia , Myoviridae
18.
Int J Nanomedicine ; 18: 2567-2588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213350

RESUMO

Autophagy, a self-renewal mechanism, can help to maintain the stability of the intracellular environment of organisms. Autophagy can also regulate several cellular functions and is strongly related to the onset and progression of several diseases. Wound healing is a biological process that is coregulated by different types of cells. However, it is troublesome owing to prolonged treatment duration and poor recovery. In recent years, biomaterials have been reported to influence the skin wound healing process by finely regulating autophagy. Biomaterials that regulate autophagy in various cells involved in skin wound healing to regulate the differentiation, proliferation and migration of cells, inflammatory responses, oxidative stress and formation of the extracellular matrix (ECM) have emerged as a key method for improving the tissue regeneration ability of biomaterials. During the inflammatory phase, autophagy enhances the clearance of pathogens from the wound site and leads to macrophage polarization from the M1 to the M2 phenotype, thus preventing enhanced inflammation that can lead to further tissue damage. Autophagy plays important roles in facilitating the formation of extracellular matrix (ECM) during the proliferative phase, removing excess intracellular ROS, and promoting the proliferation and differentiation of endothelial cells, fibroblasts, and keratinocytes. This review summarizes the close association between autophagy and skin wound healing and discusses the role of biomaterial-based autophagy in tissue regeneration. The applications of recent biomaterials designed to target autophagy are highlighted, including polymeric materials, cellular materials, metal nanomaterials, and carbon-based materials. A better understanding of biomaterial-regulated autophagy and skin regeneration and the underlying molecular mechanisms may open new possibilities for promoting skin regeneration. Moreover, this can lay the foundation for the development of more effective therapeutic approaches and novel biomaterials for clinical applications.


Assuntos
Células Endoteliais , Pele , Cicatrização , Materiais Biocompatíveis/farmacologia , Autofagia
19.
ACS Nano ; 17(8): 7394-7405, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37009988

RESUMO

Although photothermal therapy (PTT) has thrived as a promising treatment for drug-resistant bacterial infections by avoiding the abuse of antibiotics, the remaining challenges that limit the treatment efficiency are the poor targeting properties of infected lesions and low penetration to the cell membrane of Gram-negative bacteria. Herein, we developed a biomimetic neutrophil-like aggregation-induced emission (AIE) nanorobot (CM@AIE NPs) for precise inflammatory site homing and efficient PTT effects. Due to their surface-loaded neutrophil membranes, CM@AIE NPs can mimic the source cell and thus interact with immunomodulatory molecules that would otherwise target endogenous neutrophils. Coupled with the secondary near-infrared region absorption and excellent photothermal properties of AIE luminogens (AIEgens), precise localization, and treatment in inflammatory sites can be achieved, thereby minimizing damage to surrounding normal tissues. Moreover, CM@AIE NP-mediated PTT was stimulated in vivo by a 980 nm laser irradiation, which contributed to the extent of the therapeutic depth and limited the damage to skin tissues. The good biocompatibility and excellent in vitro and in vivo antibacterial effects prove that CM@AIE NPs can provide a strategy for broad-spectrum antibacterial applications.


Assuntos
Nanopartículas , Terapia Fototérmica , Humanos , Neutrófilos , Citocinas , Inflamação , Antibacterianos
20.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985563

RESUMO

Piper eriopodon is one of the Piper species found in the Sierra Nevada de Santa Marta, and the species has been reported with different compositions of their essential oils (EO). In this study, the volatile fractions/essential oil (by HS-SPME/SDE/MWHD-GC-MS/1H-NMR) of different parts from the plant were characterized, and assessments of the in vitro bio-properties of the leaf EO were conducted. The results indicated the following: (i) in the volatile fractions were ß-caryophyllene (~23%)/myrcene (~20%) (inflorescences) and ß-caryophyllene (~43%)/ß-selinene (~20%) (leaves) using HS-SPME; myrcene (~31%)/ß-pinene (~23%) (inflorescences), gibbilimbol B (~60%) (fruits) and gibbilimbol B (~46%)/ß-caryophyllene (~11%) (leaves) through SDE; (ii) leaf EO contained gibbilimbol B (~72%), confirmed with 1H-NMR; (iii) the cytotoxic values (µg/mL) in erythrocytes/lymphocytes/Hep-2 were HC50: 115 ± 3 (eryth.), LC50: 71 ± 4 (lymph.) and LC50: 33 ± 2 (cell-line); (iv) the antibacterial susceptibilities (ϕ inh. zone, mm; 4-16 µg EO) were 22.5 ± 0.4-97 ± 4 (Staphylococcus aureus), 23 ± 2-77 ± 4 (Escherichia coli) and 17 ± 1-48 ± 3 (Listeria monocytogenes); (v) the TAA value was 2249 ± 130 mmol Trolox®/kg; (vi) the IC50 value was 13±1 µg/mL (AChE) with 20 ± 0-37 ± 6% repellency (2-4 h, Sitophilus zeamais). Thus, the EO of P. eriopodon leaves from northern Colombia could be a promising species for sustainable exploitation in the future due to its outstanding bioactivities.


Assuntos
Óleos Voláteis , Piper , Óleos Voláteis/química , Piper/química , Colômbia , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...