Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-36006183

RESUMO

The Equatorial Spitting Cobra (Naja sumatrana) is a medically important venomous snake species in Southeast Asia. Its wide geographical distribution implies potential intra-specific venom variation, while there is no species-specific antivenom available to treat its envenoming. Applying a protein-decomplexing proteomic approach, the study showed that three-finger toxins (3FTX), followed by phospholipases A2 (PLA2), were the major proteins well-conserved across N. sumatrana venoms of different locales. Variations were noted in the subtypes and relative abundances of venom proteins. Of note, alpha-neurotoxins (belonging to 3FTX) are the least in the Penang specimen (Ns-PG, 5.41% of total venom proteins), compared with geographical specimens from Negeri Sembilan (Ns-NS, 14.84%), southern Thailand (Ns-TH, 16.05%) and Sumatra (Ns-SU, 10.81%). The alpha-neurotoxin abundance, in general, correlates with the venom's lethal potency. The Thai Naja kaouthia Monovalent Antivenom (NkMAV) was found to be immunoreactive toward the N. sumatrana venoms and is capable of cross-neutralizing N. sumatrana venom lethality to varying degrees (potency = 0.49-0.92 mg/mL, interpreted as the amount of venom completely neutralized per milliliter of antivenom). The potency was lowest against NS-SU venom, implying variable antigenicity of its lethal alpha-neurotoxins. Together, the findings suggest the para-specific and geographical utility of NkMAV as treatment for N. sumatrana envenoming in Southeast Asia.


Assuntos
Antivenenos , Naja , Animais , Antivenenos/farmacologia , Venenos Elapídicos/toxicidade , Elapidae , Indonésia , Malásia , Naja naja , Neurotoxinas , Proteômica , Tailândia
2.
Toxicon X ; 12: 100087, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34888521

RESUMO

The lethality neutralization assay in mice is the gold standard for the evaluation of the preclinical efficacy and specification fulfillment of snake antivenoms. However, owing to the animal suffering involved, this assay is a candidate to be replaced by in vitro alternatives or, at least, improved by the reduction of the number of animals used per experiment, the introduction of analgesia, and the refinement of the test. Since these tests are usually run for 24 or 48 h, one possibility to refine it is to shorten the endpoint observation time of the assay and so limiting the duration of suffering. To assess the effect of this modification of the standard procedure on the analytical properties of the assay, we compared the median lethal dose (LD50) and median effective dose (ED50) values, estimated through observation times of 6, 24 and 48 h. We used African and Latin American snake venoms and several batches of two polyspecific antivenoms. A significant correlation was found between LD50 and ED50 values estimated at the three observation times. Although some LD50 and ED50 values were significantly different at these time points, results of 6 h were robust enough to be used in the characterization of new antivenoms, the verification of specification compliance, and the parallel comparison of formulations. Our observations support the modification of the standard procedures used for assessing neutralizing ability of antivenoms by carrying out the observations at 6 h instead of 24 or 48 h, with the consequent reduction in the suffering inflicted upon mice during these assays. However, the shortening of the observation time in the lethality tests must be validated for each venom and antivenom before its introduction in the routine procedures.

3.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200177, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33995514

RESUMO

BACKGROUND: The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. METHODS: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. RESULTS: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. CONCLUSION: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.

4.
J. venom. anim. toxins incl. trop. dis ; 27: e20200177, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1250255

RESUMO

The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.(AU)


Assuntos
Animais , Venenos/toxicidade , Antivenenos/biossíntese , Daboia , Proteômica , Localizações Geográficas
5.
Toxins (Basel) ; 8(4): 86, 2016 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-27023606

RESUMO

Antivenom neutralization against cobra venoms is generally low in potency, presumably due to poor toxin-specific immunoreactivity. This study aimed to investigate the effectiveness of two elapid antivenoms to neutralize the principal toxins purified from the venoms of the Thai monocled cobra (Naja kaouthia, Nk-T) and the Malaysian beaked sea snake (Hydrophis schistosus, Hs-M). In mice, N. kaouthia Monovalent Antivenom (NKMAV) neutralization against Nk-T long neurotoxin (LNTX) and cytotoxin was moderate (potency of 2.89-6.44 mg toxin/g antivenom protein) but poor against the short neurotoxin (SNTX) (1.33 mg/g). Its cross-neutralization against Hs-M LNTX of Hs-M is compatible (0.18 mg/g) but much weaker against Hs-M SNTX (0.22 mg/g). Using CSL (Seqirus Limited) Sea Snake Antivenom (SSAV), we observed consistently weak neutralization of antivenom against SNTX of both species, suggesting that this is the limiting factor on the potency of antivenom neutralization against venoms containing SNTX. Nevertheless, SSAV outperformed NKMAV in neutralizing SNTXs of both species (0.61-2.49 mg/g). The superior efficacy of SSAV against SNTX is probably partly attributable to the high abundance of SNTX in sea snake venom used as immunogen in SSAV production. The findings indicate that improving the potency of cobra antivenom may be possible with a proper immunogen formulation that seeks to overcome the limitation on SNTX immunoreactivity.


Assuntos
Antivenenos/farmacologia , Venenos Elapídicos/toxicidade , Neurotoxinas/toxicidade , Animais , Venenos Elapídicos/química , Venenos Elapídicos/isolamento & purificação , Elapidae , Camundongos Endogâmicos ICR , Neurotoxinas/química , Neurotoxinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA