RESUMO
MAIN CONCLUSION: This study provides evidence about the relationship between Target of Rapamycin (TOR) kinase and the signal molecule nitric oxide (NO) in plants. We showed that sucrose (SUC)-mediated TOR activation of root apical meristem (RAM) requires NO and that NO, in turn, participates in the regulation of TOR signaling. Nitric oxide (NO) constitutes a signal molecule that regulates important target proteins related to growth and development and also contributes to metabolic reprogramming that occurs under adverse conditions. Taking into account the important role of NO and its relationship with Target of Rapamycin (TOR) signaling in animals, we wondered about the putative link between both pathways in plants. With this aim, we studied a TOR-dependent process which is the reactivation of the root apical meristem (RAM) in Arabidopsis thaliana. We used pharmacological and genetic tools to evaluate the relationship between NO and TOR on the sugar induction of RAM, using SNP as NO donor, cPTIO as NO scavenger and the nitrate reductase (NR) mutant nia2. The results showed that sucrose (SUC)-mediated TOR activation of the RAM requires NO and that NO, in turn, participates in the regulation of TOR signaling. Interestingly, TOR activation induced by sugar increased the NO levels. We also observed that NO could mediate the repression of SnRK1 activity by SUC. By computational prediction we found putative S-nitrosylation sites in the TOR complex proteins and the catalytic subunit of SnRK1, SnRK1.1. The present work demonstrates for the first time a link between NO and TOR revealing the complex interplay between the two pathways in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema , Óxido Nítrico , Transdução de Sinais , Sacarose , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Sacarose/metabolismo , Meristema/genética , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosfatidilinositol 3-QuinasesRESUMO
The objective of this work was to assess the suitability of the Droplet-vitrification protocol previously developed with Agave peacockii shoot tips for the cryopreservation of six Agave species. Shoot tips were precultured for 1 day on a medium with 0.3 M sucrose in the dark, loaded in a solution with 1.6 M glycerol and 0.4 M sucrose for 20 min, and dehydrated by exposure to Plant Vitrification Solution 2 (PVS2) at 0 °C for 20 min. Complementary studies using histological analysis, Differential scanning calorimetry (DSC), and evaluation of morphological characteristics in cryo-derived plants were performed. Survival rates ranged from 84% to 100% and from 76% to 97% before and after cryopreservation regardless of the Agave species belonging to two taxonomic subgenera. Thermal analysis of shoot tips subjected to the successive steps of the Droplet-vitrification protocol identified ice crystal formation after loading treatment and glass transition after osmotic dehydration with PVS2. The average glass transition temperature (Tg) was -55.44 °C based on the results of four Agave species. The histological studies showed the anatomical differences that could be found in the meristematic structures depending on the loss of apical dominance. This is the most advanced research on cryopreservation of Agave shoot tips.
RESUMO
MAIN CONCLUSION: Anastomosed laticifers with intrusive growth produce latex containing methyl comate and betulin with economic and ecological value in arid environments. Climatic factors influence laticifer development in the apical meristem and vascular cambium. Latex is a complex emulsion with high medicinal as well as ecological value related to plant survival. Marsdenia zehntneri is a shrubby plant that grows on limestone outcrops in the semiarid regions of Brazil. We sought to characterize the ontogenesis of the laticifers of this species and to relate that process to climatic seasonality and phenology through anatomical, ultrastructural, and micro-morphometric evaluations of the apical meristem and vascular cambium. The histochemistry of the secretory structure was investigated and the chemical composition of the latex was analyzed. Phenological assessments were performed by monitoring phenological events for 1 year. The laticifers network of M. zehntneri permeates the entire primary and secondary body of the plant, providing a wide distribution system of defensive compounds. Its laticifers, of a distinct mixed type (anastomosed, with intrusive growth), are numerous and voluminous in the apical meristem but scarce and minute in the secondary phloem. Latex secretion involves the participation of oleoplasts, polysomes, and dictyosomes. Methyl 2,3-dihydroxy-ursan-23-oate, methyl 3-hydroxy-ursan-23-oate, and betulin are encountered in high proportions in the latex and have ecological and medicinal functions. The development of primary laticifers is related to the resumption of apical meristem activity with increasing day length at the end of the austral winter. The development of secondary laticifers is related to high summer temperatures and rainfall that favor vascular cambium activity. The wide distribution of laticifers, their seasonal pattern of secretion, and their latex composition contribute to the adaptation of M. zehntneri to its natural environment.
Assuntos
Apocynaceae , Marsdenia , Látex , MeristemaRESUMO
A continuum from stem to transit-amplifying to a differentiated cell state is a common theme in multicellular organisms. In the plant root apical meristem (RAM), transit-amplifying cells are organized into two domains: cells from the proliferation domain (PD) are displaced to the transition domain (TD), suggesting that both domains are necessarily coupled. Here, we show that in the Arabidopsis thaliana mto2-2 mutant, in which threonine (Thr) synthesis is affected, the RAM lacks the PD. Through a combination of cell length profile analysis, mathematical modeling and molecular markers, we establish that the PD and TD can be uncoupled. Remarkably, although the RAM of mto2-2 is represented solely by the TD, the known factors of RAM maintenance and auxin signaling are expressed in the mutant. Mathematical modeling predicts that the stem cell niche depends on Thr metabolism and that, when disturbed, the normal continuum of cell states becomes aborted.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema/genética , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Treonina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética , Proliferação de Células/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Post-embryonic plant development is characterized by a period of vegetative growth during which a combination of intrinsic and extrinsic signals triggers the transition to the reproductive phase. To understand how different flowering inducing and repressing signals are associated with phase transitions of the Shoot Apical Meristem (SAM), we incorporated available data into a dynamic gene regulatory network model for Arabidopsis thaliana. This Flowering Transition Gene Regulatory Network (FT-GRN) formally constitutes a dynamic system-level mechanism based on more than three decades of experimental data on flowering. We provide novel experimental data on the regulatory interactions of one of its twenty-three components: a MADS-box transcription factor XAANTAL2 (XAL2). These data complement the information regarding flowering transition under short days and provides an example of the type of questions that can be addressed by the FT-GRN. The resulting FT-GRN is highly connected and integrates developmental, hormonal, and environmental signals that affect developmental transitions at the SAM. The FT-GRN is a dynamic multi-stable Boolean system, with 223 possible initial states, yet it converges into only 32 attractors. The latter are coherent with the expression profiles of the FT-GRN components that have been experimentally described for the developmental stages of the SAM. Furthermore, the attractors are also highly robust to initial states and to simulated perturbations of the interaction functions. The model recovered the meristem phenotypes of previously described single mutants. We also analyzed the attractors landscape that emerges from the postulated FT-GRN, uncovering which set of signals or components are critical for reproductive competence and the time-order transitions observed in the SAM. Finally, in the context of such GRN, the role of XAL2 under short-day conditions could be understood. Therefore, this model constitutes a robust biological module and the first multi-stable, dynamical systems biology mechanism that integrates the genetic flowering pathways to explain SAM phase transitions.
RESUMO
Passiflora organensis is a small herbaceous vine with characteristic morphological variations throughout its development. The plant bears button-shaped extrafloral nectaries exclusively in adult leaves. Extrafloral nectaries are structures that secrete nectar and play an important role in plant-animal interactions as a strategy for protecting plants against herbivory. In this work, we performed anatomical and ultrastructural studies to characterize P. organensis extrafloral nectaries during their secretory phase. We showed extrafloral nectaries in Passiflora organensis are composed of three distinct regions: nectary epidermis, nectariferous parenchyma, and subnectariferous parenchyma. Our data suggests that all nectary regions constitute a functional unit involved in nectar production and release. The high metabolic activity in the nectary cells is characterized by the juxtaposition of organelles such as mitochondria and plastids together plasmalemma. In addition, calcium oxalate crystals are frequently associated to the nectaries. An increasing concentration of calcium during leaf development and nectary differentiation was observed, corresponding to the calcium deposition as calcium oxalate crystals. This is the first description of extrafloral nectaries in Passiflora organensis that is a promising tropical model species for several studies. RESEARCH HIGHLIGHTS: The anatomical and ultrastructural characteristics and the presence of calcium oxalate crystals in the nectary tissue suggest novel strategies against herbivory in the genus Passiflora.
Assuntos
Passiflora , Néctar de Plantas , Animais , Cálcio , Oxalato de Cálcio , Passiflora/metabolismo , Néctar de Plantas/metabolismo , PlantasRESUMO
The objective of this work was to characterize the ontogenesis of Protium spruceanum secretory ducts, to evaluate the effects of seasonality on that process, and to characterize the chemical nature of the resin. Morphometric, anatomical, micromorphometric, histochemical, and ultrastructural evaluations of shoot apexes and chemical analyses of the resin were performed. The ducts of schizolysigenous origin are distributed in the primary and secondary phloem. The subsecretory tissue is meristematic and can restore the secretory epithelium. Secretory epithelial cells have wall thickening resembling that of the Casparian strip that regulates secretion reflux. The main resin compounds are pentacyclic triterpenoids, α- and ß-amyrins, and α- and ß-amyrenones, which are reported here for the first time for this species. The presence of electron-dense and electron-opaque structures, in the secretory epithelial cells, are compatible with the triterpenes and mucilage identified in the resin. Rising temperatures, rainfall, and increasing day length induce the formation of ducts in the vascular cambium throughout Spring/Summer. The abundant production of resin rich in pentacyclic triterpenes indicates the potential use of the species for medicinal and cosmetic purposes. The understanding that secretory processes are concentrated during the Spring/Summer seasons will contribute to the definition of resin extraction management strategies.
RESUMO
KEY MESSAGE: Proper root growth depends on the clearance of TCP transcripts from the root apical meristem by microRNA miR319. The evolutionarily conserved microRNA miR319 regulates genes encoding TCP transcription factors in angiosperms. The miR319-TCP module controls cell proliferation and differentiation in leaves and other aerial organs. The current model sustains that miR319 quantitatively tunes TCP activity during leaf growth and development, ultimately affecting its size. In this work we studied how this module participates in Arabidopsis root development. We found that misregulation of TCP activity through impairment of miR319 binding decreased root meristem size and root length. Cellular and molecular analyses revealed that high TCP activity affects cell number and cyclin expression but not mature cell length, indicating that, in roots, unchecking the expression of miR319-regulated TCPs significantly affects cell proliferation. Conversely, tcp multiple mutants showed no obvious effect on root growth, but strong defects in leaf morphogenesis. Therefore, in contrast to the quantitative regulation of the TCPs by miR319 in leaves, our data suggest that miR319 clears TCP transcripts from root cells. Hence, we provide new insights into the functions of the miR319-TCP regulatory system in Arabidopsis development, highlighting a different modus operandi for its action mechanism in roots and shoots.
Assuntos
Proteínas de Arabidopsis/fisiologia , MicroRNAs/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , MicroRNAs/metabolismo , Microscopia Confocal , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
This special issue is dedicated to the 100th anniversary of the birth of Frederick Albert Lionel Clowes, who discovered the quiescent centre (QC) of the root apical meristem (RAM). His discovery was a foundation for contemporary studies of the QC and RAM function, maintenance, and organization. RAM function is fundamental for cell production and root growth. This special issue bundles reviews on the main tendencies, hypotheses, and future directions, and identifies unknowns in the field.
Assuntos
Proteínas de Arabidopsis , Meristema , Proteínas de Arabidopsis/genética , Divisão Celular , Raízes de PlantasRESUMO
In multicellular organisms, tissue generation, maintenance, and homeostasis depend on stem cells. Cellular metabolic status is an essential component of different differentiated states, from stem to fully differentiated cells. Threonine (Thr) metabolism has emerged as a critical factor required to maintain pluripotent/multipotent stem cells in both plants and animals. Thus, both kingdoms conserved or converged upon this fundamental feature of stem cell function. Here, we examine similarities and differences in Thr metabolism-dependent mechanisms supporting stem cell maintenance in these two kingdoms. We then consider common features of Thr metabolism in stem cell maintenance and predict and speculate that some knowledge about Thr metabolism and its role in stem cell function in one kingdom may apply to the other. Finally, we outline future research directions to explore these hypotheses.
RESUMO
In this review we discuss the concepts of the quiescent centre (QC) of the root apical meristem (RAM) and their change over time, from their formulation by F.A.L. Clowes to the present. This review is dedicated to the 100th anniversary of the birth of Clowes, and we present his short biography and a full bibliography of Clowes' work. Over time, the concept of the QC proved to be useful for the understanding of RAM organization and behaviour. We focus specifically on conceptual developments, from the organization of the QC to understanding its functions in RAM maintenance and activity, ranging from a model species, Arabidopsis thaliana, to crops. Concepts of initial cells, stem cells, and heterogeneity of the QC cells in the context of functional and structural stem cells are considered. We review the role of the QC in the context of cell flux in the RAM and the nature of quiescence of the QC cells. We discuss the origin of the QC and fluctuation of its size in ontogenesis and why the QC cells are more resistant to stress. Contemporary concepts of the organizer and stem cell niche are also considered. We also propose how the stem cell niche in the RAM can be defined in roots of a non-model species.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Divisão Celular , Meristema , Raízes de Plantas , Nicho de Células-TroncoRESUMO
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.
RESUMO
During plant development, morphogenetic processes rely on the activity of meristems. Meristem homeostasis depends on a complex regulatory network constituted by different factors and hormone signaling that regulate gene expression to coordinate the correct balance between cell proliferation and differentiation. ULTRAPETALA1, a transcriptional regulatory protein described as an Arabidopsis Trithorax group factor, has been characterized as a regulator of the shoot and floral meristems activity. Here, we highlight the role of ULTRAPETALA1 in root stem cell niche maintenance. We found that ULTRAPETALA1 is required to regulate both the quiescent center cell division rate and auxin signaling at the root tip. Furthermore, ULTRAPETALA1 regulates columella stem cell differentiation. These roles are independent of the ARABIDOPSIS TRITHORAX1, suggesting a different mechanism by which ULTRAPETALA1 can act in the root apical meristem of Arabidopsis. This work introduces a new component of the regulatory network needed for the root stem cell niche maintenance.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Raízes de Plantas/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular , Divisão Celular , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Meristema/genética , Raízes de Plantas/genética , Transdução de Sinais , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genéticaRESUMO
Indeterminate root growth depends on the stem cell niche (SCN) and root apical meristem (RAM) maintenance whose regulation permits plasticity in root system formation. Using a forward genetics approach, we isolated the moots koom1 ('short root' in Mayan) mutant that shows complete primary RAM exhaustion and abolished SCN activity. We identified that this phenotype is caused by a point mutation in the METHIONINE OVERACCUMULATOR2 (MTO2) gene that encodes THREONINE SYNTHASE1 and renamed the mutant as mto2-2. The amino acid profile showed drastic changes, most notorious of which was accumulation of methionine. In non-allelic mto1-1 (Arabidopsis thaliana cystathionine gamma-synthetase1) and mto3-1 (S-adenosylmethionine synthetase) mutants, both with an increased methionine level, the RAM size was similar to that of the wild type, suggesting that methionine overaccumulation itself did not cause RAM exhaustion in mto2 mutants. When mto2-2 RAM is not yet completely exhausted, exogenous threonine induced de novo SCN establishment and root growth recovery. The threonine-dependent RAM re-establishment in mto2-2 suggests that threonine is a limiting factor for RAM maintenance. In the root, MTO2 was predominantly expressed in the RAM. The essential role of threonine in mouse embryonic stem cells and in RAM maintenance suggests that common regulatory mechanisms may operate in plant and animal SCN maintenance.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/citologia , Meristema/metabolismo , Nicho de Células-Tronco/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação/genética , Sementes/citologia , Sementes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Natural flowering can cause serious scheduling problems in the pineapple (Ananas comosus) industry and increase harvest costs. Pineapple flowering is thought to be triggered by increased ethylene levels and artificial forcing of pineapple flowering is a common practice to promote flowering synchronisation. However, little is known about the early hormonal and molecular changes of pineapple flowering induction and development. Here, we aimed to analyse the molecular, hormonal, and histological changes during artificial pineapple flowering by Ethrel®48 treatment. Histological analyses of the shoot apical meristem, leaf gibberellic acid (GA3), and ethylene quantification were carried out during the first 72h after Ethrel®48 treatment. Expression profiles from ethylene biosynthesis (AcACS2 and AcACO1), gibberellin metabolism (AcGA2-ox1 and AcDELLA1), and flower development (FT-like gene (AcFT), LFY-like gene (AcLFY), and a PISTILLATA-like gene (AcPI)) genes were analysed during the first 24h after Ethrel®48 treatment. Differentiation processes of the shoot apical meristem into flower buds were already present in the first 72h after Ethrel®48 treatment. Ethrel®48 lead to a reduction in GA3 levels, probably triggered by elevated ethylene levels and the positive regulation AcGA2-ox1. AcLFY activation upon Ethrel®48 may also have contributed to the reduction of GA3 levels and, along with the up-regulation of AcPI, are probably associated with the flower induction activation. AcFT and AcDELLA1 do not seem to be regulated by GA3 and ethylene. Decreased GA3 and increased ethylene levels suggest an accumulation of AcDELLA1, which may display an important role in pineapple flowering induction. Thus, this study shows that molecular, hormonal, and histological changes are present right after Ethrel®48 treatment, providing new insights into how pineapple flowering occurs under natural conditions.
Assuntos
Ananas/anatomia & histologia , Ananas/citologia , Flores/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Sequência de Aminoácidos , Ananas/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Background and Aims The Arabidopsis thaliana root is a key experimental system in developmental biology. Despite its importance, we are still lacking an objective and broadly applicable approach for identification of number and position of developmental domains or zones along the longitudinal axis of the root apex or boundaries between them, which is essential for understanding the mechanisms underlying cell proliferation, elongation and differentiation dynamics during root development. Methods We used a statistics approach, the multiple structural change algorithm (MSC), for estimating the number and position of developmental transitions in the growing portion of the root apex. Once the positions of the transitions between domains and zones were determined, linear models were used to estimate the critical size of dividing cells (LcritD) and other parameters. Key Results The MSC approach enabled identification of three discrete regions in the growing parts of the root that correspond to the proliferation domain (PD), the transition domain (TD) and the elongation zone (EZ). Simultaneous application of the MSC approach and G2-to-M transition (CycB1;1DB:GFP) and endoreduplication (pCCS52A1:GUS) molecular markers confirmed the presence and position of the TD. We also found that the MADS-box gene XAANTAL1 (XAL1) is required for the wild-type (wt) PD increase in length during the first 2 weeks of growth. Contrary to wt, in the xal1 loss-of-function mutant the increase and acceleration of root growth were not detected. We also found alterations in LcritD in xal1 compared with wt, which was associated with longer cell cycle duration in the mutant. Conclusions The MSC approach is a useful, objective and versatile tool for identification of the PD, TD and EZ and boundaries between them in the root apices and can be used for the phenotyping of different genetic backgrounds, experimental treatments or developmental changes within a genotype. The tool is publicly available at www.ibiologia.com.mx/MSC_analysis.
RESUMO
Roots have both indeterminate and determinate developmental programs. The latter is preceded by the former. It is not well understood how the indeterminacy-to-determinacy switch (IDS) is regulated. We isolated a moots koom2 (mko2; 'short root' in Mayan) Arabidopsis thaliana mutant with determinate primary root growth and analyzed the root apical meristem (RAM) behavior using various marker lines. Deep sequencing and genetic and pharmacological complementation permitted the identification of a point mutation in the FOLYLPOLYGLUTAMATE SYNTHETASE1 (FPGS1) gene responsible for the mko2 phenotype. Wild-type FPGS1 is required to maintain the IDS in the 'off' state. When FPGS1 function is compromised, the IDS is turned on and the RAM becomes completely consumed. The polyglutamate-dependent pathway of the IDS involves activation of the quiescent center independently of auxin gradients and regulatory modules participating in RAM maintenance (WUSCHEL-RELATED HOMEOBOX5 (WOX5), PLETHORA, and SCARECROW (SCR)). The mko2 mutation causes drastic changes in folate metabolism and also affects lateral root primordium morphogenesis but not initiation. We identified a metabolism-dependent pathway involved in the IDS in roots. We suggest that the root IDS represents a specific developmental pathway that regulates RAM behaviour and is a different level of regulation in addition to RAM maintenance.
Assuntos
Arabidopsis/genética , Ácido Fólico/metabolismo , Peptídeo Sintases/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Meristema/citologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Peptídeo Sintases/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Mutação Puntual , Transdução de Sinais , Nicho de Células-TroncoRESUMO
BACKGROUNDS AND AIMS: Current research in plant science has concentrated on revealing ontogenetic processes of key attributes in plant evolution. One recently discussed model is the 'transient model' successful in explaining some types of inflorescence architectures based on two main principles: the decline of the so called 'vegetativeness' (veg) factor and the transient nature of apical meristems in developing inflorescences. This study examines whether both principles find a concrete ontogenetic correlate in inflorescence development. METHODS: To test the ontogenetic base of veg decline and the transient character of apical meristems the ontogeny of meristematic size in developing inflorescences was investigated under scanning electron microscopy. Early and late inflorescence meristems were measured and compared during inflorescence development in 13 eudicot species from 11 families. KEY RESULTS: The initial size of the inflorescence meristem in closed inflorescences correlates with the number of nodes in the mature inflorescence. Conjunct compound inflorescences (panicles) show a constant decrease of meristematic size from early to late inflorescence meristems, while disjunct compound inflorescences present an enlargement by merging from early inflorescence meristems to late inflorescence meristems, implying a qualitative change of the apical meristems during ontogeny. CONCLUSIONS: Partial confirmation was found for the transient model for inflorescence architecture in the ontogeny: the initial size of the apical meristem in closed inflorescences is consistent with the postulated veg decline mechanism regulating the size of the inflorescence. However, the observed biphasic kinetics of the development of the apical meristem in compound racemes offers the primary explanation for their disjunct morphology, contrary to the putative exclusive transient mechanism in lateral axes as expected by the model.
Assuntos
Inflorescência/crescimento & desenvolvimento , Magnoliopsida/crescimento & desenvolvimento , Inflorescência/anatomia & histologia , Inflorescência/ultraestrutura , Magnoliopsida/anatomia & histologia , Magnoliopsida/ultraestrutura , Meristema/anatomia & histologia , Meristema/ultraestrutura , Modelos Biológicos , Tamanho do Órgão , Análise de RegressãoRESUMO
Agronomic characteristics of pastures depend on soil quality. This work studies the effects of types and rates of limestone, with or without incorporation, on the physiological aspects (botanic composition and tillering) and productivity of a degraded Guinea grass (Panicum maximum Jacq. cv. Tobiatã) pasture, on an Hapludox. Samples stem from four consecutive cuttings during the 1995/96 summer and one cutting from the winter of 1996. Types and rates of limestone had no effect on dry matter yield; however, incorporation into the soil with harrow was effective. The soil cover increased in summer cuttings, and decreased in the winter, but the highest value was observed for the 4º cutting in the beginning of the summer, while the uncovered soil area presented an opposite behavior, without changes for weeds plants. Tiller evaluation did not present response to liming, but for incorporation with harrow, being consistent with yield data of productivity.
As características agronômicas da pastagem dependem da qualidade do solo. Neste trabalho foram avaliados os efeitos de tipos e doses de calcário, com e sem incorporação, em algumas características agronômicas de uma pastagem degradada de Panicum maximum Jacq. cv. Tobiatã, num Latossolo Vermelho distrófico. As avaliações ocorreram durante quatro cortes consecutivos no período das chuvas ("verão") de 1995/96 e um corte no período seco ("inverno") em 1996. A produção de matéria seca do capim-Tobiatã aumentou com o método de incorporação com grade, devido ao efeito mecânico, porém não respondeu aos tipos e doses de calcário, sendo observadas as maiores produções no 4º corte ("verão"). Foram observados aumentos na cobertura de solo pela planta forrageira para os cortes de verão, com decréscimo no de inverno, porém com valor superior ao do início de verão, enquanto que a área de solo descoberto apresentou comportamento oposto permanecendo constante a participação das plantas invasoras. Na avaliação de perfilhamento encontrou-se resposta à incorporação, sendo consistente com os dados de produção.
RESUMO
Agronomic characteristics of pastures depend on soil quality. This work studies the effects of types and rates of limestone, with or without incorporation, on the physiological aspects (botanic composition and tillering) and productivity of a degraded Guinea grass (Panicum maximum Jacq. cv. Tobiatã) pasture, on an Hapludox. Samples stem from four consecutive cuttings during the 1995/96 summer and one cutting from the winter of 1996. Types and rates of limestone had no effect on dry matter yield; however, incorporation into the soil with harrow was effective. The soil cover increased in summer cuttings, and decreased in the winter, but the highest value was observed for the 4º cutting in the beginning of the summer, while the uncovered soil area presented an opposite behavior, without changes for weeds plants. Tiller evaluation did not present response to liming, but for incorporation with harrow, being consistent with yield data of productivity.
As características agronômicas da pastagem dependem da qualidade do solo. Neste trabalho foram avaliados os efeitos de tipos e doses de calcário, com e sem incorporação, em algumas características agronômicas de uma pastagem degradada de Panicum maximum Jacq. cv. Tobiatã, num Latossolo Vermelho distrófico. As avaliações ocorreram durante quatro cortes consecutivos no período das chuvas ("verão") de 1995/96 e um corte no período seco ("inverno") em 1996. A produção de matéria seca do capim-Tobiatã aumentou com o método de incorporação com grade, devido ao efeito mecânico, porém não respondeu aos tipos e doses de calcário, sendo observadas as maiores produções no 4º corte ("verão"). Foram observados aumentos na cobertura de solo pela planta forrageira para os cortes de verão, com decréscimo no de inverno, porém com valor superior ao do início de verão, enquanto que a área de solo descoberto apresentou comportamento oposto permanecendo constante a participação das plantas invasoras. Na avaliação de perfilhamento encontrou-se resposta à incorporação, sendo consistente com os dados de produção.