Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.984
Filtrar
1.
J Infect Public Health ; 17(9): 102510, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39088990

RESUMO

BACKGROUND: Nonspecific acute tropical febrile illnesses (NEATFI) are common in the Latin American tropics. Dengue, Chikungunya, Zika, Mayaro, and Usutu, among others, can coexist in the American tropics. This study aimed to surveil the arboviruses that cause| acute febrile syndrome in patients in the Meta department, Colombia. METHODS: Between June 2021 and February 2023, an epidemiological surveillance study was conducted in the Llanos of the Meta department in Eastern Colombia. RESULTS: One hundred patients in the acute phase with typical prodromal symptoms of NEATFI infection who attended the emergency department of the Villavicencio Departmental Hospital were included. ELISA tests were performed for Dengue, Usutu, Chikungunya, and Mayaro. RT-qPCR was performed to detect the arboviruses Usutu, Dengue, Zika, Mayaro, and Oropouche. The seroprevalence for the Chikungunya, Mayaro, and Usutu viruses was 41 % (28/68), 40 % (27/67), and 62 % (47/75), respectively. Seroconversion for Chikungunya was observed in one patient; two seroconverted to Mayaro and one to Usutu. The NS5 gene fragment of the Usutu virus was detected in nine febrile patients. RT-qPCR of the remaining arboviruses was negative. The clinical symptoms of the nine Usutu-positive patients were very similar to those of Dengue, Chikungunya, Zika, and Mayaro infections. CONCLUSIONS: The pervasive detection of unexpected viruses such as Usutu and Mayaro demonstrated the importance of searching for other viruses different from Dengue. Because Usutu infection and Mayaro fever have clinical features like Dengue, a new algorithm should be proposed to improve the accuracy of acute tropical fevers.

2.
mSphere ; : e0040124, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092912

RESUMO

As climate change alters Earth's biomes, it is expected the transmission dynamics of mosquito-borne viruses will change. While the effects of temperature changes on mosquito-virus interactions and the spread of the pathogens have been elucidated over the last decade, the impact of relative humidity changes is still relatively unknown. To overcome this knowledge gap, we exposed Aedes aegypti females to various humidity conditions. We measured different components of vectorial capacity such as survival, blood-feeding rates, and changes in infection and dissemination of Zika virus. Survival decreased as the humidity level decreased, while infection rates increased as the humidity level decreased. Alternatively, blood feeding rates and disseminated infection rates peaked at the intermediate 50% relative humidity treatment but were the same in the 30% and 80% relative humidity treatments. These results provide empirical evidence that Ae. aegypti exposure to low humidity can enhance Zika virus infection in the mosquito, which has important implications in predicting how climate change will impact mosquito-borne viruses.IMPORTANCEViruses transmitted by mosquitoes to humans are a major public health burden and are expected to increase under climate change. While we know that temperature is an important driver of variation in arbovirus replication in the mosquito, very little is known about how other relevant climate variables such as humidity will influence the interaction between mosquitoes and the viruses they transmit. Given the variability in humidity across environments, and the predicted changes in humidity under climate change, it is imperative that we also study the impact that it has on mosquito infection and transmission of arboviruses.

4.
Viruses ; 16(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39066260

RESUMO

Dengue (DENV) and Chikungunya (CHIKV) viruses can be transmitted simultaneously by Aedes mosquitoes, and there may be co-infections in humans. However, how the adaptive immune response is modified in the host has yet to be known entirely. In this study, we analyzed the cross-reactivity and neutralizing activity of IgG antibodies against DENV and CHIKV in sera of patients from the Mexican Institute of Social Security in Veracruz, Mexico, collected in 2013 and 2015 and using IgG antibodies of BALB/c mice inoculated with DENV and/or CHIKV. Mice first inoculated with DENV and then with CHIKV produced IgG antibodies that neutralized both viruses. Mice were inoculated with CHIKV, and then with DENV; they had IgG antibodies with more significant anti-CHIKV IgG antibody neutralizing activity. However, the inoculation only with CHIKV resulted in better neutralization of DENV2. In sera obtained from patients in 2013, significant cross-reactivity and low anti-CHIKV IgG antibody neutralizing activity were observed. In CHIKV-positive 2015 sera, the anti-DENV IgG antibody neutralizing activity was high. These results suggest that CHIKV stimulates DENV2-induced memory responses and vice versa. Furthermore, cross-reactivity between the two viruses generated neutralizing antibodies, but exchanging CHIKV for DENV2 generated a better anti-CHIKV neutralizing response.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Febre de Chikungunya , Vírus Chikungunya , Reações Cruzadas , Vírus da Dengue , Dengue , Imunoglobulina G , Camundongos Endogâmicos BALB C , Animais , Vírus Chikungunya/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Humanos , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Reações Cruzadas/imunologia , Camundongos , México , Feminino , Testes de Neutralização , Masculino , Coinfecção/imunologia , Coinfecção/virologia , Adulto
5.
Viruses ; 16(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39066278

RESUMO

Mosquito-borne arboviruses include several pathogens that are responsible for many diseases of significant public health burden. Mosquitoes also host many insect-specific viruses that cannot replicate in vertebrate cells. These insect-specific viruses persist in nature predominantly via vertical transmission (VT), and they exhibit high VT rates (VTRs). Cell-fusing agent virus (CFAV), an insect-specific orthoflavivirus, shows high VTRs in naturally infected mosquitoes but not in artificially infected mosquitoes. To determine whether the high VTRs are due to transovarial transmission, we investigated VT and ovary infection patterns in naturally CFAV-infected Aedes aegypti (Bangkok) mosquitoes. VT was monitored by detecting CFAV among the progeny by reverse-transcription polymerase chain reaction and ovary infection was determined by in situ hybridization using a virus-specific probe. We showed that in CFAV-positive mosquitoes, ovarian follicles were infected, suggesting that VT occurs by transovarial transmission in naturally infected mosquitoes. Additionally, mosquitoes harbored dormant, non-replicative CFAV that remained below the detection level. These results suggested that CFAV persists via VT in nature and has the potential to remain dormant in diapausing mosquitoes during unfavorable conditions. Understanding this VT mechanism is crucial for comprehending the persistence of insect-specific viruses (and potentially dual-host arboviruses) in their natural environment.


Assuntos
Aedes , Mosquitos Vetores , Ovário , Animais , Aedes/virologia , Feminino , Mosquitos Vetores/virologia , Ovário/virologia , Replicação Viral , Arbovírus/fisiologia
6.
Integr Zool ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016029

RESUMO

Ticks can transmit many pathogens, including arboviruses, to their vertebrate hosts. Arboviruses must overcome or evade defense mechanisms during their passage from the tick gut to the hemolymph, salivary glands, and the feeding site in the host skin. This review summarizes current knowledge of defense mechanisms in specific tick tissues and at the feeding site in the host skin. We discuss the possible roles of these defense mechanisms in viral infection and transmission. The responses of tick salivary proteins to arbovirus infection are also discussed. This review provides information that may help accelerate research on virus-tick interactions.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38961045

RESUMO

Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO2, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.

8.
Parasit Vectors ; 17(1): 285, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956650

RESUMO

Usutu virus is an emerging pathogen transmitted by mosquitoes. Culex modestus mosquitoes are widespread in Europe, but their role in disease transmission is poorly understood. Recent data from a single infectious mosquito suggested that Culex modestus could be an unrecognized vector for Usutu virus. In this study, our aim was to corroborate this finding using a larger sample size. We collected immature Culex modestus from a reedbed pond in Flemish Brabant, Belgium, and reared them in the laboratory until the third generation. Adult females were then experimentally infected with Usutu virus in a blood meal and incubated at 25 °C for 14 days. The presence of Usutu virus in the saliva, head and body of each female was determined by plaque assay and quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). The transmission efficiency was 54% (n = 15/28), confirming that Belgian Culex modestus can experimentally transmit Usutu virus.


Assuntos
Culex , Infecções por Flavivirus , Flavivirus , Mosquitos Vetores , Animais , Culex/virologia , Feminino , Mosquitos Vetores/virologia , Flavivirus/genética , Flavivirus/fisiologia , Bélgica , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Saliva/virologia
9.
Ticks Tick Borne Dis ; 15(6): 102380, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996644

RESUMO

Beiji nairovirus (BJNV), in the family Nairoviridae, the order Bunyavirales, was recently reported as a causative agent of an emerging tick-borne zoonotic infection in China. This study investigated the prevalence of BJNV in ticks in Japan. Screening of over 2,000 ticks from multiple regions revealed a widespread distribution of BJNV and BJNV-related viruses in Japan, particularly in the northern island, and in other high altitude areas with exclusive occurrence of Ixodes ticks. Phylogenetic analysis identified three distinct groups of nairoviruses in ticks in Japan: BJNV, Yichun nairovirus (YCNV) and a newly identified Mikuni nairovirus (MKNV). BJNV and YCNV variants identified in ticks in Japan exhibited high nucleotide sequence identities to those in China and Russia with evidence of non-monophyletic evolution among BJNVs, suggesting multiple cross-border transmission events of BJNV between the Eurasian continent and Japan. Whole genome sequencing of BJNV and MKNV revealed a unique GA-rich region in the S segment, the significance of which remains to be determined. In conclusion, the present study has shown a wide distribution and diversity of BJNV-related nairoviruses in Ixodes ticks in Japan and has identified unique genomic structures. The findings demonstrate the significance of BJNV as well as related viruses in Japan and highlight the necessity of monitoring emerging nairovirus infections and their potential risks to public health.

10.
J Med Entomol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001615

RESUMO

Directly involved in the "suck-and-spit" physiology, female mosquito salivary glands (SGs) primarily imbibe blood for egg development and release anticoagulants to keep blood flowing. Indirectly involved, mosquitoes can uptake arboviruses during blood feeding from a viremic host. This research examined the presence of the filamentous cytoplasmic contractile protein (F-actin) and heparan sulfate proteoglycan (HSPG), in the female mosquito SGs. Immunofluorescent antibody labeling of actin molecules or HSPG combined with anatomy suggests that F-actin forms a network in the SG lobe parenchymal cells attached to intralobar ducts by HSPG. In addition, F-actin twists around intralobar SG ducts in a beaded manner, altogether involved in the expulsion of SG secretions. This arrangement in female Aedes aegypti SGs, suggests that F-actin structures are integrally involved in transmitting infectious agents into hosts.

11.
JMIR Public Health Surveill ; 10: e54281, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042429

RESUMO

Infectious disease (ID) cohorts are key to advancing public health surveillance, public policies, and pandemic responses. Unfortunately, ID cohorts often lack funding to store and share clinical-epidemiological (CE) data and high-dimensional laboratory (HDL) data long term, which is evident when the link between these data elements is not kept up to date. This becomes particularly apparent when smaller cohorts fail to successfully address the initial scientific objectives due to limited case numbers, which also limits the potential to pool these studies to monitor long-term cross-disease interactions within and across populations. CE data from 9 arbovirus (arthropod-borne viruses) cohorts in Latin America were retrospectively harmonized using the Maelstrom Research methodology and standardized to Clinical Data Interchange Standards Consortium (CDISC). We created a harmonized and standardized meta-cohort that contains CE and HDL data from 9 arbovirus studies from Latin America. To facilitate advancements in cross-population inference and reuse of cohort data, the Reconciliation of Cohort Data for Infectious Diseases (ReCoDID) Consortium harmonized and standardized CE and HDL from 9 arbovirus cohorts into 1 meta-cohort. Interested parties will be able to access data dictionaries that include information on variables across the data sets via Bio Studies. After consultation with each cohort, linked harmonized and curated human cohort data (CE and HDL) will be made accessible through the European Genome-phenome Archive platform to data users after their requests are evaluated by the ReCoDID Data Access Committee. This meta-cohort can facilitate various joint research projects (eg, on immunological interactions between sequential flavivirus infections and for the evaluation of potential biomarkers for severe arboviral disease).


Assuntos
Infecções por Arbovirus , Humanos , Infecções por Arbovirus/epidemiologia , Estudos de Coortes , América Latina/epidemiologia , Masculino , Feminino , Criança , Arbovírus , Estudos Retrospectivos , Adolescente , Pré-Escolar , Adulto
12.
Biology (Basel) ; 13(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39056717

RESUMO

Arboviruses pose a significant global public health threat, with Ross River virus (RRV), Barmah Forest virus (BFV), and dengue virus (DENV) being among the most common and clinically significant in Australia. Some arboviruses, including those prevalent in Australia, have been reported to cause transfusion-transmitted infections. This study examined the spatiotemporal variation of these arboviruses and their potential impact on blood donation numbers across Australia. Using data from the Australian Department of Health on eight arboviruses from 2002 to 2017, we retrospectively assessed the distribution and clustering of incidence rates in space and time using Geographic Information System mapping and space-time scan statistics. Regression models were used to investigate how weather variables, their lag months, space, and time affect case and blood donation counts. The predictors' importance varied with the spatial scale of analysis. Key predictors were average rainfall, minimum temperature, daily temperature variation, and relative humidity. Blood donation number was significantly associated with the incidence rate of all viruses and its interaction with local transmission of DENV, overall. This study, the first to cover eight clinically relevant arboviruses at a fine geographical level in Australia, identifies regions at risk for transmission and provides valuable insights for public health intervention.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38965027

RESUMO

The Spanish Society of Tropical Medicine and International Health (SEMTSI), the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), the Spanish Society of Emergency Medicine (SEMES), the Spanish Society of Primary Care Physicians (SEMERGEN) and the Spanish Society of Family and Community Medicine (SEMFYC) have prepared a consensus statement on the diagnosis and management of patients with imported febrile illnesses. Twenty authors with different backgrounds and representing different healthcare perspectives (ambulatory primary care, travel and tropical medicine specialists, emergency medicine, hospital care, microbiology and parasitology and public health), identified 39 relevant questions, which were organised in 7 thematic blocks. After a systematic review of the literature and a thoughtful discussion, the authors prepared 125 recommendations, as well as several tables and figures to be used as a consulting tool. The present executive summary shows a selection of some of the most relevant questions and recommendations included in the guidelines.


Assuntos
Doenças Transmissíveis Importadas , Febre , Humanos , Febre/etiologia , Febre/diagnóstico , Doenças Transmissíveis Importadas/diagnóstico , Doenças Transmissíveis Importadas/terapia , Doença Relacionada a Viagens , Espanha
14.
Animal Model Exp Med ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987937

RESUMO

Vector-borne diseases caused by arthropod-borne viruses (arboviruses) are a considerable challenge to public health globally. Mosquito-borne arboviruses, such as Chikungunya, Dengue, and Zika viruses, cause a range of human illnesses and may be fatal. Currently, efforts to control these diseases still face challenges due to growing vector resistance towards insecticides, urbanization, and limited effective antiviral treatments and vaccines. Animal models are crucial in antiviral research on mosquito-borne arboviruses, playing a role in understanding disease mechanisms, vaccine development, and toxicity testing, but the application of animal models still faces the challenges of ethical considerations and animal-to-human translational success. Genetically engineered mouse models, hamster models and non-human primate (NHP) are currently used in arbovirus research, but new models such as tree shrews and novel humanized mice are emerging. In the context of Malaysian research, the use of long-tailed macaques as potential NHP models for arbovirus research is possible; however, it faces the ethical dilemma of using an endangered species for scientific purposes. Overall, animal models play a crucial role in advancing infectious disease research, but a balance between medical research and species conservation must be upheld.

15.
Methods Mol Biol ; 2824: 15-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039403

RESUMO

Vector competence assays allow to measure, in the laboratory, the ability of a mosquito to get infected and then retransmit an arbovirus while mimicking natural vector infection route. Aedes aegypti is a major vector of arboviruses worldwide and thus a reference species used in vector competence assays. Rift Valley fever virus (RVFV) is a major public health threat, mostly in Africa, that infects humans and animals through the bite of mosquito vectors. Here, we describe vector competence assay of Aedes aegypti mosquitoes for RVFV, from mosquito exposure to the virus through an infectious artificial blood meal to the measurement of virus prevalence in the mosquito's body, head, and saliva.


Assuntos
Aedes , Mosquitos Vetores , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Aedes/virologia , Vírus da Febre do Vale do Rift/fisiologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Saliva/virologia , Humanos
16.
Pathogens ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057776

RESUMO

We performed whole genome sequencing (WGS) of 15 Palyam serogroup virus (PALV) strains isolated from cattle or Culicoides biting midges in Japan from 1984 to 2018. We found that the PALV strains consisted of Chuzan (Kasba) virus (CHUV), D'Aguilar virus (DAGV), Bunyip Creek virus, and another PALV, Marrakai virus (MARV). The Japanese MARV strains isolated in 1997 were closely related to Australian PALV strains isolated in 1968-1976 in genome segments 2 and 10, but they were most closely related to other Japanese PALV strains in the other genome segments. Our data suggest that the Japanese MARV strains were reassortant viruses between Asian and Australian PALVs. In addition to the WGS, we developed a real-time reverse-transcription polymerase chain reaction assay that can broadly detect PALV and specifically detect CHUV and DAGV, utilizing the data obtained by the WGS in this study. We detected the DAGV gene in bovine stillborn fetuses and congenitally abnormal calves in 2019 using the newly developed assay. To our knowledge, this is the first report of isolation of MARV outside of Australia and the first report of detection of PALV in bovine fetuses or calves with congenital abnormality outside of Africa.

17.
Pathogens ; 13(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39057817

RESUMO

Bluetongue virus (BTV, Sedoreoviridae: Orbivirus) causes an economically important disease, namely, bluetongue (BT), in domestic and wild ruminants worldwide. BTV is endemic to South India and has occurred with varying severity every year since the virus was first reported in 1963. BT can cause high morbidity and mortality to sheep flocks in this region, resulting in serious economic losses to subsistence farmers, with impacts on food security. The epidemiology of BTV in South India is complex, characterized by an unusually wide diversity of susceptible ruminant hosts, multiple vector species biting midges (Culicoides spp., Diptera: Ceratopogonidae), which have been implicated in the transmission of BTV and numerous co-circulating virus serotypes and strains. BT presence data (1997-2011) for South India were obtained from multiple sources to develop a presence/absence model for the disease. A non-linear discriminant analysis (NLDA) was carried out using temporal Fourier transformed variables that were remotely sensed as potential predictors of BT distribution. Predictive performance was then characterized using a range of different accuracy statistics (sensitivity, specificity, and Kappa). The top ten variables selected to explain BT distribution were primarily thermal metrics (land surface temperature, i.e., LST, and middle infrared, i.e., MIR) and a measure of plant photosynthetic activity (the Normalized Difference Vegetation Index, i.e., NDVI). A model that used pseudo-absence points, with three presence and absence clusters each, outperformed the model that used only the recorded absence points and showed high correspondence with past BTV outbreaks. The resulting risk maps may be suitable for informing disease managers concerned with vaccination, prevention, and control of BT in high-risk areas and for planning future state-wide vector and virus surveillance activities.

18.
Int J Health Geogr ; 23(1): 18, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972982

RESUMO

BACKGROUND: The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in predictive models. METHODS: We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites where entomological data are not available. RESULTS: Landscape analyses applied to satellite images showed that urban types can be clearly identified using texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding sites, such as buildings class area, landscape shape index, building number, and the first component of texture indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential breeding sites varied highly depending on their type, with better results on breeding sites types commonly found in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model outputs could be used as input to a mosquito dynamics model when no accurate field data are available. CONCLUSION: This study offers a first use of routinely collected data on potential breeding sites in a research study. It highlights the potential benefits of including satellite-based characterizations of the urban environment to improve vector control strategies.


Assuntos
Aedes , Cidades , Imagens de Satélites , Animais , Imagens de Satélites/métodos , Mosquitos Vetores , Guiana Francesa/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Dengue/prevenção & controle , Humanos , Cruzamento/métodos
19.
Int J Infect Dis ; 146: 107191, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053618

RESUMO

OBJECTIVES: The anticipated increase in international tourist flows and the first locally acquired dengue cases in the Paris region in October 2023 have raised concerns about potential arbovirus outbreaks during the 2024 Olympics. Unlike previous mass sporting events at risk of arbovirus outbreaks, Paris is a nonendemic arbovirus area, requiring a unique investigation. METHODS: Therefore, we analyzed factors conducive to possible arbovirus epidemics in temperate regions: vector distribution in the Paris area, seasonal global arboviral disease patterns, projected visitor demographics, and international flight bookings. RESULTS AND CONCLUSION: Our results suggest that the expected visitors' profile for the summer of 2024 should not increase the risk of arbovirus importation into the Paris region compared to a typical year. Conversely, the primary risk of arbovirus outbreaks is likely to come from within France, particularly from the French West Indies, where a notable, albeit declining, dengue outbreak is underway. Vigilant surveillance by French health authorities will ensure that this trend continues.

20.
Acta Trop ; 257: 107272, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38885823

RESUMO

The Orthoflavivirus ilheusense (ILHV) is an arbovirus that was first isolated in Brazil in 1944 during an epidemiologic investigation of yellow fever. Is a member of the Flaviviridae family and it belongs to the antigenic complex of the Ntaya virus group. Psorophora ferox is the primary vector of ILHV and this study presents the isolation and phylogenetic analysis of ILHV in a pool of Ps. ferox collected in the state of Goiás in 2021. Viral isolation tests were performed on Vero cells and C6/36 clones. The indirect immunofluorescence test (IFI) was used to confirm the positivity of the sample. The positive sample underwent RT-qPCR, sequencing, and phylogenetic analysis. This is the first report of ILHV circulation in this municipality and presented close relationship between this isolate and another ILHV isolate collected in the city of Belém (PA).


Assuntos
Culicidae , Filogenia , Animais , Brasil , Células Vero , Culicidae/virologia , Chlorocebus aethiops , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Mosquitos Vetores/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...