Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(6): e0075824, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687079

RESUMO

Human immunoglobulin preparations contain a diverse range of polyclonal antibodies that reflect past immune responses against pathogens encountered by the blood donor population. In this study, we examined a panel of intravenous immunoglobulins (IGIVs) manufactured over the past two decades (1998-2020) for their capacity to neutralize or enhance Zika virus (ZIKV) infection in vitro. These IGIVs were selected specifically based on their production dates in relation to the occurrences of two flavivirus outbreaks in the U.S.: the West Nile virus (WNV) outbreak in 1999 and the ZIKV outbreak in 2015. As demonstrated by enzyme-linked immunosorbent assay (ELISA) experiments, IGIVs made before the ZIKV outbreak already harbored antibodies that bind to various peptides across the envelope protein of ZIKV because of the WNV outbreak. Using phage display, the most dominant binding site was mapped precisely to the P2 peptide between residues 211 and 230 within domain II, where BF1176-56, an anti-ZIKV monoclonal antibody, also binds. When tested in permissive Vero E6 cells for ZIKV neutralization, the IGIVs, even after undergoing rigorous enrichment for P2 binding specificity, failed, as did BF1176-56. Meanwhile, BF1176-56 enhanced ZIKV infection in both FcγRII-expressing K562 cells and human peripheral blood mononuclear cells. However, for enhancement by the IGIVs to be detected in these cells, a substantial increase in their P2 binding specificity was required, thus linking the P2 site with ZIKV enhancement in vitro. Our findings warrant further study of the significance of elevated levels of anti-WNV antibodies in IGIVs, considering that various mechanisms operating in vivo may modulate ZIKV infection outcomes.IMPORTANCEWe investigated the capacity of intravenous immunoglobulins manufactured previously over two decades (1998-2020) to neutralize or enhance Zika virus infection in vitro. West Nile virus antibodies in IGIVs could not neutralize Zika virus initially; however, once the IGIVs were concentrated further, they enhanced its infection. These findings lay the groundwork for exploring how preexisting WNV antibodies in IGIVs could impact Zika infection, both in vitro and in vivo. Our observations are historically significant, since we tested a panel of IGIV lots that were carefully selected based on their production dates which covered two major flavivirus outbreaks in the U.S.: the WNV outbreak in 1999 and the ZIKV outbreak in 2015. These findings will facilitate our understanding of the interplay among closely related viral pathogens, particularly from a historical perspective regarding large blood donor populations. They should remain relevant for future outbreaks of emerging flaviviruses that may potentially affect vulnerable populations.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Humanos , Zika virus/imunologia , Vírus do Nilo Ocidental/imunologia , Anticorpos Antivirais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Animais , Chlorocebus aethiops , Células Vero , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Imunoglobulinas Intravenosas/imunologia , Proteínas do Envelope Viral/imunologia , Ensaio de Imunoadsorção Enzimática
2.
Virol Sin ; 38(5): 813-826, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660949

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide. The PRRSV mutation rate is the highest among the RNA viruses. To date, NADC30-like PRRSV and highly pathogenic PRRSV (HP-PRRSV) are the dominant epidemic strains in China; however, commercial vaccines do not always provide sufficient cross-protection, and the reasons for insufficient protection are unclear. This study isolated a wild-type NADC30-like PRRSV, SX-YL1806, from Shaanxi Province. Vaccination challenge experiments in piglets showed that commercial modified live virus (MLV) vaccines provided good protection against HP-PRRSV. However, it could not provide sufficient protection against the novel strain SX-YL1806. To explore the reasons for this phenomenon, we compared the genomic homology between the MLV strain and HP-PRRSV or NADC30-like PRRSV and found that the MLV strain had a lower genome similarity with NADC30-like PRRSV. Serum neutralization assay showed that MLV-immune serum slightly promoted the homologous HP-PRRSV replication and significantly promoted the heterologous NADC30-like PRRSV strain replication in vitro, suggesting that antibody-dependent enhancement (ADE) might also play a role in decreasing MLV protective efficacy. These findings expand our understanding of the potential factors affecting the protective effect of PRRSV MLV vaccines against the NADC30-like strains.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Anticorpos Facilitadores , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Genoma Viral , Vacinas Atenuadas/genética , Genômica , Vacinas Virais/genética
3.
Vaccines (Basel) ; 11(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37515055

RESUMO

Antibody Dependent Enhancement (ADE) of an infection has been of interest in the investigation of many viruses. It is associated with the severity of the infection. ADE is mediated by non-neutralizing antibodies, antibodies at sub-neutralizing concentrations, or cross-reactive non-neutralizing antibodies. Treatments like plasma therapy, B cell immunizations, and antibody therapies may trigger ADE. It is seen as an impediment to vaccine development as well. In viruses including the Dengue virus (DENV), severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, human immunodeficiency virus (HIV), Ebola virus, Zika virus, and influenza virus, the likely mechanisms of ADE are postulated and described. ADE improves the likelihood of productively infecting cells that are expressing the complement receptor or the Fc receptor (FcR) rather than the viral receptors. ADE occurs when the FcR, particularly the Fc gamma receptor, and/or complement system, particularly Complement 1q (C1q), allow the entry of the virus-antibody complex into the cell. Moreover, ADE alters the innate immune pathways to escape from lysis, promoting viral replication inside the cell that produces viral particles. This review discusses the involvement of FcR and the downstream immunomodulatory pathways in ADE, the complement system, and innate antiviral signaling pathways modification in ADE and its impact on facilitating viral replication. Additionally, we have outlined the modes of ADE in the cases of different viruses reported until now.

4.
Vaccines (Basel) ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851075

RESUMO

West Nile virus (WNV) causes annual outbreaks globally and is the leading cause of mosquito-borne disease in Unite States. In the absence of licensed therapeutics, there is an urgent need to develop effective and safe human vaccines against WNV. One of the major safety concerns for WNV vaccine development is the risk of increasing infection by related flaviviruses in vaccinated subjects via antibody-dependent enhancement of infection (ADE). Herein, we report the development of a plant-based vaccine candidate that provides protective immunity against a lethal WNV challenge mice, while minimizes the risk of ADE for infection by Zika (ZIKV) and dengue (DENV) virus. Specifically, a plant-produced virus-like particle (VLP) that displays the WNV Envelope protein domain III (wDIII) elicited both high neutralizing antibody titers and antigen-specific cellular immune responses in mice. Passive transfer of serum from VLP-vaccinated mice protected recipient mice from a lethal challenge of WNV infection. Notably, VLP-induced antibodies did not enhance the infection of Fc gamma receptor-expressing K562 cells by ZIKV or DENV through ADE. Thus, a plant-made wDIII-displaying VLP presents a promising WNV vaccine candidate that induces protective immunity and minimizes the concern of inducing ADE-prone antibodies to predispose vaccinees to severe infection by DENV or ZIKV.

5.
Chinese Journal of Biologicals ; (12): 1039-1046+1053, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-996592

RESUMO

@#ObjectiveTo establish models of Dengue virus type Ⅲ(DENV-3,DV-3)infection and antibody dependent enhancement(ADE)infection at the acute monocytic leukemia cells(THP-1),investigate the differential expression of long non-coding RNAs(LncRNAs),map the competitive endogenous RNA(CeRNA)regulatory network and predict the translation function of LncRNAs.MethodsThe culture supernatant was harvested 6 d after C6/36 cells were infected with DENV-3,the virus titer was determined by CCID50,and the type and full-length genome amplification were identified by PCR;The DENV-3 standard plasmid was amplified,identified by PCR,and the standard curve was drawn;THP-1 cells were divided into negative control group(THP-1),direct infection group(DV-3),ADE group and blank control group[1640(-)]. After 48 h of infection,the total RNA was extracted and the copy number of intracellular virus nucleic acid was measured;Through the whole transcriptome sequencing technology,the CeRNA regulatory network was constructed for the top five up-regulated and down-regulated LncRNAs in THP-1 vs DENV3,THP-1 vs ADE,DENV3 vs ADE groups,and the functions of their coding proteins were analyzed.ResultsC6/36 cells infected with DENV-3 for 3 d showed obvious cell fusion,vacuoles and abscission;The virus had a titer of about 1. 0 × 104. 64PFU/mL and was identified as DENV-3 by PCR specific primers,of which the complete gene sequence was obtained;The number of viral nucleic acid copies in ADE group was significantly higher than those in DV-3 group and blank control group;In THP-1 vs DENV-3,the expression of cytohesin interacting protein(CYTIP)was predicted to be up-regulated;In THP-1 vs ADE,the expression of kinesin family5A(KIF5A)was predicted to be down-regulated;In DENV-3 vs ADE,the expression of cluster differentiation antigen 9(CD9)and insulin like growth factor 2(IGF2)was predicted to be up-regulated. All of these differential LncRNAs had open reading frames(ORFs). Except Lnc-SH3BP1 and Lnc-RPL41,all of the other LncRNAs had internal ribosome binding site(IRES).ConclusionIn DENV-3 infection of THP-1 cells and ADE infection mediated by DENV-3,the expression of LncRNAs has changed significantly,and may regulate the process of infection through a variety of biological functions,which is helpful for a deeper understanding of the mechanism of ADE infection.

6.
Vaccines (Basel) ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36560469

RESUMO

As a developmental toxicant, Zika virus (ZIKV) attacks both the growing nervous system, causing congenital Zika syndrome, and the placenta, resulting in pathological changes and associated adverse fetal outcomes. There are no vaccines, antibodies, or other treatments for ZIKV, despite the potential for its re-emergence. Multiple studies have highlighted the risk of antibodies for enhancing ZIKV infection, including during pregnancy, but the mechanisms for such effects are not fully understood. We have focused on the ability of the neonatal Fc receptor (FcRn) to interact with ZIKV in the presence and absence of relevant antibodies. We found that ZIKV replication was higher in Marvin Darby Canine Kidney (MDCK) cells that overexpress FcRn compared to those that do not, and knocking down FcRn decreased ZIKV RNA production. In the placenta trophoblast BeWo cell line, ZIKV infection itself downregulated FcRn at the mRNA and protein levels. Addition of anti-ZIKV antibodies to MDCK/FcRn cells resulted in non-monotonous neutralization curves with neutralization attenuation and even enhancement of infection at higher concentrations. Non-monotonous neutralization was also seen in BeWo cells at intermediate antibody concentrations. Our studies highlight the underappreciated role FcRn plays in ZIKV infection and may have implications for anti-ZIKV prophylaxis and therapy in pregnant women.

7.
Cureus ; 14(11): e31877, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36579259

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 spread across many countries between 2020 and 2022. The similarities in clinical presentation with other endemic diseases pose a challenge to physicians in effectively diagnosing and treating the infection. Approximately 129 nations have a risk of dengue infection, and more than 100 of those are endemic to dengue. During the COVID-19 pandemic, the number of dengue cases decreased in many countries owing to the isolation measures followed. However, the common clinical presentation between them has led to misdiagnosis. Both COVID-19 and dengue fever cause a surge in pro-inflammatory cytokines and chemokines, thus sharing a common pathophysiology. False positive serological test results also posed difficulty differentiating between COVID-19 and dengue fever. This review aims to compare the clinical features, pathophysiology, and immune response between dengue and COVID-19, to benefit public health management during the pandemic.

8.
Front Immunol ; 13: 1008285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330519

RESUMO

Since immune system and internal environment in vivo are large and complex, the interpretation of the observed immune effect from the perspective of a single immune cell or antibody seems a little feeble. Many studies have shown that specific antibodies against " former" viruses have a reduced ability to neutralize "new" mutant strains. However, there is no comprehensive and clear view of whether there will be Antibody-dependent enhancement (ADE). We review the latest relevant studies, hoping to explain the ADE of SARS-CoV-2 infection sometimes observed in some patients.


Assuntos
Anticorpos Facilitadores , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Antivirais
9.
Front Immunol ; 13: 889196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874775

RESUMO

The dynamics of host-virus interactions, and impairment of the host's immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.


Assuntos
COVID-19 , Vírus da Dengue , Dengue , Anticorpos Antivirais , Anticorpos Facilitadores , Humanos
10.
Biochem Biophys Res Commun ; 616: 115-121, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35665607

RESUMO

The genus Flavivirus includes pathogenic tick- and mosquito-borne flaviviruses as well as non-pathogenic insect-specific flaviviruses (ISFVs). Phylogenetic analysis based on whole amino acid sequences has indicated that lineage II ISFVs have similarities to pathogenic flaviviruses. In this study, we used reactive analysis with immune serum against Psorophora flavivirus (PSFV) as a lineage IIa ISFV, and Barkeji virus (BJV) as a lineage IIb ISFV, to evaluate the antigenic similarity among lineage IIa and IIb ISFVs, and pathogenic mosquito-borne flaviviruses (MBFVs). Binding and antibody-dependent enhancement assays showed that anti-PSFV sera had broad cross-reactivity with MBFV antigens, while anti-BJV sera had low cross-reactivity. Both of the lineage II ISFV antisera were rarely observed to neutralize MBFVs. These results suggest that lineage IIa ISFV PSFV has more antigenic similarity to MBFVs than lineage IIb ISFV BJV.


Assuntos
Culicidae , Flavivirus , Sequência de Aminoácidos , Animais , Insetos , Filogenia
11.
Virol Sin ; 37(1): 19-29, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35234619

RESUMO

After dengue virus (DENV) infection, antibody-dependent enhancement (ADE) is easy to occur when the neutralizing antibody (NAb) gradually decreases to a sub-neutralizing concentration. In this cohort surveillance, we utilized sera samples collected from dengue fever patients at different convalescent phases in Jinghong City, to investigate the dynamic change rule of DENV-specific antibodies, and to analyze the risk of ADE caused by secondary infection with heterologous serotypes DENVs. For baseline serosurvey, 191 four-year and 99 six-year sera samples during convalescence were collected in 2017 and 2019, respectively. The positive rate of DENV-specific immunoglobulin G was 98.4% in 2017, which significantly decreased to 82.8% in 2019. The geometric mean titer (GMT) of NAb decreased from 1:155.35 to 1:46.66. Among 290 overall samples, 73 paired consecutive samples were used for follow-up serosurvey. In four-year sera, the GMTs of NAb against DENV-3 and cross-reactive antibodies against DENV-1, DENV-2 and DENV-4 were 1:167.70, 1:13.80, 1:18.54 and 1:45.26, respectively, which decreased to 1:53.18, 1:10.30, 1:14.60 and 1:8.17 in six-year sera. In age-stratified analysis, due to the increasing number of ADE positive samples from 2017 to 2019 in 31-40 and 51-60 years groups, the risk of ADE in DENV-4 infection was positively associated with the extension of convalescent phase, and the odd ratio was higher than other groups. With the recovery period lengthened, the risk of secondary infection with DENV-1 and DENV-2 was reduced. Our results offer essential experimental data for risk prediction of severe dengue in hyper-endemic dengue areas, and provide crucial scientific insight for the development of effective dengue vaccines.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Anticorpos Neutralizantes , Anticorpos Antivirais , China/epidemiologia , Humanos , Estudos Soroepidemiológicos
12.
Clin Epidemiol Glob Health ; 14: 100966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132389

RESUMO

The COVID-19 outbreak sparked by SARS-CoV-2, begat significant rates of malady worldwide, where children with an abnormal post-COVID ailment called the Multisystem Inflammatory Syndrome (MIS-C), were reported by April 2020. Here we have reviewed the clinical characteristics of the pediatric patients and the prognosis currently being utilized. A vivid comparison of MIS-C with other clinical conditions has been done. We have addressed the probable etiology and fundamental machinery of the inflammatory reactions, which drive organ failure. The involvement of androgen receptors portrays the likelihood of asymptomatic illness in children below adolescence, contributing to the concept of antibody-dependent enhancement.

13.
J Infect Public Health ; 15(2): 277-288, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35074728

RESUMO

The heterogeneous phenotypes among patients with coronavirus disease 2019 (COVID-19) has drawn worldwide attention, especially those with severe symptoms without comorbid conditions. Immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative virus of COVID-19, occur mainly by the innate immune response via the interferon (IFN)-mediated pathways, and the adaptive immunity via the T lymphocyte and the antibody mediated pathways. The ability of the original Wuhan SARS-CoV-2 strain, and possibly more so with new emerging variants, to antagonize IFN-mediated antiviral responses can be behind the higher early viral load, higher transmissibility, and milder symptoms compared to SARS-CoV and are part of the continued clinical evolution of COVID-19. Since it first emerged, several variants of SARS-CoV-2 have been circulating worldwide. Variants that have the potential to elude natural or vaccine-mediated immunity are variants of concern. This review focuses on the main host factors that may explain the immune responses to SARS-CoV-2 and its variants in the context of susceptibility, severity, and preexisting immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Humanos , Imunidade
14.
J Basic Clin Physiol Pharmacol ; 33(1): 13-16, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995021

RESUMO

Antibody-dependent enhancement (ADE) can be seen in a variety of viruses. It has a deleterious impact on antibody treatment of viral infection. This effect was first discovered in the dengue virus, and it has since been discovered in the coronavirus. Over 213 million people have been affected by the rapid spread of the newly emerging coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). The new coronavirus offers a significant threat and has sparked widespread concern. ADE in dengue virus and other viruses are discussed with possible effect on COVID-19 treatment and vaccine development will need to consider this phenomenon to ensure it is mitigated and avoided altogether. In these case scenarios, the role of ADE and its clinical consequences remains to be explored for this newly detected virus.


Assuntos
Anticorpos Facilitadores , Tratamento Farmacológico da COVID-19 , COVID-19 , COVID-19/imunologia , Humanos
15.
Emerg Microbes Infect ; 10(1): 2016-2029, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34651563

RESUMO

ABSTRACTA COVID-19 vaccine that can give early protection is needed to eliminate the viral spread efficiently. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomains with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titre at two weeks post-immunization. This is significantly higher than titre caused by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by a spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for the SARS-CoV-2 virus challenge was implemented two weeks post a single dose of REVC-128 immunization. The results showed that vaccination protects hamsters against the SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage for protected animals, compared with ∼10% weight loss, high viral loads and tissue damage in unprotected animals. Furthermore, the data showed that vaccine REVC-128 is thermostable at up to 37°C for at least 4 weeks. These findings, along with a history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine to give the earliest protection against SARS-CoV-2 infection.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Nanopartículas/química , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/sangue , Formação de Anticorpos , Vacinas contra COVID-19/administração & dosagem , Cricetinae , Humanos , Imunização , Esquemas de Imunização , Imunogenicidade da Vacina , Mesocricetus , Camundongos , Glicoproteína da Espícula de Coronavírus , Vacinação , Carga Viral
16.
Viruses ; 13(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34696397

RESUMO

Dengue is a mosquito-borne viral disease (arboviral) caused by the Dengue virus. It is one of the prominent public health problems in tropical and subtropical regions with no effective vaccines. Every year around 400 million people get infected by the Dengue virus, with a mortality rate of about 20% among the patients with severe dengue. The Dengue virus belongs to the Flaviviridae family, and it is an enveloped virus with positive-sense single-stranded RNA as the genetic material. Studies of the infection cycle of this virus revealed potential host targets important for the virus replication cycle. Here in this review article, we will be discussing different stages of the Dengue virus infection cycle inside mammalian host cells and how host proteins are exploited by the virus in the course of infection as well as how the host counteracts the virus by eliciting different antiviral responses.


Assuntos
Vírus da Dengue/metabolismo , Dengue/metabolismo , Replicação Viral/genética , Anticorpos Antivirais/imunologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Estágios do Ciclo de Vida/genética , Estágios do Ciclo de Vida/fisiologia , RNA Viral/genética
17.
MAbs ; 13(1): 1953683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34313527

RESUMO

The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread social and economic disruption. Effective interventions are urgently needed for the prevention and treatment of COVID-19. Neutralizing monoclonal antibodies (mAbs) have demonstrated their prophylactic and therapeutic efficacy against SARS-CoV-2, and several have been granted authorization for emergency use. Here, we discover and characterize a fully human cross-reactive mAb, MW06, which binds to both SARS-CoV-2 and SARS-CoV spike receptor-binding domain (RBD) and disrupts their interaction with angiotensin-converting enzyme 2 (ACE2) receptors. Potential neutralization activity of MW06 was observed against both SARS-CoV-2 and SARS-CoV in different assays. The complex structure determination and epitope alignment of SARS-CoV-2 RBD/MW06 revealed that the epitope recognized by MW06 is highly conserved among SARS-related coronavirus strains, indicating the potential broad neutralization activity of MW06. In in vitro assays, no antibody-dependent enhancement (ADE) of SARS-CoV-2 infection was observed for MW06. In addition, MW06 recognizes a different epitope from MW05, which shows high neutralization activity and has been in a Phase 2 clinical trial, supporting the development of the cocktail of MW05 and MW06 to prevent against future escaping variants. MW06 alone and the cocktail show good effects in preventing escape mutations, including a series of variants of concern, B.1.1.7, P.1, B.1.351, and B.1.617.1. These findings suggest that MW06 recognizes a conserved epitope on SARS-CoV-2, which provides insights for the development of a universal antibody-based therapy against SARS-related coronavirus and emerging variant strains, and may be an effective anti-SARS-CoV-2 agent.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Anticorpos Facilitadores , COVID-19/terapia , Sequência Conservada , Reações Cruzadas , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Modelos Moleculares , Testes de Neutralização , Pandemias , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Tratamento Farmacológico da COVID-19
18.
mSphere ; 6(1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627511

RESUMO

The majority of infections with SARS-CoV-2 are asymptomatic or mild without the necessity of hospitalization. It is of importance to reveal if these patients develop an antibody response against SARS-CoV-2 and to define which antibodies confer virus neutralization. We conducted a comprehensive serological survey of 49 patients with a mild course of disease and quantified neutralizing antibody responses against a clinical SARS-CoV-2 isolate employing human cells as targets. Four patients (8%), even though symptomatic, did not develop antibodies against SARS-CoV-2, and two other patients (4%) were positive in only one of the six serological assays employed. For the remaining 88%, antibody response against the S protein correlated with serum neutralization whereas antibodies against the nucleocapsid were poor predictors of virus neutralization. None of the sera enhanced infection of human cells with SARS-CoV-2 at any dilution, arguing against antibody-dependent enhancement of infection in our system. Regarding neutralization, only six patients (12%) could be classified as high neutralizers. Furthermore, sera from several individuals with fairly high antibody levels had only poor neutralizing activity. In addition, employing a novel serological Western blot system to characterize antibody responses against seasonal coronaviruses, we found that antibodies against the seasonal coronavirus 229E might contribute to SARS-CoV-2 neutralization. Altogether, we show that there is a wide breadth of antibody responses against SARS-CoV-2 in patients that differentially correlate with virus neutralization. This highlights the difficulty to define reliable surrogate markers for immunity against SARS-CoV-2.IMPORTANCE There is strong interest in the nature of the neutralizing antibody response against SARS-CoV-2 in infected individuals. For vaccine development, it is especially important which antibodies confer protection against SARS-CoV-2, if there is a phenomenon called antibody-dependent enhancement (ADE) of infection, and if there is cross-protection by antibodies directed against seasonal coronaviruses. We addressed these questions and found in accordance with other studies that neutralization is mediated mainly by antibodies directed against the spike protein of SARS-CoV-2 in general and the receptor binding site in particular. In our test system, utilizing human cells for infection experiments, we did not detect ADE. However, using a novel diagnostic test we found that antibodies against the coronavirus 229E might be involved in cross-protection to SARS-CoV-2.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/imunologia , Infecções por Coronavirus/imunologia , SARS-CoV-2/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Facilitadores/imunologia , Sítios de Ligação/imunologia , Feminino , Hospitalização , Humanos , Masculino , Testes de Neutralização/métodos , Nucleocapsídeo/imunologia , Estações do Ano , Testes Sorológicos/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Inquéritos e Questionários , Vacinas/imunologia
19.
Transfus Clin Biol ; 28(1): 123-127, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33285298

RESUMO

Since December 2019, the human populations of the 195 global countries continue experiencing grave health and life threats due to the current COVID-19 pandemic. As a result of the novelty of the pathogen, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), at present there is lack of preventive as well as therapeutic options for treating and managing the infection. The use of ancient immunotherapeutic technique - the convalescent plasma (CP) therapy, may act as an immediate and available option to control the COVID-19 pandemic. This review provides a concept and understanding on the CP therapy, its potential to control SARS-CoV-2 pandemic. The CP therapy might act as an immediate saviour for society from the virus. Although the CP therapy has exert affirmative result against COVID-19 it has not been recommended for long time use in COVID-19 and this review gives support for its possible application.


Assuntos
Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Pandemias , SARS-CoV-2 , Anticorpos Antivirais/sangue , COVID-19/sangue , Ensaios Clínicos como Assunto , Convalescença , Gerenciamento Clínico , Humanos , Imunização Passiva/efeitos adversos , Imunização Passiva/métodos , Plasmaferese , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Virulência , Soroterapia para COVID-19
20.
Front Cell Infect Microbiol ; 10: 572681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194810

RESUMO

In 2019, the United States Food and Drug Administration accorded restricted approval to Sanofi Pasteur's Dengvaxia, a live attenuated vaccine (LAV) for dengue fever, a mosquito-borne viral disease, caused by four antigenically distinct dengue virus serotypes (DENV 1-4). The reason for this limited approval is the concern that this vaccine sensitized some of the dengue-naïve recipients to severe dengue fever. Recent knowledge about the nature of the immune response elicited by DENV viruses suggests that all LAVs have inherent capacity to predominantly elicit antibodies (Abs) against the pre-membrane (prM) and fusion loop epitope (FLE) of DENV. These antibodies are generally cross-reactive among DENV serotypes carrying a higher risk of promoting Antibody-Dependent Enhancement (ADE). ADE is a phenomenon in which suboptimal neutralizing or non-neutralizing cross-reactive antibodies bind to virus and facilitate Fcγ receptor mediated enhanced entry into host cells, followed by its replication, and thus increasing the cellular viral load. On the other hand, antibody responses directed against the host-cell receptor binding domain of DENV envelope domain-III (EDIII), exhibit a higher degree of type-specificity with lower potential of ADE. The challenges associated with whole DENV-based vaccine strategies necessitate re-focusing our attention toward the designed dengue vaccine candidates, capable of inducing predominantly type-specific immune responses. If the designed vaccines elicited predominantly EDIII-directed serotype specific antibodies in the absence of prM and FLE antibodies, this could avoid the ADE phenomenon largely associated with the prM and FLE antibodies. The generation of type-specific antibodies to each of the four DENV serotypes by the designed vaccines could avoid the immune evasion mechanisms of DENVs. For the enhanced vaccine safety, all dengue vaccine candidates should be assessed for the extent of type-specific (minimal ADE) vs. cross-reactive (ADE promoting) neutralizing antibodies. The type-specific EDIII antibodies may be more directly related to protection from disease in the absence of ADE promoted by the cross-reactive antibodies.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Facilitadores , Dengue/prevenção & controle , Proteínas do Envelope Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...