Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Cancer Innov ; 3(2): e108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38946935

RESUMO

Cancer remains a major cause of mortality worldwide, and urological cancers are the most common cancers among men. Several therapeutic agents have been used to treat urological cancer, leading to improved survival for patients. However, this has been accompanied by an increase in the frequency of survivors with cardiovascular complications caused by anticancer medications. Here, we propose the novel discipline of uro-cardio-oncology, an evolving subspecialty focused on the complex interactions between cardiovascular disease and urological cancer. In this comprehensive review, we discuss the various cardiovascular toxicities induced by different classes of antineoplastic agents used to treat urological cancers, including androgen deprivation therapy, vascular endothelial growth factor receptor tyrosine kinase inhibitors, immune checkpoint inhibitors, and chemotherapeutics. In addition, we discuss possible mechanisms underlying the cardiovascular toxicity associated with anticancer therapy and outline strategies for the surveillance, diagnosis, and effective management of cardiovascular complications. Finally, we provide an analysis of future perspectives in this emerging specialty, identifying areas in need of further research.

2.
Biomed Pharmacother ; 177: 117123, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39004062

RESUMO

Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.

3.
EcoSal Plus ; : eesp00042023, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023252

RESUMO

Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.

4.
Food Chem ; 460(Pt 1): 140470, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032303

RESUMO

Cancer prevails as one of the major health concerns worldwide due to the consistent rise in incidence and lack of effective therapies. Previous studies identified the peptides KLKKNL, MLKSKR, and KKYRVF from Salvia hispanica seeds and stated their selective anticancer activity. Thus, this study aimed to determine the cell death pathway induced by these peptides on five cancer cell lines (MCF-7, Caco2, HepG2, DU145, and HeLa). Based on the results of this work, it is possible to suggest that KLKKNL primarily induces selective cancer cell death through the apoptotic pathway in the Caco2 and HeLa lines. On the other hand, the peptide KKYRVF reported the highest statistical (p < 0.05) selective cytotoxic effect on the MCF-7, Caco2, HepG2, and DU145 cancer cell lines by induction of the necrotic pathway. These findings offer some understanding of the selective anticancer effect of KLKKNL, MLKSKR, and KKYRVF.

5.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892406

RESUMO

According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.


Assuntos
Antineoplásicos , Neoplasias , Peptídeos , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Farmacoeconomia , Portadores de Fármacos/química
6.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38931406

RESUMO

Nicotinamide adenine dinucleotide (NAD) cofactor metabolism plays a significant role in cancer development. Tumor cells have an increased demand for NAD and ATP to support rapid growth and proliferation. Limiting the amount of available NAD by targeting critical NAD biosynthesis enzymes has emerged as a promising anticancer therapeutic approach. In mammals, the enzyme nicotinamide/nicotinic acid adenylyltransferase (NMNAT) catalyzes a crucial downstream reaction for all known NAD synthesis routes. Novel nicotinamide/nicotinic acid adenine dinucleotide (NAD/NaAD) analogues 1-4, containing a methyl group at the ribose 2'-C and 3'-C-position of the adenosine moiety, were synthesized as inhibitors of the three isoforms of human NMN-adenylyltransferase, named hNMNAT-1, hNMNAT-2, and hNMNAT-3. An NMR-based conformational analysis suggests that individual NAD-analogues (1-4) have distinct conformational preferences. Biological evaluation of dinucleotides 1-4 as inhibitors of hNMNAT isoforms revealed structural relationships between different conformations (North-anti and South-syn) and enzyme-inhibitory activity. Among the new series of NAD analogues synthesized and tested, the 2'-C-methyl-NAD analogue 1 (Ki = 15 and 21 µM towards NMN and ATP, respectively) emerged as the most potent and selective inhibitor of hNMNAT-2 reported so far. Finally, we rationalized the in vitro bioactivity and selectivity of methylated NAD analogues with in silico studies, helping to lay the groundwork for rational scaffold optimization.

7.
Front Cell Dev Biol ; 12: 1399065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933330

RESUMO

Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.

8.
Cancers (Basel) ; 16(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927898

RESUMO

Trametinib is a targeted therapy used for the treatment of solid tumours, with significant variability reported in real-life studies. This variability increases the risk of suboptimal exposure, which can lead to treatment failure or increased toxicity. Using model-based simulation, this study aims to characterize and investigate the pharmacokinetics and the adequacy of the currently recommended doses of trametinib. Additionally, the simulation of various suboptimal adherence scenarios allowed for an assessment of the impact of patients' drug adherence on the treatment outcome. The population data collected in 33 adult patients, providing 113 plasmatic trametinib concentrations, were best described by a two-compartment model with linear absorption and elimination. The study also identified a significant positive effect of fat-free mass and a negative effect of age on clearance, explaining 66% and 21% of the initial associated variability, respectively. Simulations showed that a maximum dose of 2 mg daily achieved the therapeutic target in 36% of male patients compared to 72% of female patients. A dose of 1.5 mg per day in patients over 65 years of age achieved similar rates, with 44% and 79% for male and female patients, respectively, reaching the therapeutic target. Poor adherence leads to a significant drop in concentrations and a high risk of subtherapeutic drug levels. These results underline the importance of interprofessional collaboration and patient partnership along the patient's journey to address patients' needs regarding trametinib and support medication adherence.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38914465

RESUMO

Chronic Kidney Disease (CKD) and cancer constitute two major public health burdens and are on the rise. Moreover, the number of patients affected simultaneously by both conditions is growing. Potential nephrotoxic effect of cancer therapies is particularly important for patients with CKD, as they are also affected by several comorbidities. Therefore, administering the right therapy at the right dose for patients with decreased kidney function can represent a daunting challenge. We review in detail the renal toxicities of anti-cancer therapies i.e. conventional chemotherapy, targeted therapy, immune checkpoint inhibitors, and radioligand therapies, issue recommendations for patient monitoring along with guidance on when to withdraw treatment and suggest dosage guidelines for select agents in advanced stage CKD. Various electrolytes disturbances can occur as the result of the administration of anti-cancer agents in the patient with decreased kidney function. These patients are prone to developing hyponatremia, hyperkalemia, and other metabolic abnormalities because of a decreased GFR. Therefore, all electrolytes, minerals and acid base status should be checked at baseline and before each administration of chemotherapeutic agents. Moreover, studies on patients on kidney replacement therapy (KRT) are very limited and only single cases or small case series are published. Therefore, clinical therapeutical decisions in cancer patients with decreased function should be made by multidisciplinary teams constituted of medical oncologists, nephrologists, and other specialists. Onconephrology is an evolving and expanding subspecialty. It is crucial to consider anticancer drug treatment in these patients and offer them a chance to be treated effectively.

10.
Front Oncol ; 14: 1326715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711854

RESUMO

Cisplatin-based chemotherapy has been the standard of care for patients with locally advanced or metastatic urothelial cancer (la/mUC). Enfortumab vedotin, an antibody-drug conjugate directed to Nectin-4, and pembrolizumab, an immune checkpoint inhibitor, are two therapies that have individually provided a survival benefit in patients with la/mUC. The combination regimen of enfortumab vedotin plus pembrolizumab was evaluated in EV-302 (KEYNOTE-A39; NCT0422385), a phase 3 study that showed statistically significant and clinically meaningful improvement in overall survival, progression-free survival, and a key secondary endpoint of overall response rate versus chemotherapy. Based on these results and those from the EV-103 (KEYNOTE-869; NCT03288545) Dose Escalation cohort, Cohort A, and Cohort K, enfortumab vedotin plus pembrolizumab was granted approval from the US Food and Drug Administration for the treatment of adults with la/mUC. While guidelines and recommendations for the management of adverse events (AEs) have been developed for immune checkpoint inhibitor monotherapy and enfortumab vedotin monotherapy, additional guidance is needed for managing AEs that occur with enfortumab vedotin plus pembrolizumab. As monotherapies, enfortumab vedotin and pembrolizumab are both associated with some of the AEs observed with the combination, such as skin reactions, pneumonitis, and diarrhea, which may confound the attribution of the AE to a specific agent and thereby complicate clinical management. In this manuscript, we aim to provide recommendations for best practice for patient care and the management of AEs of clinical interest for patients with la/mUC receiving enfortumab vedotin plus pembrolizumab, including skin reactions, peripheral neuropathy, hyperglycemia, and pneumonitis. These recommendations were developed based on published guidelines, expert opinions, and the clinical experience of the authors, which include oncologist, advanced practice provider, nursing, and pharmacy perspectives. In addition, guidance on patient education and communication is provided. With vigilant monitoring, early detection, and prompt intervention of treatment-emergent AEs based on recommended approaches described herein, it is the authors' experience that most AEs can be managed with supportive therapy and dose modification/interruptions, allowing patients to continue treatment.

11.
Expert Opin Drug Discov ; 19(7): 855-867, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803122

RESUMO

INTRODUCTION: Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug. AREAS COVERED: This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed. EXPERT OPINION: The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.


Assuntos
Antineoplásicos , Auranofina , Desenho de Fármacos , Neoplasias , Auranofina/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Animais , Reposicionamento de Medicamentos
12.
Pharmaceutics ; 16(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794294

RESUMO

A nanoparticle's shape is a critical determinant of its biological interactions and therapeutic effectiveness. This study investigates the influence of shape on the performance of mesoporous silica nanoparticles (MSNs) in anticancer therapy. MSNs with spherical, rod-like, and hexagonal-plate-like shapes were synthesized, with particle sizes of around 240 nm, and their other surface properties were characterized. The drug loading capacities of the three shapes were controlled to be 47.46%, 49.41%, and 46.65%, respectively. The effects of shape on the release behaviors, cellular uptake mechanisms, and pharmacological behaviors of MSNs were systematically investigated. Through a series of in vitro studies using 4T1 cells and in vivo evaluations in 4T1 tumor-bearing mice, the release kinetics, cellular behaviors, pharmacological effects, circulation profiles, and therapeutic efficacy of MSNs were comprehensively assessed. Notably, hexagonal-plate-shaped MSNs loaded with PTX exhibited a prolonged circulation time (t1/2 = 13.59 ± 0.96 h), which was approximately 1.3 times that of spherical MSNs (t1/2 = 10.16 ± 0.38 h) and 1.5 times that of rod-shaped MSNs (t1/2 = 8.76 ± 1.37 h). This research underscores the significance of nanoparticles' shapes in dictating their biological interactions and therapeutic outcomes, providing valuable insights for the rational design of targeted drug delivery systems in cancer therapy.

13.
Mar Drugs ; 22(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786612

RESUMO

The development of antitumor drugs and therapy requires new approaches and molecules, and products of natural origin provide intriguing alternatives for antitumor research. Gastropodan hemocyanins-multimeric copper-containing glycoproteins have been used in therapeutic vaccines and antitumor agents in many cancer models. MATERIALS AND METHODS: We established a murine model of melanoma by challenging C57BL/6 mice with a B16F10 cell line for solid tumor formation in experimental animals. The anticancer properties of hemocyanins isolated from the marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix aspersa (HaH) were evaluated in this melanoma model using various schemes of therapy. Flow cytometry, ELISA, proliferation, and cytotoxicity assays, as well as histology investigations, were also performed. RESULTS: Beneficial effects on tumor growth, tumor incidence, and survival of tumor-bearing C57BL/6 mice after administration of the RtH or HaH were observed. The generation of high titers of melanoma-specific IgM antibodies, pro-inflammatory cytokines, and tumor-specific CTLs, and high levels of tumor-infiltrated M1 macrophages enhanced the immune reaction and tumor suppression. DISCUSSION: Both RtH and HaH exhibited promising properties for applications as antitumor therapeutic agents and future experiments with humans.


Assuntos
Hemocianinas , Melanoma Experimental , Camundongos Endogâmicos C57BL , Animais , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Camundongos , Hemocianinas/farmacologia , Hemocianinas/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Moluscos/química , Modelos Animais de Doenças , Citocinas/metabolismo , Caramujos , Proliferação de Células/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/imunologia
14.
Chin J Integr Med ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816637

RESUMO

The discovery of novel antitumor agents derived from natural plants is a principal objective of anticancer drug research. Frankincense, a widely recognized natural antitumor medicine, has undergone a systematic review encompassing its species, chemical constituents, and diverse pharmacological activities and mechanisms. The different species of frankincense include Boswellia serrata, Somali frankincense, Boswellia frereana, and Boswellia arabica. Various frankincense extracts and compounds exhibit antitumor, anti-inflammatory, and hepatoprotective properties and antioxidation, memory enhancement, and immunological regulation capabilities. They also have comprehensive effects on regulating flora. Frankincense and its principal chemical constituents have demonstrated promising chemoprophylactic and therapeutic abilities against tumors. This review provides a systematic summary of the mechanism of action underlying the antitumor effects of frankincense and its major constituents, thus laying the foundations for developing effective tumor-combating targets.

15.
Trends Cancer ; 10(7): 655-667, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38664080

RESUMO

Neutrophils, major regulators of innate immunity, have recently emerged as key components of the tumor microenvironment. The role of neutrophils in cancer has been linked to their ability to form neutrophil extracellular traps (NETs), structures composed of decondensed DNA decorated with enzymes that are released into the extracellular space. Here, we discuss the pivotal roles of NETs in influencing responses to anticancer therapies such as chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Highlighting recent insights, we delve into the dual nature of NETs in the context of anticancer treatments, examining their potential to either counteract or enhance treatment outcomes. Strategic targeting of NETs may be a promising avenue for crafting combination therapies to counteract resistance or enhance anticancer treatments' efficacy.


Assuntos
Armadilhas Extracelulares , Neoplasias , Neutrófilos , Microambiente Tumoral , Humanos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Imunoterapia/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular/métodos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
16.
Biomolecules ; 14(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38672448

RESUMO

In cancer therapy, photodynamic therapy (PDT) has attracted significant attention due to its high potential for tumor-selective treatment. However, PDT agents often exhibit poor physicochemical properties, including solubility, necessitating the development of nanoformulations. In this study, we developed two cationic peptide-based self-assembled nanomaterials by using a PDT agent, chlorin e6 (Ce6). To manufacture biocompatible nanoparticles based on peptides, we used the cationic poly-L-lysine peptide, which is rich in primary amines. We prepared low- and high-molecular-weight poly-L-lysine, and then evaluated the formation and performance of nanoparticles after chemical conjugation with Ce6. The results showed that both molecules formed self-assembled nanoparticles by themselves in saline. Interestingly, the high-molecular-weight poly-L-lysine and Ce6 conjugates (HPLCe6) exhibited better self-assembly and PDT performance than low-molecular-weight poly-L-lysine and Ce6 conjugates (LPLCe6). Moreover, the HPLCe6 conjugates showed superior cellular uptake and exhibited stronger cytotoxicity in cell toxicity experiments. Therefore, it is functionally beneficial to use high-molecular-weight poly-L-lysine in the manufacturing of poly-L-lysine-based self-assembling biocompatible PDT nanoconjugates.


Assuntos
Clorofilídeos , Peso Molecular , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polilisina , Porfirinas , Polilisina/química , Porfirinas/química , Porfirinas/farmacologia , Humanos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Sobrevivência Celular/efeitos dos fármacos
17.
Cancers (Basel) ; 16(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38672583

RESUMO

Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.

18.
Int J Biol Macromol ; 267(Pt 2): 131514, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608986

RESUMO

The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT). DIT consisted of uniform spherical particles with a size of 282 ± 7.7 nm. The acidic microenvironment of tumors and near-infrared light could successively trigger DIT for the programmed release of three drugs, enabling targeted delivery to the tumor. THP served as a nucleus-guiding molecule and a chemotherapy drug. Through THP-guided DIT, DNase I was successfully delivered to the nucleus of tumor cells and killed them by degrading their DNA. Tumor acidic microenvironment had the ability to induce DIT, leading to the aggregation of sufficient ICG in the tumor tissues. This provided an opportunity for the photothermal therapy of ICG. Hence, three drugs were cleverly combined using a simple method to achieve multi-drugs targeted delivery and highly effective combined anticancer therapy.


Assuntos
Antineoplásicos , Núcleo Celular , Desoxirribonuclease I , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Desoxirribonuclease I/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Portadores de Fármacos/química , Verde de Indocianina/química , Microambiente Tumoral/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus
19.
ACS Biomater Sci Eng ; 10(4): 1946-1965, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38427627

RESUMO

Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.


Assuntos
Antineoplásicos , Neoplasias , Zeína , Humanos , Portadores de Fármacos/uso terapêutico , Zeína/química , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
20.
JMIR Med Inform ; 12: e47744, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446504

RESUMO

BACKGROUND: The importance of real-world evidence is widely recognized in observational oncology studies. However, the lack of interoperable data quality standards in the fragmented health information technology landscape represents an important challenge. Therefore, adopting validated systematic methods for evaluating data quality is important for oncology outcomes research leveraging real-world data (RWD). OBJECTIVE: This study aims to implement real-world time to treatment discontinuation (rwTTD) for a systemic anticancer therapy (SACT) as a new use case for the Use Case Specific Relevance and Quality Assessment, a framework linking data quality and relevance in fit-for-purpose RWD assessment. METHODS: To define the rwTTD use case, we mapped the operational definition of rwTTD to RWD elements commonly available from oncology electronic health record-derived data sets. We identified 20 tasks to check the completeness and plausibility of data elements concerning SACT use, line of therapy (LOT), death date, and length of follow-up. Using descriptive statistics, we illustrated how to implement the Use Case Specific Relevance and Quality Assessment on 2 oncology databases (Data sets A and B) to estimate the rwTTD of an SACT drug (target SACT) for patients with advanced head and neck cancer diagnosed on or after January 1, 2015. RESULTS: A total of 1200 (24.96%) of 4808 patients in Data set A and 237 (5.92%) of 4003 patients in Data set B received the target SACT, suggesting better relevance of the former in estimating the rwTTD of the target SACT. The 2 data sets differed with regard to the terminology used for SACT drugs, LOT format, and target SACT LOT distribution over time. Data set B appeared to have less complete SACT records, longer lags in incorporating the latest data, and incomplete mortality data, suggesting a lack of fitness for estimating rwTTD. CONCLUSIONS: The fit-for-purpose data quality assessment demonstrated substantial variability in the quality of the 2 real-world data sets. The data quality specifications applied for rwTTD estimation can be expanded to support a broad spectrum of oncology use cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...