Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.264
Filtrar
1.
Methods Mol Biol ; 2833: 23-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949697

RESUMO

Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB)-an ancient yet widespread global infectious disease to which 1.6 million people lost their lives in 2021. Antimicrobial resistance (AMR) has been an ongoing crisis for decades; 4.95 million deaths were associated with antibiotic resistance in 2019. While AMR is a multi-faceted problem, drug discovery is an urgent part of the solution and is at the forefront of modern research.The landscape of drug discovery for TB has undoubtedly been transformed by the development of high-throughput gene-silencing techniques that enable interrogation of every gene in the genome, and their relative contribution to fitness, virulence, and AMR. A recent advance in this area is CRISPR interference (CRISPRi). The application of this technique to antimicrobial susceptibility testing (AST) is the subject of ongoing research in basic science.CRISPRi technology can be used in conjunction with the high-throughput SPOT-culture growth inhibition assay (HT-SPOTi) to rapidly evaluate and assess gene essentiality including non-essential, conditionally essential (by using appropriate culture conditions), and essential genes. In addition, the HT-SPOTi method can develop drug susceptibility and drug resistance profiles.This technology is further useful for drug discovery groups who have designed target-based inhibitors rationally and wish to validate the primary mechanisms of their novel compounds' antibiotic action against the proposed target.


Assuntos
Descoberta de Drogas , Inativação Gênica , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Descoberta de Drogas/métodos , Humanos , Sistemas CRISPR-Cas , Antituberculosos/farmacologia , Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Farmacorresistência Bacteriana/genética , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico
2.
Methods Mol Biol ; 2833: 35-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949698

RESUMO

Antimicrobial resistance (AMR) poses a serious threat to global health, potentially causing 10 million deaths per year globally by 2050. To tackle AMR, researchers from all around the world have generated a selection of various formulated (viz. nanoparticulate, liposomal) therapeutic combinations to be evaluated for new antimicrobial drug discovery. To meet the urgent need for accelerating new antibacterial drug development, we need rapid but reliable whole-cell assay methods and models to test formulated therapeutic combinations against several pathogens in different in vitro conditions as models of actual infections.Over the past two decades, high-throughput spot-culture growth inhibition assay (HT-SPOTi) has been demonstrated to be a gold-standard drug susceptibility method for evaluating novel chemotherapeutic entities and existing drugs against various microbes of global concern. Our modified HT-SPOTi method serves the purpose of evaluating drug combinations against Gram-positive/negative microorganisms as well as acid-fast bacilli. The newly developed and modified HT-SPOTi assay builds upon the limitations of our previously published method to incorporate antimicrobial susceptibility testing with formulated therapeutic combinations. The modified HT-SPOTi is compared with a range of other antimicrobial susceptibility testing methods and validated using a library of existing antibiotics as well as formulated therapeutic combinations. The modified HT-SPOTi assay can serve as an efficient and reliable high-throughput drug screening platform to discover new potential antimicrobial molecules, including as part of therapeutic formulations.This chapter describes the generation of drug susceptibility profile for formulated therapeutic combinations using modified HT-SPOTi in a semi-automated system.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento
3.
Infect Drug Resist ; 17: 2673-2683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953097

RESUMO

Purpose: Elizabethkingia spp. infections have recently increased, and they are difficult to treat because of intrinsic antimicrobial resistance. This study aimed to investigate the clinical characteristics of patients with pulmonary infection with Elizabethkingia spp. and reveal the risk factors for infection and death. Patients and Methods: In this retrospective case-control study, patients were divided into infection and control groups based on the bacterial identification results. Patients in the infection group were further divided into survival and death groups according to their hospital outcomes. Clinical characteristics between different groups were compared. We further analyzed antimicrobial susceptibility testing results of the isolated strains. Results: A total of the 316 patients were divided into infection (n = 79), 23 of whom died, and control (n = 237) groups. Multivariate logistic regression analysis showed that glucocorticoid consumption (OR: 2.35; 95% CI: 1.14-4.81; P = 0.02), endotracheal intubation (OR: 3.74; 95% CI: 1.62-8.64; P = 0.002), and colistin exposure (OR: 2.50; 95% CI: 1.01-6.29; P = 0.046) were significantly associated with pulmonary infection with Elizabethkingia spp. Advanced age (OR: 1.07, 95% CI: 1.00-1.15; P = 0.046), high acute physiology and chronic health evaluation (APACHE) II score (OR: 1.21; 95% CI: 1.01-1.45; P = 0.037), and low albumin level (OR: 0.73, 95% CI: 0.56-0.96; P = 0.025) were significantly associated with in-hospital mortality of infected patients. Elizabethkingia spp. was highly resistant to cephalosporins, carbapenems, macrolides, and aminoglycoside, and was sensitive to fluoroquinolones, minocycline, and co-trimoxazole in vitro. Conclusion: Glucocorticoid consumption, tracheal intubation, and colistin exposure were associated with pulmonary infection with Elizabethkingia spp. for critically ill patients. Patients with advanced age, high APACHE II score, and low albumin level had higher risk of death from infection.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38970691

RESUMO

To evaluate the in vitro activity of ampicillin-sulbactam and cefoperazone-sulbactam against A. baumannii using the broth disk elution testing, a total of 150 A. baumannii isolates were collected from across China between January 2019 and January 2021, including 51 carbapenem-susceptible and 99 carbapenem-resistant isolates. Broth disk elution (BDE) and the broth microdilution (BMD) method were performed for all strains. The concentration range of the BDE was 10/10 µg/mL, 20/20 µg/mL, and 30/30 µg/mL for ampicillin-sulbactam, and 37.5/15 µg/mL, 75/30 µg/mL, 112.5/45 µg/mL, and 150/60 µg/mL for cefoperazone-sulbactam, respectively. Compared with BMD, the BDE results of ampicillin-sulbactam and cefoperazone-sulbactam showed a categorical agreement of 83.3% (125/150) and 95.3% (143/150), with minor errors of 16.7% (25/150) and 4.7% (7/150), respectively. No major error or very major errors were detected. The sensitivity differences by BDE of carbapenem-resistant A. baumannii (CRAb) to different concentrations of ampicillin-sulbactam showed statistically significant (p < 0.017), while those to cefoperazone-sulbactam at 37.5/15 µg/mL, 75/30 µg/mL, and 112.5/45 µg/mL were significant (p < 0.008). However, no significant difference in sensitivity was observed between 112.5/45 µg/mL and 150/60 µg/mL (p > 0.008). In conclusion, the BDE is a reliable and convenient method to detect the in vitro activity of cefoperazone-sulbactam against A. baumannii, and the results could serve as a clinical reference value when deciding whether or not to use high-dose sulbactam for the treatment of A. baumannii infections.

5.
Front Cell Infect Microbiol ; 14: 1335096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975326

RESUMO

Objective: Pseudomonas aeruginosa, a difficult-to-manage nosocomial pathogen, poses a serious threat to clinical outcomes in intensive care (ICU) patients due to its high antimicrobial resistance (AMR). To promote effective management, it is essential to investigate the genomic and phenotypic differences in AMR expression of the isolates. Methods: A prospective observational study was conducted from July 2022 to April 2023 at Liepaja Regional Hospital in Latvia. The study included all adult patients who were admitted to the ICU and had a documented infection with P. aeruginosa, as confirmed by standard laboratory microbiological testing and short-read sequencing. Since ResFinder is the only sequencing-based database offering antibacterial susceptibility testing (AST) data for each antibiotic, we conducted a comparison of the resistance profile with the results of phenotypic testing, evaluating if ResFinder met the US Food and Drug Administration (FDA) requirements for approval as a new AMR diagnostic test. Next, to improve precision, AST data from ResFinder was compared with two other databases - AMRFinderPlus and RGI. Additionally, data was gathered from environmental samples to inform the implementation of appropriate infection control measures in real time. Results: Our cohort consisted of 33 samples from 29 ICU patients and 34 environmental samples. The presence of P. aeruginosa infection was found to be associated with unfavourable clinical outcomes. A third of the patient samples were identified as multi-drug resistant isolates. Apart from resistance against colistin, significant discrepancies were observed when phenotypic data were compared to genotypic data. For example, the aminoglycoside resistance prediction of ResFinder yielded a major errors value of 3.03% for amikacin, which was marginally above the FDA threshold. Among the three positive environmental samples, one sample exhibited multiple AMR genes similar to the patient samples in its cluster. Conclusion: Our findings underscore the importance of utilizing a combination of diagnostic methods for the identification of resistance mechanisms, clusters, and environmental reservoirs in ICUs.


Assuntos
Antibacterianos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Fenótipo , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Humanos , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Estudos Prospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Infecção Hospitalar/microbiologia , Idoso , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Genômica/métodos , Letônia , Adulto , Colistina/farmacologia , Genoma Bacteriano/genética
6.
Int J Environ Health Res ; : 1-13, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38944751

RESUMO

Antibiotic resistance, a significant public health hazard, is predicted to cause 10 million deaths worldwide by 2050. The study aimed to identify culturable bioaerosols in the indoor air of dental units in Lahore and assess their antibiotic resistance. Air samples were collected from 10 dental unit locations at different distances, with average concentrations of fungi and bacteria falling within intermediate ranges, per the Global Index of Microbial Contamination (GIMC/m3) index. The study found higher antibiotic-resistant strains in hospital dental units, particularly during winter. The most vigorous strain, S.aureus-NAJIH18, exhibited 70% resistance to ceftazidime. The research highlights the importance of quantifying microbial pollutants for evaluating their source and complexity. It suggests proactive mitigation techniques, such as focused cleaning and air filtration, to improve indoor air quality can mitigate the spread of antibiotic-resistant strains. These insights offer hope in combating the growing public health threat of antibiotic resistance.

7.
Antibiotics (Basel) ; 13(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927150

RESUMO

BACKGROUND: The discovery of novel therapeutic agents, especially those targeting mycobacterial membrane protein large 3 (mmpL3), has shown promise. In this study, the CRISPR interference-Streptococcus thermophilus nuclease-deactivated Cas9 (CRISPRi-dCas9Sth1) system was utilized to suppress mmpL3 expression in Mycobacterium smegmatis, and its impacts on susceptibility to antimicrobial agents were evaluated. METHODS: The repression of the mmpL3 gene was confirmed by RT-qPCR. The essentiality, growth curve, viability, and antimicrobial susceptibility of the mmpL3 knockdown strain were investigated. RESULTS: mmpL3 silencing was achieved by utilizing 0.5 and 1 ng/mL anhydrotetracycline (ATc), resulting in reductions in the expression of 60.4% and 74.4%, respectively. mmpL3 silencing led to a significant decrease in bacterial viability when combined with one-half of the minimal inhibitory concentrations (MICs) of rifampicin, rifabutin, ceftriaxone, or isoniazid, along with 0.1 or 0.5 ng/mL ATc (p < 0.05). However, no significant difference was observed for clarithromycin or amikacin. CONCLUSIONS: The downregulation of the mmpL3 gene in mycobacteria was achieved through the use of CRISPRi-dCas9Sth1, resulting in growth deficiencies and resensitization to certain antimicrobial agents. The impact was dependent upon the level of gene expression.

8.
Antibiotics (Basel) ; 13(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38927182

RESUMO

Staphylococcal scalded skin syndrome (SSSS) is a rare, toxin-mediated, desquamating bacterial infectious dermatosis. So far, data from Southwestern China is scarce. This study aimed to investigate the clinical characteristics of SSSS patients in our hospital, the relative proportion of methicillin-resistant Staphylococcus aureus (MRSA) in skin and soft tissue secretions, and the drug sensitivity of S. aureus to better assist dermatologists in the diagnosis and treatment of SSSS. We reviewed the demographic characteristics, clinical manifestations, treatment regimens, therapeutic efficacy, laboratory test results, drug sensitivity, and outcome data of 79 SSSS patients from January 2012 to December 2021. Statistical analysis was performed using t tests and chi-square tests. Among the 79 SSSS patients, MRSA was detected in 35 (44.3%) isolates: 34 community-acquired (CA)-MRSA (97.1%) and 1 hospital-acquired (HA)-MRSA. The SSSS incidence increased annually from 2012 to 2014 and then decreased gradually after peaking in 2015. All the isolates were sensitive to vancomycin, tigecycline, linezolid, moxifloxacin, levofloxacin, and ciprofloxacin; were completely resistant to penicillin; and had low sensitivity to clindamycin and erythromycin. Interestingly, the sensitivity of MRSA to tetracycline increased annually after 2015. The resistance rates to common drugs previously used to treat SSSS increased. These findings may accelerate diagnosis and improve empirical antibiotic use, suggesting that clinicians should prescribe drugs according to antimicrobial susceptibility.

9.
Sci Rep ; 14(1): 14542, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914675

RESUMO

Antibiotic resistance among bacteria is recognized as the primary factor contributing to the failure of treatment. In this research, our objective was to examine the prevalence of antibiotic resistance in H. pylori bacteria in Palestine. We enlisted 91 individuals suffering from dyspepsia, comprising 49 females and 42 males. These participants underwent esophagogastroduodenoscopy procedures with gastric biopsies. These biopsies were subsequently subjected to microbiological assessments and tested for their susceptibility to various antimicrobial drugs. Among the 91 patients, 38 (41.7%) exhibited the presence of H. pylori. Notably, Ciprofloxacin displayed the highest efficacy against H. pylori, followed by Levofloxacin, Moxifloxacin, and Amoxicillin, with resistance rates of 0%, 0%, 2.6%, and 18.4%, respectively. On the contrary, Metronidazole and Clarithromycin demonstrated the lowest effectiveness, with resistance percentages of 100% and 47.4%, respectively. The outcomes of this investigation emphasize that H. pylori strains within the Palestinian patient group exhibit substantial resistance to conventional first-line antibiotics like clarithromycin and metronidazole. However, alternative agents such as fluoroquinolones and amoxicillin remain efficacious choices. Consequently, we recommend favoring quinolone-based treatment regimens for H. pylori infections and adopting a more judicious approach to antibiotic usage among the Palestinian population.


Assuntos
Antibacterianos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/isolamento & purificação , Feminino , Masculino , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/epidemiologia , Estudos Transversais , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Adulto , Prevalência , Pessoa de Meia-Idade , Farmacorresistência Bacteriana , Hospitais Universitários , Testes de Sensibilidade Microbiana , Amoxicilina/uso terapêutico , Amoxicilina/farmacologia , Claritromicina/uso terapêutico , Claritromicina/farmacologia , Metronidazol/uso terapêutico , Metronidazol/farmacologia , Levofloxacino/uso terapêutico , Levofloxacino/farmacologia
10.
J Microbiol Methods ; 223: 106972, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871227

RESUMO

Recently, considerable uncertainty has arisen concerning the appropriate susceptibility testing for cefiderocol in gram-negative bacilli, particularly in the context of its application to Acinetobacter spp. The optimal method for assessing the susceptibility levels of Acinetobacter spp. to cefiderocol remains a subject of debate due to substantial disparities observed in the values obtained through various testing procedures. This study employed four minimum inhibitory concentration (MIC) methodologies and the disk diffusion to assess the susceptibility of twenty-seven carbapenem resistant (CR)-Acinetobacter strains to cefiderocol. The results from our study reveal significant variations in the minimum inhibitory concentration (MIC) values obtained with the different methods and in the level of agreement in interpretation categories between the different MIC methods and the disk diffusion test. Among the MIC methods, there was relatively more consistency in reporting the interpretation categories. For European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, the categorical agreement (CA) for MIC methods ranged between 66.7 and 81.5%. On the other hand, the essential agreement (EA) values were as low as 18.5-29.6%. The CA between MIC methods and disk diffusion was 81.5%. These results emphasize the need for a reliable, accurate, and clinically validated methodology to effectively assess the susceptibility of Acinetobacter spp. to cefiderocol. The wide variability observed in our study highlights the importance of standardizing the susceptibility testing process for cefiderocol to ensure consistent and reliable results for clinical decision-making.

11.
In Vivo ; 38(4): 1965-1972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38936952

RESUMO

BACKGROUND/AIM: Bloodstream infections in patients with COVID-19 are linked to higher mortality rates, whilst data on epidemiology and resistance patterns remains scarce to guide management and prevent antibiotic resistance. This research focuses on the prevalence, clinical features, causative microorganisms, and antimicrobial susceptibility of bacterial and fungal secondary bloodstream co-infections in hospitalized patients with COVID-19. PATIENTS AND METHODS: In this retrospective study analysis of 230 patients with COVID-19 from Central Taiwan (June 2021 to June 2022), pathogens were identified via MALDI-TOF MS and Vitek 2 system with Clinical & Laboratory Standards Institute (CLSI) standards. RESULTS: In the cohort, 17.8% experienced bloodstream infections, resulting in a total of 45 isolates from the 41 bloodstream infection patients: predominantly gram-positive bacteria (Staphylococcus and Enterococcus) at 69%, gram-negative at 29% (Escherichia coli and Klebsiella pneumoniae), and fungi at 2%. Infected patients showed significantly elevated levels of white blood count (WBC), C-reactive protein (CRP) and procalcitonin (PCT). Of note, resistance to common antibiotics, such as fluoroquinolones, cephalosporins, and oxacillin was significant, especially in K. pneumoniae, Acinetobacter species, and S. aureus infections. CONCLUSION: Our study highlights the influence of bacterial infections in hospitalized patients with COVID-19. The bacterial infections were discovered to impact the clinical trajectory of COVID-19, potentially exacerbating or mitigating its symptoms, severity and fatality. These insights are pivotal to addressing clinical challenges in COVID-19 management and underscoring the need for tailored medical interventions. Understanding these co-infections is thus essential for optimizing patient care and improving overall outcomes in the post COVID-19 pandemic era.


Assuntos
Antibacterianos , COVID-19 , Coinfecção , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/complicações , Estudos Retrospectivos , Coinfecção/epidemiologia , Coinfecção/microbiologia , Coinfecção/tratamento farmacológico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Taiwan/epidemiologia , Hospitalização , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Idoso de 80 Anos ou mais , Adulto , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
12.
Front Vet Sci ; 11: 1362352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872804

RESUMO

Omphalitis, commonly caused by opportunistic bacteria has been significantly associated with morbidity and mortality in neonatal calves. Trueperella pyogenes is a commensal and opportunistic pathogen that can cause suppurative infection in farm animals. Our case involved a 10-day-old female Korean indigenous calf that presented with umbilical enlargement accompanied by a greenish-yellow purulent discharge and right forelimb lameness. The calf was diagnosed with failure of passive transfer at 24 h of age. Physical examination found hypothermia (38.1°C), tachycardia (110 beats/min), tachypnea (47 cycles/min), and open mouth breathing. Ultrasonography revealed hyperechoic pus in the 9th and 10th right intercostals, for which a liver abscess due to omphalophlebitis was suspected. After 3 days, the calf died. T. pyogenes was detected in the umbilical cord, lung, liver, kidney, intestine, mesenteric lymph node, urinary bladder, and bladder ligament. All genes related to the virulent factors (i.e., plo, cbpA, fimA, fimC, fimG, nanH, and nanP) were also identified, with plo and fimA being associated with pathogenicity. A final diagnosis of omphalitis was established based on the identification of virulent T. pyogenes and umbilical cord dilatation on ultrasonography. Antimicrobial susceptibility tests showed that the isolated T. pyogenes was susceptible to amoxicillin, ceftiofur, florfenicol, enrofloxacin, ofloxacin, and ciprofloxacin, suggesting the suitability of these antibiotics for treating T. pyogenes-induced omphalitis. Hence, accurate and rapid diagnosis of the involved bacteria and antimicrobial susceptibility patterns can help guide therapeutic decisions. Our case provides useful information that could aid large animal clinicians in the diagnosis and treatment of T. pyogenes-induced omphalitis.

13.
Front Mol Biosci ; 11: 1395410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828394

RESUMO

External Quality Assessment schemes (EQAS) are mandatory to ensure quality standards in diagnostic methods and achieve laboratory accreditation. As host institution for two German culture-based bacteriology EQAS (RV-A and RV-B), we investigated the obtained data of 590 up to 720 surveys per year in RV-A and 2,151 up to 2,929 in RV-B from 2006 to 2023. As educational instruments, they function to review applied methodology and are valuable to check for systemic- or method-dependent failures in microbiology diagnostics or guidelines. Especially, containment of multi-resistant bacteria in times of rising antibiotic resistance is one major point to assure public health. The correct identification and reporting of these strains is therefore of high importance to achieve this goal. Moreover, correct antimicrobial susceptibility testing (AST) per se is important for selecting appropriate therapy, to restrict broad-spectrum antibiotics and minimize resistance development. The reports of participating laboratories displayed a high level of correct identification results in both schemes with mostly consistent failure rates around 2.2% (RV-A) and 3.9% (RV-B) on average. In contrast, results in AST revealed increasing failure rates upon modification of AST requirements concerning adherence to standards and subsequent bacterial species-specific evaluation. Stratification on these periods revealed in RV-A a moderate increase from 1.3% to 4.5%, while in RV-B failure rates reached 14% coming from 4.3% on average. Although not mandatory, subsequent AST evaluation and consistent reporting are areas of improvement to benefit public health.

14.
Arch Microbiol ; 206(7): 298, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860999

RESUMO

A decreased chloramphenicol susceptibility in Haemophilus influenzae is commonly caused by the activity of chloramphenicol acetyltransferases (CATs). However, the involvement of membrane proteins in chloramphenicol susceptibility in H. influenzae remains unclear. In this study, chloramphenicol susceptibility testing, whole-genome sequencing, and analyses of membrane-related genes were performed in 51 H. influenzae isolates. Functional complementation assays and structure-based protein analyses were conducted to assess the effect of proteins with sequence substitutions on the minimum inhibitory concentration (MIC) of chloramphenicol in CAT-negative H. influenzae isolates. Six isolates were resistant to chloramphenicol and positive for type A-2 CATs. Of these isolates, A3256 had a similar level of CAT activity but a higher chloramphenicol MIC relative to the other resistant isolates; it also had 163 specific variations in 58 membrane genes. Regarding the CAT-negative isolates, logistic regression and receiver operator characteristic curve analyses revealed that 48T > G (Asn16Lys), 85 C > T (Leu29Phe), and 88 C > A (Leu30Ile) in HI_0898 (emrA), and 86T > G (Phe29Cys) and 141T > A (Ser47Arg) in HI_1177 (artM) were associated with enhanced chloramphenicol susceptibility, whereas 997G > A (Val333Ile) in HI_1612 (hmrM) was associated with reduced chloramphenicol susceptibility. Furthermore, the chloramphenicol MIC was lower in the CAT-negative isolates with EmrA-Leu29Phe/Leu30Ile or ArtM-Ser47Arg substitution and higher in those with HmrM-Val333Ile substitution, relative to their counterparts. The Val333Ile substitution was associated with enhanced HmrM protein stability and flexibility and increased chloramphenicol MICs in CAT-negative H. influenzae isolates. In conclusion, the substitution in H. influenzae multidrug efflux pump HmrM associated with reduced chloramphenicol susceptibility was characterised.


Assuntos
Substituição de Aminoácidos , Antibacterianos , Proteínas de Bactérias , Cloranfenicol O-Acetiltransferase , Cloranfenicol , Haemophilus influenzae , Testes de Sensibilidade Microbiana , Cloranfenicol/farmacologia , Haemophilus influenzae/genética , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/metabolismo , Haemophilus influenzae/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Resistência ao Cloranfenicol/genética , Humanos , Infecções por Haemophilus/microbiologia , Sequenciamento Completo do Genoma
15.
Heliyon ; 10(11): e31902, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845897

RESUMO

Urinary tract infection (UTI) is a well-known bacterial infection posing serious health problem in children. A retrospective study was conducted to explore the uropathogen and its antibiotic resistance in children with UTI. Data of urine culture and antimicrobial susceptibility test was collected. Consequently, 840 children were included. The overall culture-positive UTI was 458 (54.52 %) with Escherichia coli 166 (36.24 %), followed by Enterococcus faecalis 59 (12.88 %), Enterococcus faecium 70 (15.28 %) and others. They were highly resistant to the most commonly used antibiotics. In 694 children with complicated UTI, there were 8 children with fungal infection. Multiple drug resistance (MDR) was recorded in 315 (80.98 %). The overall proportion of Extended Spectrum ß-Lactamase (ESßL) production was 25 (6.43 %). In 146 children with simple UTI, MDR were also detected in 47 (77.05 %). There were 6 (9.84 %) positive for ESßL production. Our study found that complicated UTI was relatively common. Escherichia coli was the most prevalent isolate, followed by Enterococcus faecium and Enterococcus faecalis. These organisms were highly resistant to the most commonly used antibiotics. Relatively high prevalence of MDR and low ESßL-producing organisms were observed.

16.
J Med Eng Technol ; : 1-10, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856991

RESUMO

Antibiotic resistance causes a major threat to patients suffering from infectious diseases. Accurate and timely assessment of Antibiotic Susceptibility Test (AST) is of great importance to ensure adequate treatment for patients and for epidemiological monitoring. Disc Diffusion Test (DDT) is a standard and widely used method for AST. Manual interpretation of DDT results is a tedious task and susceptible to human errors. Computer vision-based automated interpretation of DDT results will speed up the process and reduces the manpower requirement. This would assist the physician to initiate the antibiotic treatment for the patients on time and results in saving the patient's life. The crucial step in automatic interpretation of DDT result is to measure and present the diameter of zone of inhibition without manual intervention. The existing methods require manual interventions at various stages during inhibition zone diameter measurement for some typical cases. This issue is addressed in the present work through maximally stable extremal regions (MSER) based algorithm. Dataset consisting of 60 agar plate images that includes different agar medium, images having different resolution and visual quality is used to validate the proposed method. Experimental results demonstrated that there is a strong correlation between standard method and the proposed method.

17.
Talanta ; 277: 126354, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850804

RESUMO

Facing the rapid spread of antimicrobial resistance, methods based on single-cell Raman spectroscopy have proven their advances in reducing the turn-around time (TAT) of antimicrobial susceptibility tests (AST). However, the Raman-based methods are still hindered by the prolonged centrifugal cell washing procedure, which may require complex labor operation and induce high mechanical stress, resulting in a pretreatment time of over 1 h as well as a high cell-loss probability. In this study, we developed a micro-flow cell washing device and corresponding Raman-compatible washing chips, which were able to automatically remove the impurities in the samples, retain the bacterial cell and perform Raman spectra acquisition in situ. Results of washing the 5- and 10-µm polymethyl methacrylate (PMMA) microspheres showed that the novel technique achieved a successful removal of 99 % impurity and an 80 % particle retention rate after 6 to 10 cycles of washing. The micro-flow cell washing technique could complete the pretreatment for urine samples in a 96-well plate within 10 min, only taking 15 % of the handling time required by centrifugation. The AST profiles of urine sample spiked with E. coli 25922, E. faecalis 29212, and S. aureus 29213 obtained by the proposed Raman-based approach were found to be 100 % consistent with the results from broth micro-dilution while reducing the TAT to 3 h from several days which is required by the latter. Our study has demonstrated the micro-flow cell washing technique is a reliable, fast and compatible approach to replace centrifuge washing for sample pretreatment of Raman-AST and could be readily applied in clinical scenarios.

18.
BMC Infect Dis ; 24(1): 566, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844852

RESUMO

BACKGROUND: Early and appropriate antibiotic treatment improves the clinical outcome of patients with sepsis. There is an urgent need for rapid identification (ID) and antimicrobial susceptibility testing (AST) of bacteria that cause bloodstream infection (BSI). Rapid ID and AST can be achieved by short-term incubation on solid medium of positive blood cultures using MALDI-TOF mass spectrometry (MS) and the BD M50 system. The purpose of this study is to evaluate the performance of rapid method compared to traditional method. METHODS: A total of 124 mono-microbial samples were collected. Positive blood culture samples were short-term incubated on blood agar plates and chocolate agar plates for 5 ∼ 7 h, and the rapid ID and AST were achieved through Zybio EXS2000 MS and BD M50 System, respectively. RESULTS: Compared with the traditional 24 h culture for ID, this rapid method can shorten the cultivation time to 5 ∼ 7 h. Accurate organism ID was achieved in 90.6% of Gram-positive bacteria (GP), 98.5% of Gram-negative bacteria (GN), and 100% of fungi. The AST resulted in the 98.5% essential agreement (EA) and 97.1% category agreements (CA) in NMIC-413, 99.4% EA and 98.9% CA in PMIC-92, 100% both EA and CA in SMIC-2. Besides, this method can be used for 67.2% (264/393) of culture bottles during routine work. The mean turn-around time (TAT) for obtaining final results by conventional method is approximately 72.6 ± 10.5 h, which is nearly 24 h longer than the rapid method. CONCLUSIONS: The newly described method is expected to provide faster and reliable ID and AST results, making it an important tool for rapid management of blood cultures (BCs). In addition, this rapid method can be used to process most positive blood cultures, enabling patients to receive rapid and effective treatment.


Assuntos
Bactérias , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Testes de Sensibilidade Microbiana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Antibacterianos/farmacologia , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Hemocultura/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Fatores de Tempo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Sepse/microbiologia , Sepse/tratamento farmacológico , Sepse/diagnóstico
19.
BMC Res Notes ; 17(1): 169, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898523

RESUMO

The purpose of this study was to evaluate antibacterial activity of pigment extracted from bacteria, isolated from soil samples. During the study, 20 soil samples were collected from different areas (forest, agriculture fields, river sides and dumping sites) of Kathmandu and Lalitpur districts which were processed for isolation of pigment producing bacteria by spread plate technique. The pigmented bacterial isolates were identified and enriched in nutrient broth. Then, pigment was extracted in 95% methanol as solvent, which was further characterized using UV-Vis Spectrophotometric and TLC analysis. The obtained crude pigment extract was processed to carry out the antimicrobial susceptibility assay using agar well diffusion method. Out of 13 total pigmented bacteria isolates, four different colored pigmented bacterial isolates (S4O, S11Y, S14P and S17G) which produced efficient pigment on nutrient agar were chosen and they were further processed. Among these isolates, S4O was identified as Staphylococcus aureus, S11Y was identified as Micrococcus luteus, S14P was identified as Micrococcus roseus and S17G was identified as Pseudomonas aeruginosa respectively. On characterization using UV-Vis Spectrophotometric and TLC analysis, the pigment extracted from isolates S4O, S11Y and S14P were found to be Carotenoids and from isolate S17G was found to be Pyocyanin in nature. The maximum antibacterial activity was shown against Staphylococcus aureus from all the four pigments extracts. The green color pigment extract from isolate S17G was found to be most effective against all the Gram-positive and Gram-negative test bacteria. This study suggests that these pigment extracts from pigmented bacteria may have beneficial antibacterial roles that can be exploited in controlling unwanted bacterial growth.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Pigmentos Biológicos , Microbiologia do Solo , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Micrococcus luteus/efeitos dos fármacos
20.
Artigo em Inglês | MEDLINE | ID: mdl-38852852

RESUMO

OBJECTIVES: Bacillus anthracis clinical breakpoints, representing a systematic approach to guide clinicians in selecting the most appropriate antimicrobial treatments, are not part of the guidance from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). This is because defined distributions of MIC values and of epidemiological cut-off values (ECOFFs) have been lacking. In this study, a Europe-wide network of laboratories in collaboration with EUCAST, aimed at establishing standardized antimicrobial susceptibility testing methods, wild-type MIC distributions, and ECOFFs for ten therapeutically relevant antimicrobials. METHODS: About 335 B. anthracis isolates were tested by broth microdilution and disc diffusion methodologies. MIC and inhibition zone diameters were curated according to EUCAST SOP 10.2 and the results were submitted to EUCAST for ECOFFs and clinical breakpoint determination. RESULTS: Broth microdilution and disc diffusion data distributions revealed putative wild-type distributions for the tested agents. For each antimicrobial agent, ECOFFs were defined. Three highly resistant strains with MIC values of 32 mg/L benzylpenicillin were found. MIC values slightly above the defined ECOFFs were observed in a few isolates, indicating the presence of resistance mechanisms to doxycycline, tetracycline, and amoxicillin. DISCUSSION: B. anthracis antimicrobial susceptibility testing results were used by EUCAST to determine ECOFFs for ten antimicrobial agents. The MIC distributions were used in the process of determining clinical breakpoints. The ECOFFs can be used for the sensitive detection of isolates with resistance mechanisms, and for monitoring resistance development. Genetic changes causing phenotypic shifts in isolates displaying slightly elevated MICs remain to be investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...