RESUMO
The following article highlights the need for methodological transparency and consensus for an accurate and non-invasive assessment of central aortic blood pressure (aoBP), which would contribute to increasing its validity and value in both clinical and physiological research settings. The recording method and site, the mathematical model used to quantify aoBP, and mainly the method applied to calibrate pulse waveforms are essential when estimating aoBP and should be considered when analyzing and/or comparing data from different works, populations and/or obtained with different approaches. Up to now, many questions remain concerning the incremental predictive ability of aoBP over peripheral blood pressure and the possible role of aoBP-guided therapy in everyday practice. In this article, we focus on "putting it on the table" and discussing the main aspects analyzed in the literature as potential determinants of the lack of consensus on the non-invasive measurement of aoBP.
RESUMO
Background: The non-invasive estimation of aortic systolic (aoSBP) and pulse pressure (aoPP) is achieved by a great variety of devices, which differ markedly in the: 1) principles of recording (applied technology), 2) arterial recording site, 3) model and mathematical analysis applied to signals, and/or 4) calibration scheme. The most reliable non-invasive procedure to obtain aoSBP and aoPP is not well established. Aim: To evaluate the agreement between aoSBP and aoPP values invasively and non-invasively obtained using different: 1) recording techniques (tonometry, oscilometry/plethysmography, ultrasound), 2) recording sites [radial, brachial (BA) and carotid artery (CCA)], 3) waveform analysis algorithms (e.g., direct analysis of the CCA pulse waveform vs. peripheral waveform analysis using general transfer functions, N-point moving average filters, etc.), 4) calibration schemes (systolic-diastolic calibration vs. methods using BA diastolic and mean blood pressure (bMBP); the latter calculated using different equations vs. measured directly by oscillometry, and 5) different equations to estimate bMBP (i.e., using a form factor of 33% ("033"), 41.2% ("0412") or 33% corrected for heart rate ("033HR"). Methods: The invasive aortic (aoBP) and brachial pressure (bBP) (catheterization), and the non-invasive aoBP and bBP were simultaneously obtained in 34 subjects. Non-invasive aoBP levels were obtained using different techniques, analysis methods, recording sites, and calibration schemes. Results: 1) Overall, non-invasive approaches yielded lower aoSBP and aoPP levels than those recorded invasively. 2) aoSBP and aoPP determinations based on CCA recordings, followed by BA recordings, were those that yielded values closest to those recorded invasively. 3) The "033HR" and "0412" calibration schemes ensured the lowest mean error, and the "033" method determined aoBP levels furthest from those recorded invasively. 4) Most of the non-invasive approaches considered overestimated and underestimated aoSBP at low (i.e., 80 mmHg) and high (i.e., 180 mmHg) invasive aoSBP values, respectively. 5) The higher the invasively measured aoPP, the higher the level of underestimation provided by the non-invasive methods. Conclusion: The recording method and site, the mathematical method/model used to quantify aoSBP and aoPP, and to calibrate waveforms, are essential when estimating aoBP. Our study strongly emphasizes the need for methodological transparency and consensus for the non-invasive aoBP assessment.
RESUMO
INTRODUCTION: Systolic blood pressure (SBPA) and pulse pressure amplification (PPA) were quantified using different methodological and calibration approaches to analyze (1) the association and agreement between different SBPA and PPA parameters and (2) the association between these SBPA and PPA parameters and left ventricle (LV) and atrium (LA) structural and functional characteristics. METHODS: In 269 healthy subjects, LV and LA parameters were echocardiography-derived. SBPA and PPA parameters were quantified using: (1) different equations (n = 9), (2) methodological approaches (n = 3): brachial sub-diastolic (Mobil-O-Graph®) and supra-systolic oscillometry (Arteriograph®) and aortic diameter waveform re-calibration (RCD; ultrasonography), and (3) using three different calibration schemes: systo-diastolic (SD), calculated mean (CM) and oscillometric mean (OscM). RESULTS: SBPA and PPA parameters obtained with different equations, techniques, and calibration schemes show a highly variable association level (negative, non-significant, and/or positive) among them. The association between SBPA and PPA with cardiac parameters were highly variable (negative, non-significant, or positive associations). Differences in BPA parameter data between approaches were more sensitive to the calibration method than to the device used. Both, SBPA and PPA obtained with brachial sub-diastolic technique and calibrated to CM or OscM showed higher levels of association with LV and LA structural characteristics. CONCLUSIONS: Our data show that many of the parameters that assume to quantify the same phenomenon of BPA are not related to each other in the different age groups. Both, SBPA and PPA obtained with brachial sub-diastolic technique and calibrated to CM or OscM showed higher levels of association with LV and LA structural characteristics.
Assuntos
Função do Átrio Esquerdo , Determinação da Pressão Arterial/normas , Pressão Sanguínea , Coração/fisiologia , Função Ventricular Esquerda , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Determinação da Pressão Arterial/instrumentação , Calibragem , Criança , Estudos Transversais , Ecocardiografia Doppler , Feminino , Voluntários Saudáveis , Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Oscilometria , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Adulto JovemRESUMO
INTRODUCTION: Measurement of central (aortic) systolic blood pressure has been shown to provide reliable information to evaluate target organ damage. However, non-invasive central blood pressure measurement procedures are still under analysis. AIM: To compare human pressure waveforms invasively obtained in the aorta, with the corresponding waveforms non-invasively recorded using an oscillometric device (Mobil-O-Graph). METHODS: In this research were included 20 subjects in which invasive percutaneous coronary interventions were performed. They were 10 males (68 ± 12 y. o. , BMI: 27.4 ± 4.6 kg/m2) and 10 females (77 ± 8 y. o. , BMI: 28.5 ± 5.3 kg/m2). During the invasive aortic pressure recording, a synchronized non-invasive Mobil-O-Graph acquisition beat by beat and reconstructed central pressure wave was performed. Both, invasive and non-invasive pressure waves were digitized and stored for subsequent analysis and calculations. A computerized interpolation procedure was developed in our laboratory to compare these pressure waves. RESULTS: A significant correlation between Mobil-O-Graph central blood pressure measurements and the corresponding invasive values was found in males (r < 0.81; p < 0.01) and females (r < 0.93; p < 0.01). However, in both genders, the slope of the regression lines was lesser than 1 (males: y = 0.7354x + 18.998; females: y = 0.9835x + 2.8432). In the whole population (n = 20), a significant correlation between Mobil-O-Graph central blood pressure measurements and the corresponding invasive values was found (r < 0.89; p < 0.01) and the regression line was lesser than 1 (y = 0.9774x + 1.7603). CONCLUSIONS: In this research, a high correlation between invasive central blood pressure values and those measured with the Mobil-O-Graph device was found in males, females and the whole population. However, a sub estimation of Mobil-O-Graph central blood pressure values was observed.
Assuntos
Aorta/fisiopatologia , Pressão Arterial , Determinação da Pressão Arterial , Doença da Artéria Coronariana/diagnóstico , Hipertensão/diagnóstico , Análise de Onda de Pulso , Idoso , Idoso de 80 Anos ou mais , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/terapia , Feminino , Frequência Cardíaca , Humanos , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Oscilometria , Intervenção Coronária Percutânea , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de TempoRESUMO
INTRODUCTION: Peripheral and aortic systolic blood pressure (pSBP and aoSBP) were measured using different methodological and calibration approaches to analyze the association and agreement between pSBP and/or aoSBP, and the association of pSBP and aoSBP with left ventricle (LV) and atrium (LA) structural-functional characteristics. METHODS: In healthy subjects (n = 269, age: 9-85 years; n = 147, age < 24 years) LV and LA parameters were echocardiography-derived. pSBP and aoSBP were obtained by brachial sub-diastolic (Mobil-O-Graph®) and supra-systolic oscillometry (Arteriograph®) and aortic diameter waveform re-calibration (RCD; ultrasonography), using three calibration schemes: systo-diastolic (SD), calculated mean (CM), and oscillometric mean (OscM). RESULTS: Always pSBP and aoSBP were positively associated; aoSBP obtained with the Mobil-O-Graph® and calibrated to CM or OscM were the ones that showed the lowest levels of association with the remaining forms of aoSBP and pSBP. Bland-Altman related mean errors varied noticeably (e.g. - 27, - 23, - 17, - 12 or 8 mmHg when aoSBP obtained with MOG (OscM) was compared with data from other methodological and calibration schemes). The aoSBP data obtained with Mobil-O-Graph® (calibration: CM and OscM) showed the highest levels of association with cardiac structural characteristics. aoSBP values obtained calibrating to OscM were higher than those obtained calibrating to SD or CM. CONCLUSIONS: aoSBP obtained with Mobil-O-Graph® and calibrated to CM or OscM showed (1) lower association with other forms of aoSBP and pSBP determination and (2) higher levels of association with LV and LA structural characteristics. Differences in aoSBP data between approaches were more sensitive to the calibration method than to the device used.
Assuntos
Aorta/fisiologia , Pressão Arterial , Função do Átrio Esquerdo , Determinação da Pressão Arterial/métodos , Função Ventricular Esquerda , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Determinação da Pressão Arterial/normas , Calibragem , Criança , Estudos Transversais , Ecocardiografia Doppler , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Oscilometria , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sístole , Adulto JovemRESUMO
BACKGROUND: Evidences suggest that central hemodynamics indexes are independent predictors of future cardiovascular events and all-cause mortality. Multiple factors have been pointed to have potential influence on central aortic function: height, heart rate, left ventricular ejection duration and blood pressure level. Data related to the influence of gender and postmenopausal status on aortic waveform reflection is scarce. We aim to evaluate the impact of gender and menopause on central blood pressure of hypertensive patients. METHODS: In a cross sectional study 122 hypertensive patients (52 men and 70 women) were studied. Hypertension was defined as blood pressure (BP) levels ≥140/90 mmHg or use of antihypertensive drugs. Central arterial pressure, augmentation index (AIx) and augmentation index normalized to 75 bpm (AIx75) were obtained using applanation tonometry. Menopause and postmenopause history were accessed by a direct series of questions. Postmenopause was defined as at least one year since last menstruation. Patients were paired by age, gender and menopausal status, and the data were compared considering gender and menopausal status. RESULTS: Height and weight were significantly lower in women than in men at the same age. Conversely, AIx (32.7 ± 9.8% vs. 20.1 ± 11.7%, p < 0.01), AIx75 (29.6 ± 6.7% vs. 18.3 ± 9.4%, p < 0.01) and central systolic blood pressure (136 ± 30 vs. 125 ± 23 mmHg, p = 0.03) were higher in women than men. The menopausal women (mean age of menopause = 48 years) had the worst indexes of aortic wave reflection, compared to men at the same age and younger women. CONCLUSION: Hypertensive women had both higher reflected aortic pressure waveform and central blood pressure indexes than hypertensive men, and these findings were worsened by the menopausal status.
Assuntos
Pressão Arterial , Hipertensão/fisiopatologia , Menopausa , Rigidez Vascular , Adulto , Fatores Etários , Determinação da Pressão Arterial , Estudos Transversais , Feminino , Humanos , Hipertensão/diagnóstico , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Onda de Pulso , Fatores de Risco , Fatores SexuaisRESUMO
BACKGROUND: High blood pressure states (HBP) would differ in wave components and reflections indexes, which could associate clinical and prognostic implications. The study aims: 1) to characterize the association of aortic wave components and reflection parameters (backward [Pb], forward [Pf], Pb/Pf ratio and augmentation index [AIx]) with demographic, anthropometric, hemodynamic and arterial parameters in healthy children and adolescents; 2) to generate multivariate prediction models for the associations, to contribute to understand the main determinants of Pf, Pb, Pb/Pf and AIx; 3) to identify if differences in wave reflection indexes observed in HBP could be explained by differences in the analyzed parameters. METHODS: Healthy children and adolescents (n=816, females: 386; Age: 3-20 years) were studied. EVALUATIONS: central aortic pressure and wave components (Pb, Pf, Pb/Pf and AIx determination with SphygmoCor [SCOR] and Mobil-o-Graph [MOG]); anthropometric assessment; regional arterial stiffness (carotid-femoral, carotid-radial pulse wave velocity [PWV] and PWV ratio); carotid intima-media thickness; carotid and femoral distensbility; cardiac output; systemic vascular resistances (SVR). Simple and multiple regression models were constructed to determine aortic wave parameters; the main explanatory variables. Normotensive and HBP groups were compared. Differences in wave reflection indexes were analyzed before and after controlling for explanatory variables. Equivalences between SphygmoCor and Mobil-O-Graph data were assessed (correlation and Bland-Altman analyses). RESULTS AND CONCLUSION: There were systematic and proportional differences between the data obtained with SphygmoCor and Mobil-O-Graph devices. Heart rate (HR), peripheral pulse pressure, height and weight were the variables that isolated (simple associations) or combined (multiple associations), showed the major capability to explain interindividual differences in Pf, Pb, Pb/Pf and AIx. Arterial stiffness also showed explanatory capacity, being the carotid the artery with the major contribution. HBP associated higher Pf, Pb, AIx and lower Pb/Pf ratio. Those findings were observed together with higher weight, arterial stiffness and HR. After adjusting for anthropometric characteristics, HR, cardiac output and SVR, the HBP group showed greater Pf and Pb. Then, Pf and Pb characteristics associated with HBP would not be explained by anthropometric or hemodynamic factors. Evaluating wave components and reflection parameters could contribute to improve the comprehension and management of HBP states.
Assuntos
Aorta/fisiopatologia , Pressão Arterial , Hipertensão/fisiopatologia , Rigidez Vascular , Adolescente , Fatores Etários , Antropometria , Determinação da Pressão Arterial , Espessura Intima-Media Carotídea , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos Transversais , Feminino , Frequência Cardíaca , Humanos , Hipertensão/diagnóstico , Hipertensão/etiologia , Masculino , Análise de Onda de Pulso , Fatores de Risco , Fatores de Tempo , Adulto JovemRESUMO
BACKGROUND: Arterial changes associated with children and adolescents high blood pressure (HBP) states would vary depending on the arterial type, arterial indexes considered and/or on blood pressure (BP) levels. AIMS: To determine in children and adolescents: 1) if there is gradual structural-functional arterial impairment associated with gradual peripheral (brachial) systolic BP (pSBP) level or z-score increases, and 2) whether subjects with HBP levels and those with normal BP differ in the profiles of arterial changes associated with pSBP deviations. METHODS: 1005 asymptomatic children and adolescents were included. Clinical, anthropometric and arterial non-invasive evaluations were performed. Heart rate, brachial BP, aortic BP and wavederived parameters (i.e. augmentation index), carotid and femoral diameters, blood velocities and elastic modulus, carotid intima-media thickness and aortic pulse wave velocity, were obtained. Two groups were assembled: Reference (without cardiovascular risk factors (CVRFs); n=379) and HBP (n=175). Additionally, subjects were ascribed to groups according to their pSBP z-scores (z-score ≤ 0, 0< z-score < 1 or z-score ≥ 1). Age and sex-related mean and standard deviation equations were obtained for each variable (Reference group). Using those equations, data (entire population) were converted into z-scores. Groups were compared (absolute and z-scored variables) before and after adjusting for cofactors (ANOVA/ANCOVA). Linear regression analyses were done considering: pSBP and z-pSBP (independent) and absolute levels and z-scores for hemodynamic and arterial indexes (dependent variables). Differences in hemodynamic and arterial levels and z-scores variations (dependent) associated with variations in pSBP and z-pSBP (independent variable) were assessed. The slopes of the models for Reference and HBP groups were compared. CONCLUSION: HBP states associate hemodynamic and arterial changes not explained by exposure to other CVRFs, anthropometric or demographic factors. The higher the pSBP deviations from ageand sex-expected mean value in the Reference group, the higher the hemodynamic and arterial indexes deviation. The pSBP-related variations in hemodynamic and arterial indexes would not differ depending on whether HBP states are present or not.
Assuntos
Aorta/fisiopatologia , Pressão Arterial , Artéria Braquial/fisiopatologia , Hipertensão/fisiopatologia , Adolescente , Fatores Etários , Doenças Assintomáticas , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Frequência Cardíaca , Humanos , Hipertensão/diagnóstico , Hipertensão/etiologia , Masculino , Fatores de Risco , Fatores Sexuais , Rigidez Vascular , Adulto JovemRESUMO
INTRODUCTION: In adults, central blood pressure (cBP) is reported to associate target organ damages (TODs) rather than peripheral blood pressure (pBP). However, data regarding the association of pre-clinical TODs with cBP and pBP in pediatric populations are scarce. AIM: To evaluate in children and adolescents the importance of cBP and pBP levels, in terms of their association with hemodynamic and vascular changes. METHODS: 315 subjects [age (mean/range) 12/8-18 years] were included. MEASUREMENTS: pBP (oscillometry, Omron-HEM433INT and Mobil-O-Graph), cBP levels and waveforms (oscillometry, Mobil-O-Graph; applanation tonometry, SphygmoCor), aortic wave reflection-related parameters, carotid intima-media thickness (CIMT) and carotid (elastic modulus, stiffness-index) and aortic stiffness (carotid-femoral pulse wave velocity, PWV). Four groups were defined considering pBP and cBP percentiles (th): cBP ≥90th, cBP <90th, pBP ≥90th, pBP <90th. In each group, haemodynamic and vascular parameters were compared for subgroups defined considering the level of the remaining blood pressure (cBP or pBP). Subgroups were matched for anthropometric and cardiovascular risk factors (propensity matching-score). RESULTS: Subjects with high cBP showed a worse cardiovascular risk profile in addition to worse peripheral hemodynamic conditions. The CIMT, carotid and aortic stiffness levels were also higher in those subjects. CIMT and carotid stiffness remained statistically higher when subjects were matched for pBP and other cardiovascular risk factors. There were no differences in arterial properties when subjects were analyzed (compared) considering similar pBP levels, during normal and high cBP conditions. CONCLUSION: Compared with pBP, the cBP levels show a greater association with vascular alterations (high CIMT and arterial stiffness), in children and adolescents.
Assuntos
Aorta/fisiopatologia , Pressão Arterial , Artéria Braquial/fisiopatologia , Artérias Carótidas/fisiopatologia , Hipertensão/fisiopatologia , Remodelação Vascular , Rigidez Vascular , Adolescente , Fatores Etários , Determinação da Pressão Arterial/métodos , Artérias Carótidas/diagnóstico por imagem , Espessura Intima-Media Carotídea , Distribuição de Qui-Quadrado , Criança , Módulo de Elasticidade , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Modelos Logísticos , Masculino , Manometria , Oscilometria , Prevalência , Prognóstico , Pontuação de Propensão , Análise de Onda de Pulso , Fatores de Risco , Uruguai/epidemiologiaRESUMO
The aims were to determine whether children's high peripheral blood pressure states (HBP) are associated with increased central aortic blood pressure (BP) and to characterize hemodynamic and vascular changes associated with HBP in terms of changes in cardiac output (stroke volume, SV), arterial stiffness (aortic pulse wave velocity, PWV), peripheral vascular resistances (PVR) and net and relative contributions of reflected waves to the aortic pulse amplitude. We included 154 subjects (mean age 11; range 4-16 years) assigned to one of two groups: normal peripheral BP (NBP, n = 101), defined as systolic and diastolic BP < 90th percentile, or high BP (HBP, n = 53), defined as average systolic and/or diastolic BP levels ≥90th percentile (curves for sex, age and body height). The HBP group included children with hypertensive and pre-hypertensive BP levels. After a first analysis, groups were compared excluding obese and dyslipidemic children. Peripheral and central aortic BP, PWV and pulse wave-derived parameters (augmentation index, forward and backward wave components' amplitude) were measured using gold-standard techniques, applanation tonometry (SphygmoCor) and oscillometry (Mobil-O-Graph). Independent of the presence of dyslipidemia and/or obesity, aortic systolic and pulse BP were higher in HBP than in NBP children. The increase in central BP could not be explained by an increase in the relative contribution of reflections to the aortic pressure wave, higher PVR or by an augmented peripheral reflection coefficient. Instead, the rise in central BP would be explained by an increase in the amplitude of both incident and reflected wave components.