Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Braz J Microbiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862737

RESUMO

Fusarium verticillioides causes significant decrease in corn yield and quality, and produces fumonisins, which represent a serious risk to human and animal health. Bacillus species can be an effective and environmentally friendly alternative for F. verticillioides biological control. In this study, some properties of cell-free supernatants (CFSs) of two Bacillus spp. identified as Bacillus subtilis (NT1, NT2) as well as the antifungal effect against F. verticillioides 97L were evaluated. B. subtilis NT1 and NT2 were isolated from commercially available fermented whole soybeans (Natto). Antifungal activity was observed in both CFSs of B. subtilis isolates (50-59 mm) obtained by co-culture suggesting that antifungal compound production depends on interaction between bacteria and fungi. Cell-free supernatants from the two B. subtilis isolates inhibited mycelial growth (77%-94%) and conidial germination (22%-74%) of F. verticillioides 97L. In addition, CFSs caused significant morphological changes such as distorted and collapsed hyphae with wrinkled surfaces and the presence of a large amount of extracellular material compared to the control without CFSs. Both B. subtilis isolates (NT1 and NT2) produced extracellular proteases, biosurfactants and polar low molecular weight compounds that probably act synergistically and may contribute to the antifungal activity. Antifungal compounds showed heat and pH stability and resistance to proteolytic enzymes. Furthermore, antifungal compounds showed high polarity, high affinity to water and a molecular weight less than 10 kDa. These results indicated that the two B. subtilis (NT1 and NT2) have potential as biocontrol agents for F. verticillioides.

2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731869

RESUMO

This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.


Assuntos
Compostos de Amônio Quaternário , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/farmacologia , Humanos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química
3.
BMC Microbiol ; 24(1): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570761

RESUMO

BACKGROUND: Aspergillus species cause a variety of serious clinical conditions with increasing trend in antifungal resistance. The present study aimed at evaluating hospital epidemiology and antifungal susceptibility of all isolates recorded in our clinical database since its implementation. METHODS: Data on date of isolation, biological samples, patients' age and sex, clinical settings, and antifungal susceptibility tests for all Aspergillus spp. isolated from 2015 to 2022 were extracted from the clinical database. Score test for trend of odds, non-parametric Mann Kendall trend test and logistic regression analysis were used to analyze prevalence, incidence, and seasonality of Aspergillus spp. isolates. RESULTS: A total of 1126 Aspergillus spp. isolates were evaluated. A. fumigatus was the most prevalent (44.1%) followed by A. niger (22.3%), A. flavus (17.7%) and A. terreus (10.6%). A. niger prevalence increased over time in intensive care units (p-trend = 0.0051). Overall, 16 (1.5%) were not susceptible to one azole compound, and 108 (10.9%) to amphotericin B, with A. niger showing the highest percentage (21.9%). The risk of detecting A. fumigatus was higher in June, (OR = 2.14, 95% CI [1.16; 3.98] p = 0.016) and reduced during September (OR = 0.48, 95% CI [0.27; 0.87] p = 0.015) and October as compared to January (OR = 0.39, 95% CI [0.21; 0.70] p = 0.002. A. niger showed a reduced risk of isolation from all clinical samples in the month of June as compared to January (OR = 0.34, 95% CI [0.14; 0.79] p = 0.012). Seasonal trend for A. flavus showed a higher risk of detection in September (OR = 2.7, 95% CI [1.18; 6.18] p = 0.019), October (OR = 2.32, 95% CI [1.01; 5.35] p = 0.048) and November (OR = 2.42, 95% CI [1.01; 5.79] p = 0.047) as compared to January. CONCLUSIONS: This is the first study to analyze, at once, data regarding prevalence, time trends, seasonality, species distribution and antifungal susceptibility profiles of all Aspergillus spp. isolates over a 8-year period in a tertiary care center. Surprisingly no increase in azole resistance was observed over time.


Assuntos
Antifúngicos , Aspergilose , Humanos , Antifúngicos/farmacologia , Centros de Atenção Terciária , Aspergilose/epidemiologia , Aspergilose/microbiologia , Testes de Sensibilidade Microbiana , Aspergillus , Azóis , Farmacorresistência Fúngica
4.
Artigo em Inglês | MEDLINE | ID: mdl-38564169

RESUMO

To explore the potential of probiotic candidates beneficial for honeybee health through the modulation of the gut microbiome, bee gut microbes were isolated from bumblebee (Bombus terrestris) and honeybee (Apis mellifera) using diverse media and cultural conditions. A total of 77 bee gut bacteria, classified under the phyla Proteobacteria, Firmicutes, and Actinobacteria, were identified. The antagonistic activity of the isolates against Ascosphaera apis, a fungal pathogen responsible for chalkbrood disease in honeybee larvae, was investigated. The highest growth inhibition percentage against A. apis was demonstrated by Bacillus subtilis strain I3 among the bacterial strains. The presence of antimicrobial peptide genes in the I3 strain was detected using PCR amplification of gene fragments encoding surfactin and fengycin utilizing specific primers. The export of antimicrobial peptides by the I3 strain into growth medium was verified using liquid chromatography coupled with mass spectroscopy. Furthermore, the strain's capabilities for degrading pesticides, used for controlling varroa mites, and its spent growth medium antioxidant activity were substantiated. The survival rate of honeybees infected with (A) apis was investigated after feeding larvae with only medium (fructose + glucose + yeast extract + royal jelly), (B) subtilis I3 strain, A. apis with medium and I3 strain + A. apis with medium. Honeybees receiving the I3 strain + A. apis exhibited a 50% reduction in mortality rate due to I3 strain supplementation under experimental conditions, compared to the control group. In silico molecular docking revealed that fengycin hydrolase from I3 strain effectively interacted with tau-fluvalinate, suggesting its potential in bee health and environmental protection. Further studies are needed to confirm the effects of the I3 strain in different populations of honey bees across several regions to account for genetic and environmental variations.

5.
Indian J Microbiol ; 64(1): 70-81, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468744

RESUMO

Biological control has been considered a sustainable alternative to combat phytopathogens. The increase of studies in the past few years involving Actinobacteria as biological control agents of phytopathogenic fungi has motivated us to search for which Actinobacteria genus that have been studied in the last five years and explore their mechanisms of antifungal activity. The accesses were carried out on three multidisciplinary digital platforms: PubMED/MedLine, Web of Science and Scopus. Actinobacteria from genus Amycolatopsis, Curtobacterium, Kocuria, Nocardioides, Nocardiopsis, Saccharopolyspora, Streptoverticillium and especially Streptomyces showed a broad antifungal spectrum through several antibiosis mechanisms such as the production of natural antifungal compounds, siderophores, extracellular hydrolytic enzymes and activation of plant defense system. We observed the formation of a methodology based on antagonistic compounds bioactivity to select efficient Actinobacteria to be used as biological control agents against phytopathogenic fungi. The use of multifunctional Actinobacteria has been proven to be efficient, not only by its natural protective activity against phytopathogenic fungi but also because of their ability to act as plant growth-promoting bacteria.

6.
Front Plant Sci ; 15: 1371285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510434

RESUMO

Introduction: Pyrrhoderma noxium is a plant pathogen that causes economic losses in agricultural and forestry industries, including significant destruction to amenity trees within the city of Brisbane in Australia. Use of chemical control agents are restricted in public areas, there is therefore an urgent need to investigate biological control approaches. Members of the phylum Actinomycetota, commonly known as actinomycetes, are known for their industrially important secondary metabolites including antifungal agents. They have proven to be ideal candidates to produce environmentally friendly compounds including the volatile organic compounds (VOCs) which can be used as biofumigants. Methods: Different Streptomyces species (n=15) previously isolated from the guts of termites and stored in the University of the Sunshine Coast'sMicrobial Library were tested for their antifungal VOCs against Pyrrhoderma noxium. Results: Fourteen of them were found to display inhibition (39.39-100%) to the mycelial development of the pathogen. Strongest antifungal activity displaying isolates USC-592, USC-595, USC-6910 and USC-6928 against the pathogen were selected for further investigations. Their VOCs were also found to have plant growth promotional activity observed for Arabidopsis thaliana with an increase of root length (22-36%) and shoot length (26-57%). The chlorophyll content of the test plant had a slight increase of 11.8% as well. Identified VOCs included geosmin, 2-methylisoborneol, 2-methylbutyrate, methylene cyclopentane, ß-pinene, dimethyl disulfide, ethyl isovalerate, methoxyphenyl-oxime and α-pinene. Additionally, all 15 Streptomyces isolates were found to produce siderophores and indole acetic acid as well as the enzyme chitinase which is known to break down the fungal cell wall. Discussion: Findings indicate that termite gut-associated streptomycetes might be used to control Pyrrhoderma noxium by utilizing their wide range of inhibitory mechanisms.

7.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319066

RESUMO

Streptomyces spp. are considered excellent reservoirs of natural bioactive compounds. The study evaluated the bioactive potential of secondary metabolites from Streptomyces sp. strain 130 through PKS-I and NRPS gene-clusters screening. GC-MS analysis was done for metabolic profiling of bioactive compounds from strain 130 in the next set of experiments. Identified antifungal compounds underwent ADMET analyses to screen their toxicity. All compounds' molecular docking was done with the structural gene products of the aflatoxin biosynthetic pathway of Aspergillus flavus. MD simulations were utilized to evaluate the stability of protein-ligand complexes under physiological conditions. Based on the in-silico studies, compound 2,4-di-tert butyl-phenol (DTBP) was selected for in-vitro studies against Aspergillus flavus. Simultaneously, bioactive compounds were extracted from strain 130 in two different solvents (ethyl-acetate and methanol) and used for similar assays. The MIC value of DTBP was found to be 314 µg/mL, whereas in ethyl-acetate extract and methanol-extract, it was 250 and 350 µg/mL, respectively. A mycelium growth assay was done to analyze the effect of compounds/extracts on the mycelium formation of Aspergillus flavus. In agar diffusion assay, zone of inhibitions in DTBP, ethyl-acetate extract, and methanol extract were observed with diameters of 11.3, 13.3, and 7.6 mm, respectively. In the growth curve assay, treated samples have delayed the growth of fungi, which signified that the compounds have a fungistatic nature. Spot assay has determined the fungal sensitivity to a sub-minimum inhibitory concentration of antifungal compounds. The study's results suggested that DTBP can be exploited for antifungal-drug development.Communicated by Ramaswamy H. Sarma.

8.
Antibiotics (Basel) ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38247604

RESUMO

Plant fungal pathogen Pyrrhoderma noxium is responsible for the destructive and invasive disease of brown root rot currently affecting the city of Brisbane, Australia. In order to address this issue, environmentally friendly and safe alternatives to chemical control are preferred due to the city's public setting. Antifungal natural products are ideal candidates as biological control alternatives and can be detected through investigating the metabolomes of microbial symbionts. Within this study, an NMR-based metabolomics approach was applied to fermentation extracts obtained from 15 termite gut-associated streptomycetes. By analysing the NMR spectra, six of the extracts which displayed similar chemical profiles exhibited antifungal activity against the P. noxium pathogen. The major compound within these extracts was identified as acetomycin using NMR and X-ray crystallography analyses. This is the first reporting of acetomycin as a potential natural product fungicide, particularly as an antifungal agent against P. noxium. Inhibitory activity was also found against other important fungal crop pathogens, including Aspergillus niger, Botrytis cinerea, and Alteranaria alternata. Further experimentation using a woodblock test found inhibitory activity on the growth of the P. noxium pathogen for up to 3 weeks and a significant difference in the integrity of the woodblocks when conducting compression strength tests after 6 weeks. Therefore, acetomycin may be used as a biological control agent and natural product fungicide against P. noxium.

9.
Fitoterapia ; 173: 105810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163448

RESUMO

Ent-hardwickiic acid is the major compound of Copaifera pubiflora Benth oleoresin traditionally used in Brazilian folk medicine as an antimicrobial agent. Microbial transformation of ent-hardwickiic by Cunninghamella elegans ATCC 10028b resulted in two and five antifungal derivatives (four new ones) produced in the Czapek modified and Koch's K1 media, respectively. The derivatives were isolated and their structures were determined by spectral analysis, namely 1D/2D NMR and HR-ESIMS. All compounds were tested for cytotoxic and antifungal activities and they were not cytotoxic to the tested cell lines, but all derivatives showed fungicidal activity against Candida glabrata and Candida krusei, which have emerged as resistant to fluconazole. One of the yet unreported biotransformation products displayed the strongest activity with minimum fungicidal concentration values smaller than the other compounds, including fluconazole.


Assuntos
Antifúngicos , Diterpenos , Fluconazol , Fluconazol/farmacologia , Candida , Estrutura Molecular , Testes de Sensibilidade Microbiana
11.
Vet Med Sci ; 9(6): 2594-2599, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872836

RESUMO

BACKGROUND: Fungal and yeast infections, including those caused by Malassezia spp., are becoming increasingly difficult to treat, likely due to the occurrence of drug resistance. OBJECTIVES: This study aimed to evaluate the antifungal effects of omeprazole (OME), a proton pump inhibitor, against antifungal-resistant Malassezia pachydermatis and to investigate the potential synergistic effects between OME and other antifungal compounds. METHODS: In total, 15 samples of M. pachydermatis isolated from the skin of dogs were tested. The susceptibility of M. pachydermatis to itraconazole, ketoconazole, miconazole, terbinafine and OME was assessed using a modified broth microdilution (BM) method. The in vitro efficacy of OME alone and in combination with other antifungal compounds was evaluated for all isolates using the BM chequerboard method. The data obtained were analysed using the fractional inhibitory concentration index (FICI). RESULTS: The minimum inhibitory concentration (MIC) values of antifungal compounds and OME against quality control strain (M. pachydermatis CBS1879) were lower than the MIC90 values of same drugs against clinically collected strains. There was no significant difference in MIC values between drugs alone and combination. According to the analysis by the FICI method, no interaction was observed with OME and antifungal compounds. CONCLUSIONS: Most M. pachydermatis strains were resistant to azole antifungal compounds. OME exerted antifungal effects against Malassezia spp. and even showed good effects on antifungal-resistant strains. No synergistic effects were observed between the antifungal compounds and OME.


Assuntos
Antifúngicos , Malassezia , Animais , Cães , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Omeprazol/farmacologia , Farmacorresistência Fúngica
12.
Antibiotics (Basel) ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37760670

RESUMO

Pyrrhoderma noxium is a plant fungal pathogen that induces the disease of brown root rot in a large variety of tree species. It is currently infecting many of the amenity trees within Brisbane City of Queensland, Australia. Steering away from harmful chemical fungicides, biological control agents offer environmentally friendly alternatives. Streptomycetes are known for their production of novel bioactive secondary metabolites with biocontrol potential, particularly, streptomycete symbionts isolated from unique ecological niches. In this study, 37 termite gut-associated actinomycete isolates were identified using molecular methods and screened against P. noxium. A majority of the isolates belonged to the genus Streptomyces, and 15 isolates exhibited strong antifungal activity with up to 98.5% mycelial inhibition of the fungal pathogen. MS/MS molecular networking analysis of the isolates' fermentation extracts revealed several chemical classes with polyketides being among the most abundant. Most of the metabolites, however, did not have matches to the GNPS database, indicating potential novel antifungal compounds in the active extracts obtained from the isolates. Pathway enrichment and overrepresentation analyses revealed pathways relating to polyketide antibiotic production, among other antibiotic pathways, further confirming the biosynthetic potential of the termite gut-associated streptomycetes with biocontrol potential against P. noxium.

13.
Braz J Microbiol ; 54(3): 2219-2226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531006

RESUMO

Corn contamination with Fusarium verticillioides (Sacc.) Nirenberg is a worldwide problem that affects yield and grain quality resulting in severe economic losses and implications for food safety. Control of F. verticillioides is a challenge, but lactic acid bacteria (LAB) has high potential as a biological control agent. In this study, the antifungal effect of Limosilactobacillus reuteri (formerly Lactobacillus reuteri) LR-92 against F. verticillioides 97L was investigated. Cell-free supernatant (CFS) from L. reuteri showed concentration-dependent fungicidal and fungistatic activity against F. verticillioides 97L. The antifungal compounds from CFS showed heat stability and pH dependence, and antifungal activity was not affected by treatment with proteolytic enzymes. High-performance liquid chromatography analysis indicated that L. reuteri LR-92 produces lactic and acetic acids. After liquid-liquid extraction, electrospray ionization mass spectrometry analysis of the active ethyl acetate fraction containing antifungal compounds revealed the production of 3-phenyllactic acid, cyclo-(L-Pro-L-Leu), cyclo-(L-Pro-L-Phe), and cyclo-(L-Phe-trans-4-OH-L-Pro). L. reuteri LR-92 has potential as a biocontrol agent for F. verticillioides and contributes to food safety.


Assuntos
Fusarium , Limosilactobacillus reuteri , Antifúngicos/farmacologia , Antifúngicos/química , Agentes de Controle Biológico/farmacologia
14.
Pest Manag Sci ; 79(11): 4569-4588, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434047

RESUMO

BACKGROUND: Chemical products against fungi and oomycetes pose serious environmental issues. In the last decade, the use of less impacting active ingredients was encouraged to reduce chemical inputs in viticulture. In this study, the effect of different antifungal compounds on grapevine agronomic, physiological, and molecular responses in the vineyard was evaluated in addition to protection against powdery and downy mildews. RESULTS: In 2 years and in two Vitis vinifera cultivars (Nebbiolo and Arneis), a conventional crop protection approach, based on traditional fungicides (sulfur and copper), was compared to combined strategies. A well-known resistance inducer (potassium phosphonate), Bacillus pumilus strain QST 2808 and calcium oxide, both active ingredients whose biological interaction with grapevine is poorly characterized, were applied in the combined strategies in association with chemical fungicides. Despite a genotype effect occurred, all treatments optimally controlled powdery and downy mildews, with minimal variations in physiological and molecular responses. Gas exchange, chlorophyll content and photosystem II efficiency increased in treated plants at the end of season, along with a slight improvement in the agronomic performances, and an activation of molecular defense processes linked to stilbene and jasmonate pathways. CONCLUSION: The disease control strategies based on potassium phosphonate, Bacillus pumilus strain QST 2808 or calcium oxide combined with traditional chemical compounds did not cause severe limitations in plant ecophysiology, grape quality, and productive yields. The combination of potassium phosphonate and calcium oxide with traditional fungicides can represent a valuable strategy for reducing copper and sulfur inputs in the vineyards, including those organically managed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

15.
Pathogens ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111503

RESUMO

Fungal infections continue to be a serious public health problem, leading to an estimated 1.6 million deaths annually. It remains a major cause of mortality for people with a weak or affected immune system, such as those suffering from cancer under aggressive chemotherapies. On the other hand, pathogenic fungi are counted among the most destructive factors affecting crops, causing a third of all food crop losses annually and critically affecting the worldwide economy and food security. However, the limited number currently available and the cytotoxicity of the conventional antifungal drugs, which are not yet properly diversified in terms of mode of action, in addition to resistance phenomena, make the search for new antifungals imperative to improve both human health and food protection. Symbiosis has been a crucial alternative for drug discovery, through which many antimicrobials have been discovered. This review highlights some antifungal models of a defensive symbiosis of microbial symbiont natural products derived from interacting with aquatic animals as one of the best opportunities. Some recorded compounds with supposed novel cell targets such as apoptosis could lead to the development of a multitherapy involving the mutual treatment of fungal infections and other metabolic diseases involving apoptosis in their pathogenesis pathways.

16.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737421

RESUMO

AIMS: Fusarium graminearum is a toxic fungus that affects food and feed crops. Piper sarmentosum extract (PSE) is a potential source of anti-mildew natural products for the food and feed industry due to its various pharmacological properties. In this study, we evaluated the antifungal activity and untargeted metabolomics analysis of PSE against F. graminearum. METHODS AND RESULTS: Antifungal activity was evaluated using the mycelium growth rate method. Untargeted metabolomics analysis of PSE was performed using ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that PSE (1 and 2 mg ml-1) possesses inhibitory activity against F. graminearum, and a total of 17 compounds that including 8 alkaloids, 3 phenols, 3 lipids, and 3 organic acids might be the antifungal markers in PSE. Metabolomics analysis further revealed that PSE could significantly increase the levels of guanosine, guanine, adenosine, and L-isoleucine in fungi, which are related to purine and L-isoleucine metabolic pathways. CONCLUSIONS: PSE is a promising anti-mildew agent that inhibits the growth of F. graminearum in food and feed. PSE (1 and 2 mg ml-1) may exert antifungal properties by inhibiting fungal purine nucleotide synthesis and enhancing the level of L-isoleucine compared with the control groups.


Assuntos
Fusarium , Piper , Antifúngicos/farmacologia , Piper/química , Cromatografia Líquida , Isoleucina/metabolismo , Espectrometria de Massas em Tandem , Fungos
17.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769223

RESUMO

Biofumigation with slow-release diffusers of essential oils (EOs) of basil, oregano, savoury, thyme, lemon, and fennel was assessed for the control of blue mould of apples, caused by Penicillium expansum. In vitro, the ability of the six EOs to inhibit the mycelial growth was evaluated at concentrations of 1.0, 0.5, and 0.1%. EOs of thyme, savoury, and oregano, at all three concentrations, and basil, at 1.0 and 0.5%, were effective in inhibiting the mycelial growth of P. expansum. In vivo, disease incidence and severity were evaluated on 'Opal' apples artificially inoculated with the pathogen and treated at concentrations of 1.0% and 0.5% of EOs. The highest efficacy in reducing blue mould was observed with EOs of lemon and oregano at 1.0% after 60 days of storage at 1 ± 1 °C (incidence of rot, 3 and 1%, respectively) and after a further 14 days of shelf-life at 15 ± 1 °C (15 and 17%). Firmness, titratable acidity, and total soluble solids were evaluated at harvest, after cold storage, and after shelf-life. Throughout the storage period, no evident phytotoxic effects were observed. The EOs used were characterised through GC-MS to analyse their compositions. Moreover, the volatile organic compounds (VOCs) present in the cabinets were characterised during storage using the SPME-GC-MS technique. The antifungal effects of EOs were confirmed both in vitro and in vivo and the possible mechanisms of action were hypothesised. High concentrations of antimicrobial and antioxidant compounds in the EOs explain the efficacy of biofumigation in postharvest disease control. These findings provide new insights for the development of sustainable strategies for the management of postharvest diseases and the reduction of fruit losses during storage.


Assuntos
Malus , Óleos Voláteis , Penicillium , Óleos Voláteis/farmacologia , Antifúngicos/farmacologia
18.
Toxins (Basel) ; 15(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36668890

RESUMO

Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.


Assuntos
Lactobacillales , Olea , Patulina , Antifúngicos/farmacologia , Olea/microbiologia , Brasil , Fungos , Aflatoxina B1
19.
Food Res Int ; 162(Pt A): 111935, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461193

RESUMO

Fungi and oomycetes found in vineyards cause diseases such as powdery and downy mildew. Consequently, conventional and alternative agronomical practices are widely used prior to harvest to protect grapes. Alternative products are considered more eco-friendly and environmentally sustainable in comparison to conventional chemical products. However, the effect of these alternative products on yeast ecology, from the vineyard to the winery, is poorly understood. This study compared the effect of alternative and conventional chemical antifungal compounds (copper and sulphur based) on grapes' mycobiota in the vineyard and during subsequent winery fermentation using culture-dependent and -independent approaches. Culture-dependent data indicated a treatment-dependent effect on the load and diversity of yeast populations on grapes. It was found that the population of Hanseniaspora uvarum was higher on grapes previously treated with laminarin and copper, compared to the other levels registered on grapes previously treated with the rest of antifungal products tested in this study (including the untreated and conventional treatment controls). Concerning, wine quality, the chemical composition was not correlated to the application of antifungal treatment in the vineyard. Understanding the effect of different antifungal products on grape and wine microbial communities may help in setting up guidelines for wine grape production. These guidelines, can be used to guarantee quality in the pursuit of a sustainable competitive advantage in the market.


Assuntos
Fungicidas Industriais , Vitis , Fazendas , Fungicidas Industriais/farmacologia , Antifúngicos , Cobre , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...