Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pharmacol Rep ; 76(4): 902-909, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38913153

RESUMO

BACKGROUND: Metabolic dysfunction-associated fatty liver disease has been well documented as a key independent risk factor for the development of atherosclerosis. A growing body of evidence suggests that due to its numerous favorable molecular effects, trehalose may exert beneficial effects in counteracting liver steatosis. In our previous study, we described the antiatherosclerotic and antisteatotic properties of trehalose, which we attributed to the induction of autophagy. Considering the pleiotropic activities of trehalose, our present study aimed to extend our preliminary results with the comprehensive examination of proteome-wide changes in the livers of high-fat-fed apoE-/- mice. METHODS: Thus, we applied modern, next-generation proteomic methodology to comprehensively analyze the effects of trehalose on the alterations of liver proteins in apoE-/- mice. RESULTS: Our proteomic analysis showed that the administration of trehalose elicited profound changes in the liver proteome of apoE-/- mice. The collected data allowed the identification and quantitation of 3 681 protein groups of which 129 were significantly regulated in the livers of trehalose-treated apoE-/- mice. CONCLUSIONS: The presented results are the first to highlight the effects of disaccharide on the induction of proteins mainly related to the metabolism and elimination of lipids, especially by peroxisomal ß-oxidation. Our study provides evidence for the pleiotropic activity of trehalose, extending our initial observations of its potential mechanisms responsible for mitigating of liver steatosis, which paves the way for new pharmacological strategies in fatty liver disease.


Assuntos
Apolipoproteínas E , Modelos Animais de Doenças , Fígado Gorduroso , Fígado , Proteoma , Trealose , Animais , Trealose/farmacologia , Camundongos , Proteoma/metabolismo , Proteoma/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Apolipoproteínas E/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Masculino , Camundongos Knockout , Dieta Hiperlipídica/efeitos adversos , Proteômica/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Metabolismo dos Lipídeos/efeitos dos fármacos
2.
Nutrients ; 15(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764856

RESUMO

A high-fat diet (HFD) is a major risk factor for cardiovascular diseases. Many pure compounds have been demonstrated to be effective in treating cardiovascular diseases. In this study, we investigated the alleviating effects of oral ovatodiolide and antcin K (OAK) supplements on HFD-induced cardiovascular dysfunction in apolipoprotein E (ApoE)-knockout mice. Cardiovascular dysfunction was induced in ApoE-knockout mice by feeding them an HFD for 12 weeks. The degree of cardiovascular dysfunction was assessed through echocardiography, hematological and biochemical analyses, and immunofluorescence and immunohistochemical staining. The HFD-fed mice exhibited cardiovascular dysfunction-abnormal blood biochemical index. The arterial wall tissue exhibited the marked deposition of lipids, upregulated expression of vascular cell adhesion molecule-1 and CD36 receptors, and downregulated expression of the ABCA1 receptor. Macrophages isolated from the peritoneal cavity of the mice exhibited increased levels of lipid accumulation, reactive oxygen species, and CD11b expression but reduced mitochondrial membrane potential. The expression of superoxide dismutase 2 was downregulated and that of tumor necrosis factor-α was upregulated in the myocardial tissue. Oral OAK supplements twice a day for 12 weeks significantly mitigated HFD-induced cardiovascular dysfunction in the experimental mice. Oral OAK supplements appear to be a promising strategy for treating HFD-induced cardiovascular dysfunction. The underlying mechanisms may involve the reduction of lipid accumulation in the artery and oxidative stress and inflammation in the cardiovascular tissue.


Assuntos
Doenças Cardiovasculares , Dieta Hiperlipídica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Apolipoproteínas E/genética
3.
J Cardiovasc Dev Dis ; 10(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504565

RESUMO

Background: Iron overload can accelerate the accumulation of lipid oxides and contribute to the progression of atherosclerosis. Ferritin heavy chain (FT-H) exhibits oxidase activity, which inhibits the toxicity of ferrous ions and reduces oxidative damage. We investigated the effect of the intraperitoneal injection of FT-H on the progression of atherosclerosis in APOE-knockout mice (Apo-E(-/-) mice). Methods: All mice were fed on a high-fat diet. After 10 weeks, the mice were divided into an injection group (n = 4) and a control group (n = 4). The injection group was injected intraperitoneally with FT-H (50 mg/kg, once a week), and the control group was treated with PBS buffer (at an equal volume to the injection group, once a week). After 10 weeks of intervention, MRI of the aortas was performed. Then, the animals were sacrificed, and tissues were taken. Hematoxylin-eosin (HE) staining was used for histomorphometry, Masson staining was used to quantify the collagen content in the arteries, Prussian blue staining was used to visualize iron deposition in the arteries, and MRI was used to analyze the structure of the aorta in vivo. Immunohistochemistry was performed to detect the expression of MCP-1, MMP-2, MMP-9, FT-H, FT-L, TfR1, NRF-2 and GPX-4. Results: The serological results showed that the injection group had lower levels of glucose (Glu), triacylglycerol (TG), cholesterol (CHO), low-density lipoprotein-C (LDL-C) and malondialdehyde (MDA) (p = 0.0058, p = 0.0098, p = 0.0019, p = 0.0368 and p = 0.0025, respectively), and their serum ferritin (SF) and superoxide dismutase (SOD) levels were higher (p = 0.0004 and p < 0.0001). The Masson staining and MRI results showed that the injection group had less collagen deposition (p = 0.0226), a larger arterial lumen area and arterial volume (p = 0.0006 and p = 0.0005), thinner arterial wall thickness (p = 0.0013) and a more stable arterial plaque structure (p < 0.0001). The immunohistochemical results showed reduced expression of FT-H, FT-L, TfR1, MMP-2, MMP-9, MCP-1 and NRF-2 in the injection group (p = 0.0054, p = 0.0242, p = 0.0221, p = 0.0477, p = 0.0131, p = 0.0435 and p = 0.0179). Prussian blue staining showed that the area of iron-positive areas in the aortic plaques of the control group was larger than that of injected group. The expression of GPX-4 was lower in the control group than in the injection group (p = 0.016). Conclusions: The intraperitoneal administration of FT-H to Apo-E(-/-) mice resulted in lower blood glucose and lipid levels; reduced iron and iron metabolism protein deposition in the aorta; reduced indices of their ferroptosis, oxidation and inflammatory aggregation; and reduced collagen deposition in the aorta, which delayed the process of aortic atherosclerosis in mice.

4.
Eur J Pharmacol ; 944: 175566, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739078

RESUMO

BACKGROUND: Targeting cell death to induce favorable functional and morphological changes within atherosclerotic plaques has long been postulated as a promising anti-atherosclerotic strategy. In this regard, inhibition of dipeptidyl peptidases 8/9 has received special attention in the context of chronic inflammatory diseases due to its regulatory role in macrophage death in vivo. METHODS: The present study investigates the influence of prolonged treatment with 1G244 - an inhibitor of dipeptidyl peptidases 8/9 - on the development of the advanced atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. RESULTS: 1G244 administration has led to a reduction in atherosclerotic plaque size in an apoE-knockout mice model. Moreover, it reduced the content of in-plaque macrophages, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state of these cells. Inhibition of dipeptidyl peptidases 8/9 augmented the lytic form of death response of activated macrophages in-vitro. CONCLUSIONS: In summary, inhibition of DPP 8/9 elicited an anti-atherosclerotic effect in apoE-/- mice, which can be attributed to the lytic form of death induction in activated macrophages, as assessed by the in vitro BMDM model. This, in turn, results in a reduction of the plaque area without its transformation towards a rupture-prone morphology.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Macrófagos , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacologia , Camundongos Knockout para ApoE , Apolipoproteínas E , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Environ Sci Pollut Res Int ; 30(1): 699-709, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35906520

RESUMO

The adverse effects of air pollution on the cardiovascular system have been well documented. Nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for cardiovascular events. However, the influence of exposure to airborne particles on the development of NAFLD is less recognised. The aim of this study was to investigate the impact of silica nanoparticles (SiNPs) on the development of liver steatosis. We used molecular and proteomic SWATH-MS methods to investigate the changes in the liver proteome of apolipoprotein E-knockout mice (apoE-/- mice) exposed to SiNPs for 4 months in a whole-body exposure chamber. Exposure to SiNPs evoked microvesicular liver steatosis in apoE-/- mice. Quantitative liver proteomics showed significant downregulation of ribosomal proteins and endoplasmic reticulum proteins. Gene expression analysis revealed a reduced level of proteins related to endoplasmic reticulum stress. Treatment with SiNPs decreased mitochondrial membrane potential and increased the production of reactive oxygen species in cultured HepG2 cells. This is the first report that inhalation exposure to SiNPs induces microvesicular steatosis and significant changes in the liver proteome in vivo. Our results highlight the important role of silica and point to the ER stress response and mitochondrial dysfunction as potential mechanisms responsible for the increase in fatty liver by SiNPs.


Assuntos
Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Camundongos Knockout para ApoE , Proteoma/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dióxido de Silício/metabolismo , Proteômica , Fígado , Nanopartículas/toxicidade , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Estresse do Retículo Endoplasmático
6.
J Vasc Res ; 59(6): 358-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36412620

RESUMO

OBJECTIVE: Follicle-stimulating hormone (FSH) level changes may be another reason for increasing the risk of cardiovascular disease. In this study, we aimed to investigate the role of FSH in atherosclerosis and its underlying mechanism. METHODS: ApoE-/- mice were divided into 4 groups, namely, the sham group, bilaterally orchidectomized group, FSH group, and testosterone-only group. Blood lipid and hormone levels were tested, aorta Oil Red O staining; the levels of NF-κB, Akt, eNOS, and FSH receptors in the aorta were measured by Western blotting. Expression of VCAM-1 was detected via Western blotting and immunohistochemical staining. Human umbilical vein endothelial cells (HUVECs) were used to induce endothelial injury model by adding FSH, and the levels of NF-κB, Akt, eNOS, and FSHR were tested in HUVECs. RESULTS: FSH treatment exacerbated atherosclerotic lesions in ApoE-/- mice. Moreover, FSH could promote the expression of VCAM-1 protein in HUVECs, and this effect was possibly mediated by the activation of NF-κB, while NF-κB activation was further enhanced by the activation of the PI3K/Akt/eNOS pathway. FSH failed to activate Akt and NF-κB in the presence of the PI3K inhibitor LY294002 in HUVECs. CONCLUSION: FSH promoted the development of atherosclerosis by increasing VCAM-1 protein expression via activating PI3K/Akt/NF-κB pathway.


Assuntos
Aterosclerose , Neoplasias da Próstata , Masculino , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Androgênios/metabolismo , Androgênios/farmacologia , Antagonistas de Androgênios/metabolismo , Antagonistas de Androgênios/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Camundongos Knockout para ApoE , Neoplasias da Próstata/metabolismo , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Apolipoproteínas E/genética
7.
J Cardiovasc Dev Dis ; 9(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36286293

RESUMO

The purpose of this study was to investigate the influence of C1QL1 on atherosclerosis as well as the transcriptomic alteration of the aorta. While complement C1ql-like 1 (C1QL1) is one of the C1q/tumor-necrosis-factor-related protein (CTRP) family members, also known as CTRP14, and is synthesized and secreted mainly by the brain and adipose tissues, the functional properties of the C1QL1/CTRP14 protein outside the brain and adipocytes remain, however, unknown. In this regard, apolipoprotein E (ApoE) knockout (KO) mice were fed a Western diet and injected with adenovirus (Ad) green fluorescent protein or Ad-C1QL1 through the tail vein for 12 weeks. In contrast with the control cohort, the area of atherosclerotic plaque in ApoE KO mice overexpressing C1QL1 showed no significant difference, and the RNA sequence revealed that there were only 111 differentially expressed genes (DEGs) enriched in 26 signaling pathways of the mRNA profile in the aortic atherosclerosis lesions. This analysis also revealed the expression of several genes related to metabolism, organismal system, and human diseases such as type II diabetes, which are not associated with the formation of atherosclerosis in the aorta. These findings illustrate that C1QL1 is largely dispensable for atherosclerosis formation in ApoE-deficient mice and does not improve atherosclerotic plaque formation in the aorta.

8.
Brain Behav ; 12(8): e2702, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35810473

RESUMO

BACKGROUND: Anesthesia induces Tau phosphorylation and cognitive impairment in young, but not adult, mice. Apolipoprotein E (ApoE) may play a protective role in neuronal activity and injury repair, whereas its toxic fragments are reported to induce neurodegeneration and neurocognitive impairment in patients with Alzheimer's disease (AD). Therefore, we set out to test the hypothesis that the difference in ApoE fragments, but not the full-length ApoE, contributes to the difference in Tau phosphorylation and neurocognitive functions following sevoflurane anesthesia in young mice. METHODS: Sevoflurane was administered to wild-type (WT), ApoE-knockout (ApoE-KO), ApoE3-targeted replacement (ApoE3 expresses both full-length and fragmented ApoE), and ApoE2-targeted replacement (ApoE2 only expresses full-length ApoE) mice. The mRNA and protein levels of ApoE, phosphorylated Tau (pTau), and cognitive function were tested in the mice. RESULTS: Sevoflurane anesthesia enhanced ApoE mRNA, total ApoE, full-length ApoE, ApoE fragments, Tau phosphorylation (AT8 and PHF1), and cognitive impairment in young mice, but not in adult mice. ApoE2, but not ApoE3 or ApoE-KO, mice showed reduced sevoflurane-induced pTau elevation and cognitive impairment. CONCLUSION: These data suggest that elevated ApoE fragments rather than full-length ApoE might be one of the underlying mechanisms of age-dependent Tau phosphorylation and cognitive impairment in young mice following sevoflurane anesthesia.


Assuntos
Doença de Alzheimer , Anestesia , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Animais , Animais Recém-Nascidos , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Disfunção Cognitiva/induzido quimicamente , Camundongos , Fosforilação , RNA Mensageiro/metabolismo , Sevoflurano
9.
Ecotoxicol Environ Saf ; 230: 113112, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953274

RESUMO

BACKGROUND AND AIMS: Exposure to environmental nanoparticles is related to the adverse impact on health, including cardiovascular system. Various forms of nanoparticles have been reported to interact with endothelium and induce inflammation. However, the potential role of nanoparticles in the pathogenesis of atherosclerosis and their mechanisms of action are still unclear. The aim of this study was to investigate the effect of two broadly used nanomaterials, which also occur in natural environment - silicon oxide (SiO2) and ferric oxide (Fe2O3) in the form of nanoparticles (NPs) - on the development of atherosclerosis. METHODS: We used apolipoprotein E-knockout mice exposed to silica and ferric oxide nanoparticles in a whole body inhalation chamber. RESULTS: Inhaled silica nanoparticles augmented the atherosclerotic lesions and increased the percentage of pro-inflammatory M1 macrophages in both the plaque and the peritoneum in apoE-/- mice. Exposure to ferric oxide nanoparticles did not enhance atherogenesis process, however, it caused significant changes in the atherosclerotic plaque composition (elevated content of CD68-positive macrophages and enlarged necrotic core accompanied by the decreased level of M1 macrophages). Both silica and ferric oxide NPs altered the phenotype of T lymphocytes in the spleen by promoting polarization towards Th17 cells. CONCLUSIONS: Exposure to silica and ferric oxide nanoparticles exerts impact on atherosclerosis development and plaque composition. Pro-atherogenic abilities of silica nanoparticles are associated with activation of pro-inflammatory macrophages.

10.
Environ Toxicol ; 37(4): 683-694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34862716

RESUMO

BACKGROUND: Coronary atherosclerosis (AS) is characterized by the formation of plaque in the vessel wall. The structural and functional changes of vascular smooth muscle cells (VSMCs) can promote plaque formation and induce plaque instability. OBJECTIVE: To investigate the functions and mechanism of miR-222-5p in VSMCs under the treatment of oxidized low-density lipoprotein (ox-LDL). METHODS: miR-222-5p expression in ox-LDL-treated VSMCs and the serum of Apolipoprotein E (ApoE) knockout mice was detected by reverse transcription quantitative polymerase chain reaction. The viability and migration of VSMCs were detected by Cell Counting Kit-8 and Transwell assays. Protein levels of proliferation and migration-related factors were evaluated by western blotting. Luciferase reporter assays were performed to explore the binding between miR-222-5p and retinoblastoma susceptibility protein (RB1) gene in VSMCs. ApoE-knockout mice were infected with the lentivirus inhibiting miR-222-5p expression to explore the effect of miR-222-5p on pathological changes. Hematoxylin and eosin (H&E) staining, trichrome staining, and Oil Red O staining were conducted to determine the necrotic core area and atherosclerotic lesion size in the ascending aorta of ApoE-knockout mice. RESULTS: With the accumulation of ox-LDL concentration and treatment time, miR-222-5p expression was gradually upregulated in VSMCs. Similarly, miR-222-5p expression was increased in the serum of ApoE-knockout mice. miR-222-5p knockdown inhibited the proliferative and migratory abilities of ox-LDL-treated VSMCs, and the inhibitory effect on cellular behaviors was then significantly reversed by co-knockdown of RB1. RB1 is a downstream target gene of miR-222-5p, and miR-222-5p bound with 3'-untranslated region of RB1 in VSMCs. We further confirmed that miR-222-5p knockdown alleviated pathological changes and inhibited lipid deposition in the serum of ApoE-knockout mice in vivo. CONCLUSION: miR-222-5p accelerates the dysfunction of VSMCs and promotes pathological changes and lipid deposition in ApoE-knockout mice by targeting RB1. The study may provide novel therapeutic targets for AS.


Assuntos
MicroRNAs , Músculo Liso Vascular , Proteínas de Ligação a Retinoblastoma , Animais , Movimento Celular , Proliferação de Células , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/fisiologia , Músculo Liso Vascular/fisiopatologia , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
11.
Chinese Pharmacological Bulletin ; (12): 1395-1400, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1014020

RESUMO

Aim To investigate the protective effect of quercetin on atherosclerosis induced by high-fat diet in ApoE knockout ( ApoE KO) mice and its regulatory mechanism on cholesterol homeostasis of macrophages.Methods Forty-five adult female ApoE KO mice were randomly divicied into three groups : nonnal diet ( ND ) group, high fat diet ( HFD) group and high fat diet + quercetin ( HFD + Qu) group and fed for 16 weeks.The level of serum lipid, the formation of atherosclerotic plaque and the expression of genes related to cholesterol homeostasis were detected.Macrophage cholesterol content and the expression level of cholesterol homeo- stasis-related proteins were detected.Results Quer cetin significantly reduced the atherosclerotic lesions and serum lipid levels in ApoE KO mice.Quercetin significantly suppressed macrophage foaming by upreg- ulating CYP27A1 expression,inhibiting CD36-mediated cholesterol uptake and and promoting LXHcx-ABCAl/ G1 pathway-dependent cholesterol efflux.Conclusions Quercetin plays a protective role in atherosclerosis through its regulatory effect on CYF27A1/ LXHa signaling pathway-mediated macrophage cholesterol homeostasis.

12.
Chinese Pharmacological Bulletin ; (12): 1530-1535, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1014232

RESUMO

Aim To study the protective effect of simvastatin(Sim)on liver function injury in apolipoprotein E gene knockout(ApoE KO)mice fed with high-fat diet and the underlying mechanism.Methods Twenty-four 8-week-old male ApoE KO mice were randomly divided into ApoE KO group,ApoE KO+Sim group and ApoE KO+PD150606 group.The contents of total cholesterol(TC)and triglyceride(TG)in serum and liver,and the activities of aspartate aminotransferase(AST)and alanine aminotransferase(ALT)in serum were measured.The contents of malondialdehyde(MDA)and reactive oxygen species(ROS)and the activity of superoxide dismutase(SOD)in liver were determined.The contents of tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6)and the activity of calpain in liver were examined.Results Compared with C57 group,ApoE KO group showed significant increase in the contents of TC and TG in both serum and liver.In addition,the activities of AST and ALT in serum and the contents of MDA and ROS in liver significantly increased,while SOD activity in liver decreased in ApoE KO group.The contents of TNF-α and IL-6 and the activity of calpain in liver significantly increased.Compared with ApoE KO group,Sim group had no significant effects on TC and TG,while reduced the activities of AST and ALT,decreased the contents of MDA and ROS,increased the activity of SOD and decreased the contents of TNF-α and IL-6 as well as the activity of calpain in liver.PD,the calpain inhibitor,had the similar effects with Sim regarding the above mentioned parameters.Conclusions Sim improved the liver function injury of ApoE KO mice,which might be related to the inhibition of calpain activity,subsequently increasing the antioxidant capacity and reducing the inflammatory response.

13.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639029

RESUMO

Atherosclerosis and NAFLD are the leading causes of death worldwide. The hallmark of NAFLD is triglyceride accumulation caused by an imbalance between lipogenesis de novo and fatty acid oxidation. Agmatine, an endogenous metabolite of arginine, exerts a protective effect on mitochondria and can modulate fatty acid metabolism. In the present study, we investigate the influence of agmatine on the progression of atherosclerotic lesions and the development of hepatic steatosis in apoE-/- mice fed with a Western high-fat diet, with a particular focus on its effects on the DNL pathway in the liver. We have proved that treatment of agmatine inhibits the progression of atherosclerosis and attenuates hepatic steatosis in apoE-/- mice on a Western diet. Such effects are associated with decreased total macrophage content in atherosclerotic plaque as well as a decrease in the TG levels and the TG/HDL ratio in plasma. Agmatine also reduced TG accumulation in the liver and decreased the expression of hepatic genes and proteins involved in lipogenesis de novo such as SREBP-1c, FASN and SCD1. In conclusion, agmatine may present therapeutic potential for the treatment of atherosclerosis and fatty liver disease. However, an exact understanding of the mechanisms of the advantageous actions of agmatine requires further study.


Assuntos
Agmatina/efeitos adversos , Aterosclerose/etiologia , Aterosclerose/metabolismo , Dieta Ocidental , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Lipídeos/sangue , Lipogênese , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Biomarcadores , HDL-Colesterol/sangue , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Feminino , Imuno-Histoquímica , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout para ApoE , Triglicerídeos/sangue
14.
Toxicology ; 464: 152992, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34670124

RESUMO

Mercury (Hg) is one of the most toxic environmental pollutants, especially when methylated, forming methylmercury (MeHg). MeHg affects DNA repair, increases oxidative stress, and predisposes to cancer. MeHg neurotoxicity is well-known, but recently MeHg-associated cardiovascular effects were recognized. This study evaluated circulating lipids, oxidative stress, and genotoxicity after MeHg-chronic exposure (20 mg/L in drinking water) in C57BL/6J wild-type and APOE knockout (ko) mice, the latter, being spontaneously dyslipidemic. Experimental mice were assigned to four groups: non-intoxicated and MeHg-intoxicated wild-type mice and non-intoxicated and MeHg-intoxicated APOE ko mice. Plasma levels of triglycerides, total cholesterol (TC), HDL, and LDL were analyzed. Liver lipid peroxidation and splenic gene expression of xeroderma pigmentosum complementation groups A, C, D, and G (XPA, XPC, XPD, and XPG), X-ray repair cross-complementing protein 1 (XRCC1), and telomerase reverse transcriptase (TERT) were measured. Fur Hg levels confirmed chronic MeHg intoxication. MeHg exposure raises TC levels both in wild-type and APOE ko mice. HDL and LDL-cholesterol levels were increased only in the MeHg-challenged APOE ko mice. MeHg increased liver lipid peroxidation, regardless of the genetic background. Unintoxicated APOE ko mice showed higher expression of TERT than all other groups. APOE deficiency increases XPA expression, regardless of MeHg intoxication. Furthermore, MeHg-intoxicated mice had more cytogenetic abnormalities, effect which was independent of APOE deficiency. More studies are needed to dissect the interactions between circulating lipids, MeHg intoxication, and DNA-repair pathways even at young age, interactions that likely play critical roles in cell senescence and the risk for chronic disorders later in life.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Reparo do DNA/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Dislipidemias/metabolismo , Poluentes Ambientais/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE
15.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575934

RESUMO

Background: Over the past few years, a better understanding of the biology of G-protein coupled receptors (GPRs) has led to the identification of several receptors as novel targets for free fatty acids (FFAs). FFAR4 has received special attention in the context of chronic inflammatory diseases, including atherosclerosis, obesity and NAFLD, through to its anti-inflammatory effect. Methods: The present study investigates the influence of prolonged treatment with TUG-891-FFAR4 agonist on the development of atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. Results: TUG-891 administration has led to the reduction of atherosclerotic plaque size and necrotic cores in an apoE-knockout mice model. TUG-891-treated mice were administered subcutaneously at a dose of 20 mg/kg three times a week for 4 months. The FFAR4 agonist reduced the content of pro-inflammatory M1-like macrophages content in atherosclerotic plaques, as evidenced by immunohistochemical phenotyping and molecular methods. In atherosclerotic plaque, the population of smooth muscle cells increased as evidenced by α-SMA staining. We observed changes in G-CSF and eotaxin markers in the plasma of mice; changes in the levels of these markers in the blood may be related to macrophage differentiation. Importantly, we observed a significant increase in M2-like macrophage cells in atherosclerotic plaque and peritoneum. Conclusions: Prolonged administration of TUG-891 resulted in significant amelioration of atherogenesis, providing evidence that the strategy based on macrophage phenotype switching toward an M2-like activation state via stimulation of FFAR4 receptor holds promise for a new approach in the prevention or treatment of atherosclerosis.


Assuntos
Compostos de Bifenilo/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Biomarcadores , Peso Corporal , Plasticidade Celular/efeitos dos fármacos , Imunofenotipagem , Mediadores da Inflamação/sangue , Lipídeos/sangue , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , Fenótipo
16.
Sci Total Environ ; 800: 149602, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426332

RESUMO

Propamocarb is a systemic carbamate fungicide used to fight diseases. The effect of propamocarb on the formation of atherosclerosis was evaluated in wild-type (WT) and ApoE knockout (ApoE-/-) mice. C57BL/6 J WT mice were fed control diet or high-fat diet (HFD) with 20 mg/L propamocarb in drinking water for 24 weeks. Propamocarb significantly increased the serum levels of triglyceride, cholesterol and low-density lipoprotein cholesterol while decreasing high-density lipoprotein cholesterol. Simultaneously, propamocarb facilitated lipid accumulation in the liver and increased the expression of cholesterol synthesis and transport genes in the liver and ileum. Lipid accumulation was observed in the aortic roots of the propamocarb-treated mice fed HFD, and similar results were also observed with whole aorta staining. In addition, propamocarb exposure significantly increased the mRNA levels of IL-1ß, TNF-α, ICAM-1, and VCAM-1 in the aorta and the serum IL-1ß, IL-6, and TNF-α levels in HFD groups treated with propamocarb. In ApoE-/- mice, the results were consistent with those obtained in WT mice after exposure to 20 mg/L propamocarb for 10 weeks. Meanwhile, propamocarb significantly increased the levels of CD36, NF-κB, VCAM-1 and ICAM-1 proteins in the aortas of ApoE-/- mice. Propamocarb further disrupted cholesterol metabolism and enhanced atherosclerosis and inflammatory responses much more substantially, indicating that propamocarb has the potential to accelerate the formation of atherosclerosis. An analysis of gut microbiota revealed that propamocarb altered the composition of gut microbiota in both WT and ApoE-/- mice. Interestingly, propamocarb increased the abundance of Peptostreptococcaceae, Ruminococcaceae, and Clostridiales_VadinBB60_group, which are related to atherosclerosis at the family level. The abundance of Paeniclostridium, Allobaculum, and Clostridioides, which are closely related to atherosclerosis, was also increased by propamocarb exposure. Our findings indicate that propamocarb exposure may promote atherosclerosis by disrupting lipid metabolism, increasing the inflammatory response, and altering the structure of gut microbiota.


Assuntos
Aterosclerose , Carbamatos , Microbioma Gastrointestinal , Animais , Apolipoproteínas E/genética , Aterosclerose/induzido quimicamente , Carbamatos/toxicidade , Dieta Hiperlipídica , Disbiose , Camundongos , Camundongos Endogâmicos C57BL
17.
Nutrients ; 13(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206655

RESUMO

Fish protein consumption exerts beneficial metabolic effects on human health, also correlating with a decreased risk for cardiovascular disease. Fish waste contains high amount of proteins and utilization may offer the opportunity for generating compounds advantageous for human health. Especially, fish waste protein hydrolysates beneficially influence pathways involved in body composition, exerting anti-inflammatory and antioxidant activities, making their potential supplementation in human disorders of increased interest. This study assessed the effect of a 10% (w/w) anchovy waste protein hydrolysate (APH) diet for 12 weeks in reducing atherosclerosis in ApoE-/- mice, through histological and immunohistochemical methods. In addition, monitoring of plaque development was performed, using high-frequency ultrasound and magnetic resonance imaging. Overall, the APH diet attenuated atherosclerotic plaque development, producing a regression of arterial lesions over time (p < 0.05). Twelve weeks on an APH diet had an anti-obesity effect, improving lipid metabolism and reducing hepatic enzyme activity. A significant reduction in plaque size and lipid content was observed in the aortic sinus of APH-fed mice, compared to the control (p < 0.001), whereas no differences in the extracellular matrix and macrophage recruitment were observed. Supplementation of APH significantly attenuates atherosclerosis in ApoE-/- mice, exerting a lipid-lowering activity. The opportunity to use fish waste protein hydrolysates as a nutraceutical in atherosclerosis is worthy of future investigations, representing a low cost, sustainable, and nutritional strategy with minimal environmental impact.


Assuntos
Aterosclerose/terapia , Suplementos Nutricionais , Proteínas de Peixes/farmacologia , Hipolipemiantes/farmacologia , Hidrolisados de Proteína/farmacologia , Animais , Fármacos Antiobesidade/farmacologia , Modelos Animais de Doenças , Fezes/química , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/terapia , Alimentos Marinhos
18.
J Med Food ; 24(6): 635-644, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34161164

RESUMO

Capsanthin is the main carotenoid compound in red paprika (Capsicum annuum L.). However, little is known about the beneficial effects of capsanthin in nonalcoholic fatty liver disease (NAFLD). In this study, the hepatoprotective activity of capsanthin was investigated in a mouse model of NAFLD. Apolipoprotein-E knockout mice were fed with normal diet, Western-type diet (WD, NAFLD model), WD with capsanthin (0.5 mg/kg of body weight/day, CAP), WD with capsanthin-rich extract (25 mg/kg of body weight/day; CRE), or WD with red paprika powder (25 mg/kg of body weight/day, RPP) for 12 weeks. The carotenoid content in CRE or RPP was analyzed using ultraperformance liquid chromatography. The capsanthin concentration in CRE was 2067 mg/100 g of dry weight, which was 63% of total carotenoids. The oral administration of CRE or capsanthin significantly reduced the WD-induced increase in body weight and lipid accumulation in the liver (vs. the RPP group). In addition, CRE or capsanthin significantly inhibited the WD-induced increase in cholesterol and low-density lipoprotein levels. Furthermore, CRE or capsanthin showed reduced levels of plasma alanine and aspartate aminotransferase (ALT and AST, respectively), suggesting a steatohepatitis protective effect. Capsanthin regulated mRNA levels of peroxisome proliferator-activated receptor alpha (Pparα), carnitine palmitoyltransferase 1A (Cpt1a), acyl-CoA oxidase 1 (Acox1), and sterol regulatory element binding protein-1c (Srebp1c), which are associated with hepatic fatty acid metabolism. Overall, our results suggest that the capsanthin of red paprika plays a protective role against hepatic steatosis/steatohepatitis in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Xantofilas , Animais , Dieta Hiperlipídica , Fígado , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Substâncias Protetoras
19.
Nutr Res Pract ; 15(3): 319-328, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34093973

RESUMO

BACKGROUND/OBJECTIVES: Curcuma zedoaria R. (Zingiberaceae) has been used to treat headache, fever, and hypertension-related symptoms in Asian countries, including Korea, China, and Japan. We investigated whether dietary intake of a C. zedoaria extract (CzE) affected atherosclerosis in vivo. MATERIALS/METHODS: Apolipoprotein E-deficient (ApoE-/-) mice (n = 32) were fed a normal diet (ND), a high-cholesterol diet (HCD), an HCD containing CzE (100 mg/kg/day), or an HCD containing simvastatin (10 mg/kg/day) for 12 weeks. The anti-atherosclerotic effects were evaluated by observing changes in fatty streak lesions, immunohistochemical analysis, ex vivo fluorescence imaging, lipid profiles, and western blot analysis. RESULTS: The CzE-fed group showed a 41.6% reduction of atherosclerosis. Furthermore, CzE significantly reduced the levels of serum triglyceride, high-density lipoprotein, the chemokine (C-X3-C-motif) ligand 1, the adhesion molecules vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin; down-regulation of tumor necrosis factor-α, interleukin-6, high mobility group box-1, and cathepsin levels in the aortic sinuses and aortas of ApoE-/- mice were also observed. CONCLUSIONS: The results suggest that the inclusion of a water extract of C. zedoaria in a HCD is closely correlated with reducing the risk of vascular inflammatory diseases in an ApoE mouse model.

20.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070749

RESUMO

Atherosclerosis and nonalcoholic fatty liver disease are leading causes of morbidity and mortality in the Western countries. The renin-angiotensin system (RAS) with its two main opposing effectors, i.e., angiotensin II (Ang II) and Ang-(1-7), is widely recognized as a major regulator of cardiovascular function and body metabolic processes. Angiotensin-converting enzyme 2 (ACE2) by breaking-down Ang II forms Ang-(1-7) and thus favors Ang-(1-7) actions. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with ACE2 activator, diminazene aceturate (DIZE) on the development of atherosclerotic lesions and hepatic steatosis in apoE-/- mice fed a high-fat diet (HFD). We have shown that DIZE stabilized atherosclerotic lesions and attenuated hepatic steatosis in apoE-/- mice fed an HFD. Such effects were associated with decreased total macrophages content and increased α-smooth muscle actin levels in atherosclerotic plaques. Moreover, DIZE changed polarization of macrophages towards increased amount of anti-inflammatory M2 macrophages in the atherosclerotic lesions. Interestingly, the anti-steatotic action of DIZE in the liver was related to the elevated levels of HDL in the plasma, decreased levels of triglycerides, and increased biosynthesis and concentration of taurine in the liver of apoE-/- mice. However, exact molecular mechanisms of both anti-atherosclerotic and anti-steatotic actions of DIZE require further investigations.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Aterosclerose/tratamento farmacológico , Diminazena/análogos & derivados , Fígado Gorduroso/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Taurina/biossíntese , Angiotensina I/genética , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Dieta Hiperlipídica , Diminazena/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Células THP-1 , Taurina/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA