Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Fish Dis ; : e13985, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923541

RESUMO

Fish meal (FM) replacement is essential for the sustainable expansion of aquaculture. This study focussed on the feasibility of replacing FM with a single-cell protein (SCP) derived from methanotrophic bacteria (Methylococcus capsulatus, Bath) in barramundi fry (Lates calcarifer). Three isonitrogenous and isoenergetic diets were formulated with 0%, 6.4% and 12.9% inclusion of the SCP, replacing FM by 0%, 25% and 50%. Barramundi fry (initial body weight 2.5 ± 0.1 g) were fed experimental diets for 21 days to assess growth performance, gut microbiome composition and gut histopathology. Our findings revealed that both levels of SCP inclusion induced detrimental effects in barramundi fry, including impaired growth and reduced survival compared with the control group (66.7% and 71.7% survival in diets replacing FM with SCP by 25% and 50%, respectively; p < .05). Both dietary treatments presented mild necrotizing enteritis with subepithelial oedema and accumulation of PAS positive, diastase resistant droplets within hepatocytes (ceroid hepatopathy) and pancreatic atrophy. Microbiome analysis revealed a marked shift in the gut microbial community with the expansion of potential opportunistic bacteria in the genus Aeromonas. Reduced overall performance in the highest inclusion level (50% SCP) was primarily associated with reduced feed intake, likely related to palatability issues, albeit pathological changes observed in gut and liver may also play a role. Our study highlights the importance of meticulous optimization of SCP inclusion levels in aquafeed formulations, and the need for species and life-stage specific assessments to ensure the health and welfare of fish in sustainable aquaculture practices.

2.
Antioxidants (Basel) ; 13(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671851

RESUMO

High-fat diets (HFDs) enhance fish growth by optimizing nutrient utilization (i.e., protein-sparing effect); however, their potential negative effects have also encouraged the search for feed additives. This work has investigated the effects of an extract rich in a polyphenolic antioxidant, hydroxytyrosol (HT), supplemented (0.52 g HT/kg feed) in a HFD (24% lipid) in gilthead sea bream (Sparus aurata). Fish received the diet at two ration levels, standard (3% of total fish weight) or restricted (40% reduction) for 8 weeks. Animals fed the supplemented diet at a standard ration had the lowest levels of plasma free fatty acids (4.28 ± 0.23 mg/dL versus 6.42 ± 0.47 in the non-supplemented group) and downregulated hepatic mRNA levels of lipid metabolism markers (ppara, pparb, lpl, fatp1, fabp1, acox1, lipe and lipa), supporting potential fat-lowering properties of this compound in the liver. Moreover, the same animals showed increased muscle lipid content and peroxidation (1.58- and 1.22-fold, respectively, compared to the fish without HT), suggesting the modulation of body adiposity distribution and an enhanced lipid oxidation rate in that tissue. Our findings emphasize the importance of considering this phytocompound as an optimal additive in HFDs for gilthead sea bream to improve overall fish health and condition.

3.
Animals (Basel) ; 14(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396582

RESUMO

The green tips of Salicornia ramosissima are used for human consumption, while, in a production scenario, the rest of the plant is considered a residue. This study evaluated the potential of incorporating salicornia by-products in diets for juvenile European seabass, partially replacing wheat meal, aspiring to contribute to their valorization. A standard diet and three experimental diets including salicornia in 2.5%, 5% and 10% inclusion levels were tested in triplicate. After 62 days of feeding, no significant differences between treatments were observed in fish growth performances, feeding efficiency and economic conversation ratio. Nutrient digestibility of the experimental diets was unaffected by the inclusion of salicornia when compared to a standard diet. Additionally, salicornia had significant modulatory effects on the fish muscle biochemical profiles, namely by significantly decreasing lactic acid and increasing succinic acid levels, which can potentially signal health-promoting effects for the fish. Increases in DHA levels in fish fed a diet containing 10% salicornia were also shown. Therefore, the results suggest that salicornia by-products are a viable alternative to partially replace wheat meal in diets for juvenile European seabass, contributing to the valorization of a residue and the implementation of a circular economy paradigm in halophyte farming and aquaculture.

4.
Appl Biochem Biotechnol ; 196(2): 923-948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37273094

RESUMO

Polyunsaturated Fatty Acids (PUFAs) are important nutrients for human health. We aimed to evaluate the efficiency of marine water fungus Aspergillus sp. (Accession no: MZ505709) for lipid biosynthesis. The Yeast Extract Glucose (YEG) medium was supplemented with different concentration of Borassus flabellifer Endocarps Hydrolysate (BFEH; 1-5%) to evaluate the fungal biomass and its lipid accumulation. The combination of glucose and BFEH as carbon source increased the fresh weight (25.43 ± 0.33 g/L), dry weight (21.39 ± 0.77 g/L) and lipid yield (3.14 ± 0.09 g/L) of fungal biomass. The lipid content of dried fungal biomass has shown 91.08 ± 5.07 mg cod liver oil equivalents/g and 125.98 ± 5.96 mg groundnut oil equivalents/g biomass. GC-MS and NMR spectrometry analysis revealed the compounds involved in fatty acid metabolism and lipid signaling pathways along with the presence of linolenic acid. Interestingly, fungus grown in BFEH enriched medium has recorded the maximum amount of lipids with major fatty acid derivatives. Increase in the growth rate of Artemia franciscana was observed, when the extracted fungal lipid was supplemented as a food supplement. Therefore, this study suggests that marine fungal lipid may serve as potential natural compound as nutraceuticals and aquafeeds.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Humanos , Ácidos Graxos/metabolismo , Biomassa , Aspergillus/metabolismo , Glucose/metabolismo
5.
Front Physiol ; 14: 1346380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156071
6.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37813378

RESUMO

Impacts of plant-based ingredients and temperatures on energy metabolism in rainbow trout was investigated. A total of 288 fish (mean body weight: 45.6 g) were fed four isocaloric, isolipidic, and isonitrogenous diets containing 40% protein and 20% lipid and formulated as 100% animal-based protein (AP) and a blend of 50% fish oil (FO) and 50% camelina oil (CO); 100% AP and100% CO; 100% plant-based protein (PP) and a blend of 50% FO and 50% CO or 100% PP and 100% CO at 14 or 18 °C for 150 d. Diet did not significantly affect weight gain (WG) (P = 0.1902), condition factor (CF) (P = 0.0833) or specific growth rate (SGR) (P = 0.1511), but diet significantly impacted both feed efficiency (FE) (P = 0.0076) and feed intake (FI) (P = 0.0076). Temperature did not significantly affect WG (P = 0.1231), FE (P = 0.0634), FI (P = 0.0879), CF (P = 0.8277), or SGR (P = 0.1232). The diet × temperature interaction did not significantly affect WG (P = 0.7203), FE (P = 0.4799), FI (P = 0.2783), CF (P = 0.5071), or SGR (P = 0.7429). Furthermore, temperature did not influence protein efficiency ratio (P = 0.0633), lipid efficiency ratio (P = 0.0630), protein productive value (P = 0.0756), energy productive value (P = 0.1048), and lipid productive value (P = 0.1386); however, diet had significant main effects on PER (P = 0.0076), LPV (P = 0.0075), and PPV (P = 0.0138). Temperature regimens induced increased activities of mitochondrial complexes I (P = 0.0120), II (P = 0.0008), III (P = 0.0010), IV (P < 0.0001), V (P < 0.0001), and citrate synthase (CS) (P < 0.0001) in the intestine; complexes I (P < 0.0001), II (P < 0.0001), and CS (P = 0.0122) in the muscle; and complexes I (P < 0.0001), II (P < 0.0001), and III (P < 0.0001) in the liver. Similarly, dietary composition significantly affected complexes I (P < 0.0001), II (P < 0.0001), IV (P < 0.0001), V (P < 0.0001), and CS (P < 0.0001) in the intestine; complexes I (P < 0.0001), II (P < 0.0001), III (P = 0.0002), IV (P < 0.0001), V (P = 0.0060), and CS (P < 0.0001) in the muscle; and complexes I (P < 0.0001), II (P < 0.0001), IV (P < 0.0001), V (P < 0.0001), and CS (P < 0.0001) in the liver activities except complex III activities in intestine (P = 0.0817) and liver (P = 0.4662). The diet × temperature interaction impacted CS activity in the intestine (P = 0.0010), complex II in the muscle (P = 0.0079), and complexes I (P = 0.0009) and II (P = 0.0348) in the liver. Overall, comparing partial to full dietary substitution of FO with CO, partial dietary replacement showed similar effects on complex activities.


Diets are one of the most important consideration in aquaculture production as more than 50% of production costs are incurred in raising cultured fish to market size. As the price of FM and FO continues to increase, it is necessary to seek alternative sources of proteins and oils for sustainable aquaculture development. Plant-based ingredient sources have appeared as sustainable alternatives; however, it is uncertain whether the uses of plant-based alternatives will be appropriate in securing the production of carnivorous aquaculture species in the context of global warming, with studies postulating on the potential effects of climate change on fish growth and health. A study was conducted to examine how the replacement of FM and FO with sustainable plant-based protein and camelina oil (CO) as ingredient sources at 14 or 18 °C would affect the growth performance, nutrient utilization efficiencies, and mitochondrial enzyme activity in rainbow trout. Based on the results, mitochondrial enzyme activities were generally higher at 18 °C and CO could replace 50% dietary FO without negative effects on rainbow trout. Overall, our study demonstrated that animal-based protein with CO is as good as animal-based with FO for growth and health, thus providing potentially sustainable diet options for aquaculture.


Assuntos
Oncorhynchus mykiss , Animais , Temperatura , Dieta/veterinária , Metabolismo Energético , Óleos de Peixe/farmacologia , Aumento de Peso , Ração Animal/análise
7.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985489

RESUMO

Low-cost plant-based sources used in aquaculture diets are prone to the occurrence of animal feed contaminants, which may in certain conditions affect the quality and safety of aquafeeds. Mycotoxins, a toxic group of small organic molecules produced by fungi, comprise a frequently occurring plant-based feed contaminant in aquafeeds. Mycotoxin contamination can potentially cause significant mortality, reduced productivity, and higher disease susceptibility; thus, its timely detection is crucial to the aquaculture industry. The present review summarizes the methodological advances, developed mainly during the past decade, related to mycotoxin detection in aquafeed ingredients, namely analytical, chromatographic, and immunological methodologies, as well as the use of biosensors and spectroscopic methods which are becoming more prevalent. Rapid and accurate mycotoxin detection is and will continue to be crucial to the food industry, animal production, and the environment, resulting in further improvements and developments in mycotoxin detection techniques.


Assuntos
Micotoxinas , Animais , Micotoxinas/análise , Contaminação de Alimentos/análise , Peixes , Fungos , Aquicultura , Ração Animal/análise
8.
Foods ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36673397

RESUMO

Fortifying fish feeds with bioactive compounds, such as enzymes and antioxidants, has been an adopted strategy to improve feed nutritional quality and sustainability. However, feed additives can lose activity/effectiveness during pelleting and storage processes. This work aimed to monitor functional activity stability in feeds supplemented with a bioactive extract, including cellulases, xylanases, and antioxidants. This bioactive extract (FBE) was produced by Aspergillus ibericus under solid-state fermentation of olive mill and winery by-products. Two isoproteic and isolipidic diets were formulated and unsupplemented or supplemented with lyophilized FBE (0.26% w/w). Both diets were stored at room temperature (RT) or 4 °C for 4 months. Results showed that feed storage at 4 °C enhanced the stability of the enzymes and cellulase was more stable than xylanase. Compared to RT, storage at 4 °C increased cellulase and xylanase half-life by circa 60 and 14%. Dietary FBE supplementation increased antioxidant activity and storage at 4 °C reduced antioxidant activity loss, while in the unsupplemented diet, antioxidant activity decreased to the same level in both storage temperatures. Dietary supplementation with FBE reduced lipid peroxidation by 17 and 19.5% when stored at 4 °C or RT, respectively. The present study is a step toward improving the storage conditions of diets formulated with bioactive compounds.

9.
Front Physiol ; 13: 966175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277183

RESUMO

The dietary inclusion of plant-based products in fish feeds formulation is required for the sustainable development of aquaculture. Moreover, considering functional diets, hydroxytyrosol, one of the major phenolic compounds found in olives (Olea europaea), has been identified as a potential candidate to be used in the aquafeeds industry due to its health promoting abilities. The aim of this study was to evaluate the effects of the inclusion of an olive juice extract rich in hydroxytyrosol as an additive (0.52 g HT/kg feed) in a high-fat (24% lipids) diet in gilthead sea bream (Sparus aurata) juveniles. Moreover, the experimental diets, with or without the extract, were administered daily at a standard (3% of total biomass in the tank) or restricted ration (40% reduction) for 8-9 weeks. Growth and biometric parameters, insulin-like growth factor 1 (IGF-1) plasma levels and growth hormone/IGF axis-, myogenic- and osteogenic-related genes expression in liver, white muscle and/or bone were analyzed. Moreover, in vitro cultures of vertebra bone-derived cells from fish fed the diets at a standard ration were performed at weeks 3 and 9 to explore the effects of hydroxytyrosol on osteoblasts development. Although neither body weight or any other biometric parameter were affected by diet composition after 4 or 8 weeks, the addition of the hydroxytyrosol-rich extract to the diet increased IGF-1 plasma levels, regardless of the ration regime, suggesting an anabolic condition. In muscle, the higher mRNA levels of the binding protein igfbp-5b and the myoblast fusion marker dock5 in fish fed with the hydroxytyrosol-rich diet suggested that this compound may have a role in muscle, inducing development and a better muscular condition. Furthermore in bone, increased osteogenic potential while delayed matrix mineralization after addition to the diet of the olive juice extract was supported by the upregulated expression of igf-1 and bmp4 and reduced transcript levels of osteopontin. Overall, this study provides new insights into the beneficial use of hydroxytyrosol as a dietary additive in gilthead sea bream functional diets to improve muscle-skeletal condition and, the aquaculture industry.

10.
Biology (Basel) ; 11(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36101344

RESUMO

Insect meal (IM), recently authorized for use in aquafeeds, positions itself as a promising commodity for aquafeed inclusion. However, insects are also rich in chitin, a structural polysaccharide present in the exoskeleton, which is not digested by fish, resulting in lower fish performance. Through the application of a dietary pressure, this study aimed to modulate European sea bass gut microbiota towards the enrichment of chitinolytic bacteria to allow the isolation of novel probiotics capable of improving the use of IM-containing diets, overcoming chitin drawbacks. Five isoproteic (44%) and isolipidic (18%) diets were used: a fish meal (FM)-based diet (diet CTR), a chitin-supplemented diet (diet CHIT5), and three diets with either 25% of Hermetia illucens and Tenebrio molitor larvae meals (HM25 and TM25, respectively) or H. illucens exuviae meal (diet HEM25) as partial FM substitutes. After an 8-week feeding trial, the results showed a clear modulatory effect towards spore-forming bacteria by HM25 and HEM25 diets, with the latter being responsible for the majority of the chitinolytic fish isolates (FIs) obtained. Sequential evaluation of the FI hemolytic activity, antibiotic resistance, total chitinolytic activity, sporulation, and survival in gastrointestinal-like conditions identified FI645 and FI658 as the most promising chitinolytic probiotics for in vivo application.

11.
Animals (Basel) ; 12(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35953906

RESUMO

Carpione (Salmo carpio, Linnaeus 1758) is an endangered precious endemism of Lake Garda (Northern Italy), the largest Italian lake. To date, several bottlenecks about its culture remain unsolved, including the identification of a proper growth-out diet. The aim of the present study was to test four different grossly isolipidic, isoproteic, and isoenergetic diets in which the main ingredients had a different origin. Specifically, a diet currently used by local farmers for carpione culture, largely based on marine ingredients, was used as control (CTRL), while the other three diets were formulated by partially replacing marine ingredients with plant ones (VEG) or with different percentages of processed animal proteins (PAP1 and PAP2). The feeding trial was run in triplicate, over a three-month period. No significant differences in growth performance among the experimental groups were observed. However, remarkable histological alterations and inflammatory markers upregulation were observed in VEG group, while PAP inclusion played a role in attenuating inflammation and improving nutrient uptake. Fillet analyses highlighted significant differences in marketable traits and flesh fatty acid composition among the experimental groups, including the reduction of polyunsaturated fatty acids related to PAPs inclusion. In conclusion, PAPs used in the present study promoted S. carpio gut health and absorption capacity, while further studies are required to maintain proper quality traits of the final product.

12.
Antioxidants (Basel) ; 11(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35453321

RESUMO

Synthetic vitamin E is commonly used in aquafeeds to prevent oxidative stress in fish and delay feed and flesh oxidation during storage, but consumers' preferences tend towards natural antioxidant sources. The potential of vegetable antioxidants-rich coproducts, dried tomato (TO), carrot (CA) and coriander (CO) was compared to that of synthetic vitamin E included in diets at either a regular (CTRL; 100 mg kg-1) or reinforced dose (VITE; 500 mg kg-1). Natural antioxidants were added at 2% to the CTRL. Mixes were then extruded and dried, generating five experimental diets that were fed to European sea bass juveniles (114 g) over 12 weeks. Vitamin E and carotenoid content of extruded diets showed signs of degradation. The experimental diets had very limited effects on fish growth or body composition, immunomodulatory response, muscle and liver antioxidant potential, organoleptic properties or consumer acceptance. Altogether, experimental findings suggest that neither a heightened inclusion dose of 500 mg kg-1 of vitamin E, nor a 2% inclusion of natural antioxidants provided additional antioxidant protection, compared to fish fed diets including the regular dose of 100 mg kg-1 of vitamin E.

13.
Mar Drugs ; 19(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34436308

RESUMO

The present study aimed to contrast the fatty acid (FA) profile of ascidians (Ascidiacea) and seaweeds (sea lettuce, Ulva spp. and bladderwrack, Fucus sp.) occurring in a coastal lagoon with versus without the influence of organic-rich effluents from fish farming activities. Our results revealed that ascidians and seaweeds from these contrasting environments displayed significant differences in their FA profiles. The n-3/n-6 ratio of Ascidiacea was lower under the influence of fish farming conditions, likely a consequence of the growing level of terrestrial-based ingredients rich on n-6 FA used in the formulation of aquafeeds. Unsurprisingly, these specimens also displayed significantly higher levels of 18:1(n-7+n-9) and 18:2n-6, as these combined accounted for more than 50% of the total pool of FAs present in formulated aquafeeds. The dissimilarities recorded in the FAs of seaweeds from these different environments were less marked (≈5%), with these being more pronounced in the FA classes of the brown seaweed Fucus sp. (namely PUFA). Overall, even under the influence of organic-rich effluents from fish farming activities, ascidians and seaweeds are a valuable source of health-promoting FAs, which confirms their potential for sustainable farming practices, such as integrated multi-trophic aquaculture.


Assuntos
Ácidos Graxos/metabolismo , Peixes , Alga Marinha , Urocordados , Animais , Aquicultura , Organismos Aquáticos , Pesqueiros
14.
Animals (Basel) ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201988

RESUMO

Following a meal, a series of physiological changes occurs in fish as they digest, absorb and assimilate ingested nutrients. This study aims to assess post-prandial free amino acid (FAA) activity in gilthead sea bream consuming a partial marine protein (fishmeal) replacement. Sea bream were fed diets where 16 and 27% of the fishmeal protein was replaced by plant protein. The essential amino acid (EAA) composition of the white muscle, liver and gut of sea bream was strongly correlated with the EAA composition of the 16% protein replacement diet compared to the 27% protein replacement diet. The mean FAA concentration in the white muscle and liver changed at 4 to 8 h after a meal and was not different to pre-feeding (0 h) and at 24 h after feeding. It was confirmed in this study that 16% replacement of marine protein with plant protein meets the amino acid needs of sea bream. Overall, the present study contributes towards understanding post-prandial amino acid profiles during uptake, tissue assimilation and immediate metabolic processing of amino acids in sea bream consuming a partial marine protein replacement. This study suggests the need to further investigate the magnitude of the post-prandial tissue-specific amino acid activity in relation to species-specific abilities to regulate metabolism due to dietary nutrient utilization.

15.
Insects ; 12(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203332

RESUMO

Although the inclusion of insects in fish diets is officially allowed in the EU since 2017, insect-based aquafeeds have not been widely adopted by the European aquaculture sector. In order to investigate the perceptions related with adoption trends, it is critical to explore the beliefs of people associated with the aquaculture sector on the use of insects in farmed fish diets. A survey was conducted among 228 participants of an aquaculture conference to explore their perceptions on the inclusion of insect meal in fish diets. Additionally, we investigated the attitudes of nine companies operating in the aquaculture and aquafeed sector in Greece that attended the conference towards this direction. The findings of the conference survey provide evidence that there is a wide-range awareness and acceptance regarding the use of insect-based feeds in farmed fish diets among the respondents. This is mainly driven by the expectations for the decline in fishing pressure on wild fish stocks, the reduction of the ecological footprint and the enhancement of the sustainability of the aquaculture sector. The results of the stakeholder survey show that six out of the nine companies that participated in the survey are favorably disposed towards the use of insect-based feeds. Specifically, four of them stated that they would produce or use aquafeeds based on insects. However, the results highlight the need for further research on the implementation of the wider adoption of insect-based feeds in aquaculture. The present study provides some first insights into the use of insect-based aquafeeds in Greece, for which there are no data available.

16.
Trop Anim Health Prod ; 52(5): 2443-2450, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32318973

RESUMO

The study aimed to evaluate heat-treated bean residue meal (Phaseolus vulgaris)-BRM-as an alternative protein source in diets for Nile tilapia fish. A completely randomized design was used, totaling four (n = 4) dietary treatments: diet without BRM (CON), raw BRM (RBRM) and heat-treated BRM at 100 °C for 15 min (BRM15), and 30 min (BRM30) before inclusion in diets. Nile tilapia fingerlings (1.3 g initial weight) were hand-fed the experimental diets for 66 days, divided equally into three meals per day. Performance parameters, body composition, nutrient retention, and physical characteristics of diets were evaluated. Growth and feed conversion were lower (P < 0.05) in fish fed BRM. Protein productive value was higher (P < 0.05) in fish fed CON diet than in fish receiving BRM. However, 30 min heat treatment of BRM increased (P < 0.05) protein retention in fish. Fish fed BRM30 also had higher protein content (P < 0.05) and reduced body lipid content (P < 0.05) than those fed CON diet. The physical characteristics (durability, dry matter leaching, waterproof time, and water stability time) were significantly improved (P < 0.05) in the BRM30 diet compared with other dietary treatments. The dietary inclusion of BRM at the level of 15% is not recommended for tilapia due to low growth performance and feed efficiency, regardless of preheating treatment. However, research on longer heat treatment time is needed due to the improvements observed in nutrient retention and physical characteristics of diets.


Assuntos
Ração Animal/análise , Ciclídeos/fisiologia , Dieta/veterinária , Phaseolus/química , Animais , Composição Corporal , Ciclídeos/crescimento & desenvolvimento , Temperatura Alta , Proteínas de Vegetais Comestíveis , Distribuição Aleatória
17.
Br J Nutr ; 124(4): 418-431, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32252833

RESUMO

There is an urgent need to find alternative feed resources that can further substitute fishmeal in Atlantic salmon diets without compromising health and food quality, in particular during the finishing feeding period when the feed demand is highest and flesh quality effects are most significant. This study investigates efficacy of substituting a isoprotein (35 %) and isolipid (35 %) low fishmeal diet (FM, 15 %) with Antarctic krill meal (KM, 12 %) during 3 months with growing finishing 2·3 kg salmon (quadruplicate sea cages/diet). Final body weight (3·9 (se 0·04) kg) was similar in the dietary groups, but the KM group had more voluminous body shape, leaner hearts and improved fillet integrity, firmness and colour. Ectopic epithelial cells and focal Ca deposits in intestine were only detected in the FM group. Transcriptome profiling by microarray of livers showed dietary effects on several immune genes, and a panel of structural genes were up-regulated in the KM group, including cadherin and connexin. Up-regulation of genes encoding myosin heavy chain proteins was the main finding in skeletal muscle. Morphology examination by scanning electron microscopy and secondary structure by Fourier transform IR spectroscopy revealed more ordered and stable collagen architecture of the KM group. NEFA composition of skeletal muscle indicated altered metabolism of n-3, n-6 and SFA of the KM group. The results demonstrated that improved health and meat quality in Atlantic salmon fed krill meal were associated with up-regulation of immune genes, proteins defining muscle properties and genes involved in cell contacts and adhesion, altered fatty acid metabolism and fat deposition, and improved gut health and collagen structure.


Assuntos
Ração Animal/análise , Salmo salar , Alimentos Marinhos/análise , Animais , Euphausiacea , Análise de Alimentos , Qualidade dos Alimentos , Perfilação da Expressão Gênica , Fígado/metabolismo
18.
Fish Physiol Biochem ; 45(3): 1067-1081, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30915616

RESUMO

The present work focuses on the use of defatted biomass of the microalga Nannochloropsis sp. from the biodiesel industry, as a partial substitute of fish meal (FM) in diets for European sea bass. The effects of increasing inclusion levels of microalgal meal on growth performance, body composition, nutrient utilization, gut morphology, and innate immunity were evaluated after 93 days. A reference alga-free diet was the control (CTRL) diet, and the three experimental diets contained 5 (MA5), 10 (MA10), and 15% (MA15) of the microalgal meal. The microalga-rich diets were supplemented with DL-methionine to assure sea bass dietary requirement. Overall, nutrient apparent digestibilities (ADCs) of the diets were not altered by the microalgal inclusion, but energy ADC was highest in fish fed the CTRL diet (90% vs 88%). At the end of the trial, fish growth performance was similar among dietary treatments (DGI of 1.0), but fish fed MA10 had a significantly higher feed conversion ratio than those fed CTRL and MA5. Final whole body composition and nutrient gain of fish fed the different diets were similar. No significant differences were detected in gut morphology among treatments. Innate immune parameters (lysozyme, alternative complement pathway-ACH50, and peroxidase) were examined, and ACH50 of the fish fed MA15 was significantly lower than those fed MA10, suggesting a dose-dependent stimulation of the innate immune response. The present results indicate that defatted microalgal meal can replace fishmeal in European sea bass diets-at inclusion levels of up to 15%-contributing to a circular economy approach.


Assuntos
Ração Animal/análise , Bass/fisiologia , Proteínas Alimentares/análise , Microalgas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biocombustíveis , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Digestão , Distribuição Aleatória
19.
Environ Pollut ; 240: 733-744, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29778059

RESUMO

Dietary fish oil used in aquafeed transfers marine pollutants to farmed fish. However, the entire transfer route of marine pollutants in dietary fish oil from ocean to table fish has not been tracked quantitatively. To track the entire transfer route of marine pollutants from wild fish to farmed fish through dietary fish oil and evaluate the related human health risks, we obtained crude and refined fish oils originating from the same batch of wild ocean anchovy and prepared fish oil-containing purified aquafeeds to feed omnivorous lean Nile tilapia and carnivorous fatty yellow catfish for eight weeks. The potential human health risk of consumption of these fish was evaluated. Marine persistent organic pollutants (POPs) were concentrated in fish oil, but were largely removed by the refining process, particularly dioxins and polychlorinated biphenyls (PCBs). The differences in the POP concentrations between crude and refined fish oils were retained in the fillets of the farmed fish. Fillets fat content and fish growth were positively and negatively correlated to the final POPs deposition in fillets, respectively. The retention rates of marine POPs in the final fillets through fish oil-contained aquafeeds were 1.3%-5.2%, and were correlated with the POPs concentrations in feeds and fillets, feed utilization and carcass ratios. The dietary crude fish oil-contained aquafeeds are a higher hazard ratio to consumers. Prohibiting the use of crude fish oil in aquafeed and improving growth and feed efficiency in farmed fish are promising strategies to reduce health risks originating from marine POPs.


Assuntos
Dioxinas/análise , Óleos de Peixe/química , Contaminação de Alimentos/análise , Bifenilos Policlorados/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/metabolismo , Animais , Peixes-Gato/metabolismo , Ciclídeos/metabolismo , Pesqueiros , Humanos , Oceanos e Mares , Poluentes Químicos da Água/análise
20.
An. acad. bras. ciênc ; 89(3,supl): 2495-2504, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886777

RESUMO

ABSTRACT The purpose of this study was to develop and improve protein concentration techniques for two industrial by-products with the potential for use in fish feed. In particular, we chemically characterized crambe meal and sunflower meal and their protein concentrates. Three different protein concentration methods were tested: isoelectric pH (pHi), acid pH and alkaline pH. For crambe and sunflower meals extraction using the pHi method was most efficient in terms of protein yield and crude protein content in the concentrates; this method also increased lysine and methionine content in the concentrates. The water holding capacity of the sunflower protein concentrate was greater than that of the crambe protein concentrate. The crambe protein concentrate had a foam-formation capacity of 15%, which stabilized at 6% after 90 minutes. The protein concentration method also reduced total phenolic content by approximately 50% in the concentrates compared with the meals. Therefore, we conclude that protein concentration using the pHi method is the most efficient technique for crambe and sunflower meals, and the use of this technique can decrease total phenolic compounds while improving meal quality for fish feeding.


Assuntos
Animais , Proteínas de Plantas , Crambe (Planta)/química , Peixes , Helianthus/química , Ração Animal , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...