Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.809
Filtrar
1.
Front Plant Sci ; 15: 1389958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114468

RESUMO

As the most effective therapeutic drug for malaria, artemisinin can only be extracted from Artemisia annua L., which is sensitive to the surrounding growing habitat. Histone acetyltransferases (HATs) contain acetyl groups, which modulate mRNA transcription and thereby regulate plant environmental adaptation. Comprehensive analyses of HATs have been performed in many plants, but systematic identification of HATs in medicinal plants is lacking. In the present study, we identified 11 AaHATs and characterized these genes into four classes according to their conserved protein structures. According to the phylogenetic analysis results, potential functions of HAT genes from Arabidopsis thaliana, Oryza sativa, and A. annua were found. According to our results, AaHAT has a highly conserved evolutionary history and is rich in highly variable regions; thus, AaHAT has become a comparatively ideal object of medical plant identification and systematic study. Moreover, motifs commonly present in histone acetyltransferases in the A. annua genome may be associated with functional AaHATs. AaHATs appear to be related to gene-specific functions. AaHATs are regulated by cis-elements, and these genes may affect phytohormone responsiveness, adaptability to stress, and developmental growth. We performed expression analyses to determine the potential roles of AaHATs in response to three environmental stresses. Our results revealed a cluster of AaHATs that potentially plays a role in the response of plants to dynamic environments.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39067315

RESUMO

Artemisia capillaris Thunb. (A. capillaris) is a well-known traditional Chinese herbal medicine with a wide range of pharmacological effects, such as soothing the liver and gallbladder, heat clearance, and detoxifying. Hence, its extract is commonly added to various traditional Chinese medicine formulas. Traditional Chinese medicine injection (TCMI) is a mature pharmaceutical dosage form developed using TCM theory combined with modern science and technology. Notably, allergic reactions, especially pseudo­allergic reactions (PARs), greatly limited the use of these injections. Therefore, screening pseudo­allergic components in A. capillaris extract is clinically significant. In the present study, we proposed a two-dimensional screening and identification system based on mas-related G protein-coupled receptor X2-HALO-tag/cell membrane chromatography (MrgX2-HALO-tag/CMC) high performance liquid chromatography mass spectrometry (HPLC-MS); seven potential active components were screened from 75 % ethanol extract of A. capillaris: NCA, CA, CCA, 1,3-diCQA, ICA-B, ICA-A, and ICA-C. The receptor-ligand interactions between these seven compounds and MrgX2 protein were analyzed using frontal analysis and molecular docking technology. Furthermore, a mast cell degranulation-related assay was used to assess the pseudo­allergic activity of these compounds. The screened compounds can serve as ligands of MrgX2, and this study provides a research basis for pseudo­allergic reactions caused by TCMIs containing A. capillaris.

3.
Vet World ; 17(6): 1318-1327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39077447

RESUMO

Background and Aim: Artemisia annua (AA), used as a growth promoter in poultry, lowers feed costs and enhances economic efficiency. This study aimed to assess the impact of varying AA concentrations on broiler chicken growth, gene expression, and profitability. Materials and Methods: Two hundred 1-day-old male Cobb chicks were randomly allocated into four treatment groups, each containing five replicates and 10 birds. The experimental groups consisted of G1 (basal diet), G2 (basal diet with 0.3% AA), G3 (basal diet with 0.6% AA), and G4 (basal diet with 0.9% AA). The birds had continuous access to feed and water throughout the study. The experiment lasted for 42 days. We measured the growth performance (Feed intake, Life weight), carcass traits (weight after slaughter, dressed carcass, heart, gizzard, spleen, giblet and thymus weight), liver and spleen antioxidants (CAT, GSH, SOD), and gene expression of anti-inflammatory and immune- related genes. Results: The primary findings revealed that the addition of 0.6% AA had a positive impact (p < 0.05) on all investigated variables compared with the control and other groups. Dietary supplementation with 0.6% AA led to increased breast, giblet, skeleton, and total yield, and net return compared with the control group. Supplementation with AA exhibited antioxidant, anti-inflammatory, and immunological effects through improved levels of antioxidant superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in tissue homogenates of the liver and spleen. It also upregulated the relative messenger RNA levels of anti-inflammatory interleukin (IL)-10, SOD, CAT, and GSH-Px, whereas IL-1ß and tumor necrosis factor-alpha were downregulated. Conclusion: The study found that AA is a promising replacement for antibiotics in poultry farming as a growth promoter for chickens. 0.6% AA in the broiler diet yielded the best results, striking a balance between superior performance and robust economic benefits.

4.
Microorganisms ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065059

RESUMO

To decrease periodontal pathogens and increase the number of beneficial bacteria, probiotics and bioactive compounds made via microbial bioconversion are recently used. In addition, the interest regarding probiotics-mediated bioconversion with popular medicinal plants is increasing. Artemisia herba-alba, a type of wormwood, has recently been attention as a medicinal plant due to its various bioactive compounds. Therefore, we developed bioconverted milk containing A. herba-alba that effectively inhibited periodontal pathogens and α-glucosidase. To select the appropriate lactic acid bacteria for the probiotic candidate strain, 74 strains of lactic acid bacteria were screened. Among them, Lactiplantibacillus plantarum SMFM2016-RK was chosen as the probiotic due to its beneficial characteristics such as high acid and bile tolerance, antioxidant activity, and α-glucosidase inhibition. Based on the minimal bactericidal concentration against three periodontal pathogens, the following appropriate concentrations of Artemisia herba-alba extract were added to milk: 5 mg/mL of A. herba-alba ethanol extract and 25 mg/mL of A. herba-alba hot-water extract. Four bioconverted milks (BM), BM1, BM2, BM3, and BM4, were produced by combining L. plantarum SMFM2016-RK alone, L. plantarum SMFM2016-RK and ethanol extract, L. plantarum SMFM2016-RK and hot-water extract, and L. plantarum SMFM2016-RK with both extracts. As a result of antimicrobial activity, BM3 inhibited the growth of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis the most, and BM4 suppressed the growth of Fusobacterium nucleatum the most. In addition, bioconverted milk containing A. herba-alba (BM2, BM3, and BM4) inhibited α-glucosidase more effectively than BM1. The whole genome of L. plantarum SMFM2016-RK was obtained, and 3135 CDS, 67 tRNA, and 16 RNA were predicted. The genome annotation of L. plantarum SMFM2016-RK revealed 11 CDS related to proteolysis and amino acid metabolism and 2 CDS of phenolic acid-metabolizing enzymes. In conclusion, A. herba-alba-added milk bioconverted by L. plantarum SMFM2016-RK displayed both the growth inhibitory effect on periodontal pathogens and the α-glucosidase inhibitory activity; thus, it necessitates to evaluate the effects on the alleviation of periodontal diseases and glycemic control through future animal experiments.

5.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065672

RESUMO

The expected progress in SARS-CoV-2 vaccinations, as anticipated in 2020 and 2021, has fallen short, exacerbating global disparities due to a lack of universally recognized "safe and effective" vaccines. This study focuses on extracts of South African medicinal plants, Artemisia annua and Artemisia afra, to identify metabolomic bioactive compounds inhibiting the binding of the SARS-CoV-2 spike protein to ACE2 receptors. The extracts were monitored for cytotoxicity using a resazurin cell viability assay and xCELLigence real-time cell analyzer. Chemical profiling was performed using UPLC-MS/MS, orthogonal projection to latent structures (OPLS), and evaluated using principle component analysis (PCA) models. Identified bioactive compounds were subjected to in vitro SARS-CoV-2 enzyme inhibition assay using standard methods and docked into the spike (S) glycoprotein of SARS-CoV-2 using Schrodinger® suite followed by molecular dynamics simulation studies. Cell viability assays revealed non-toxic effects of extracts on HEK293T cells at lower concentrations. Chemical profiling identified 81 bioactive compounds, with compounds like 6″-O-acetylglycitin, 25-hydroxyvitamin D3-26,23-lactone, and sesaminol glucoside showing promising binding affinity. Molecular dynamics simulations suggested less stable binding, but in vitro studies demonstrated the ability of these compounds to interfere with SARS-CoV-2 spike protein's binding to the human ACE2 receptor. Sesaminol glucoside emerged as the most effective inhibitor against this interaction. This study emphasizes the importance of multiplatform metabolite profiling and chemometrics to understand plant extract composition. This finding is of immense significance in terms of unravelling metabolomics bioactive compounds inhibiting the binding of the SARS-CoV-2 spike protein to ACE2 receptors and holds promise for phytotherapeutics against SARS-CoV-2.

6.
Phytomedicine ; 132: 155897, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39032279

RESUMO

BACKGROUND: Intestinal health is affected by heredity, lifestyle, and structure of gut microbiota. The imbalance of symbiotic and harmful bacteria in gut microbiota may increase the occurrence of colonic inflammation. Supplementary A. muciniphila can improve the survival rate of colitis mice, reduce colon tissue injury, and the expression of anti-inflammatory factors was upregulated. Artemisia argyi has been reported to have anti-inflammatory, antioxidant, bactericidal, and immunomodulatory effects. However, its anti-inflammatory effect and mechanism, and its influence on gut microbiota and metabolites are still unclear yet. PURPOSE: To explore whether Artemisia argyi Polyphenols(AAPs) can alleviate ulcerative colitis (UC) by changing gut microbiota. METHODS: The therapeutic effect of AAPs on colitis was investigated by inducing ulcerative colitis in mice using dextran sodium sulfate (DSS) and administering different doses of AAPs orally to mice. Exploring the levels of inflammatory proteins, oxidative stress proteins, and barrier proteins using western blotting and immunofluorescence, and explored the structural changes of gut microbiota and its metabolites. Meanwhile, in order to explore whether the role of AAPs in alleviating colitis is based on the regulation of gut microbiota structure, we conducted fecal microbiota transplantation (FMT). RESULTS: It showed that AAPs and FMT trial alleviated DSS-induced colonic injury, including clinical parameters and pathological injury of colon tissue, reduction in the expression of inflammatory proteins: IL-6, TNF-α, p-p65, p-IκBα, and increase in the expression of antioxidant proteins: Nrf2, NQO-1 and HO-1 and barrier proteins: Claudin-1, Occludin, ZO-1 and MUC2. AAPs and FMT promoted the content of beneficial bacteria, such as Butyricimonas and Lactobacillus, and the content of beneficial metabolites for instance acetic acid, butyric acid, and valeric acid has also increased. CONCLUSION: These results suggested that AAPs might improve DSS-induced colonic injury by changing the structural of gut microbiota while promoting the synthesis of fatty acids in the intestine, thereby providing a theoretical basis for using AAPs to treat ulcerative colitis.

7.
J Photochem Photobiol B ; 258: 112989, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39032373

RESUMO

Exposure to ultraviolet B (UVB) radiation represents a significant environmental threat to human skin. This study investigates the protective mechanism of Artemisia Capillaris Thunb. (AC) extract against UVB-induced apoptosis and inflammation in HaCaT keratinocytes. AC extract demonstrated a significant protective effect, as evidenced by reduced early apoptosis, late apoptosis, and necrosis, as well as decreased apoptotic cell status upon UVB exposure. Additionally, AC extract effectively inhibited UVB-induced DNA damage, as indicated by diminished γ-H2AX foci formation. Restoration of mitochondrial damage and normalization of mitochondrial membrane potential, along with the reduction of intracellular and mitochondrial reactive oxygen species (ROS) levels, were observed with AC extract pre-treatment. The extract also exhibited anti-inflammatory properties, evidenced by the decreased release of IL-1α, IL-6, and PGE2 from keratinocytes. Additional research on the molecular mechanisms uncovered that the AC extract alters the cGAS/STING pathway, suppressing the mRNA (cGAS, STING, IRF3, IRF7 and TBK1) and protein levels (cGAS, STING, IRF3, IRF7 and NF-κB) linked to this particular pathway. The HPLC analysis identified chlorogenic acid and its derivatives as the major components in AC, constituting up to 16.44% of the total chlorogenic acid content. The cGAS/STING signaling pathway was found to be suppressed by chlorogenic acid and its derivatives, as indicated by molecular docking studies and RT-qPCR analysis. This suppression contributes to the protective effects against cell apoptosis and inflammation induced by UVB. To summarize, AC extract, which is abundant in chlorogenic acid and its derivatives, shows potential in protecting keratinocytes from damage caused by UVB by regulating the cGAS/STING signaling pathway.

8.
Nat Prod Res ; : 1-11, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056203

RESUMO

Artemisia species are characterised by their antioxidant, anticancer, antibacterial, and anti-diabetic activities thanks to their phenolic and flavonoid content. These phenolic and flavonoid chemicals scavenge free radicals and reduce oxidative stress, which helps to guard against many diseases brought on by the buildup of free radicals and increased oxidative stress. In addition to acting as an antibacterial agent, it assisted in preventing cancer, hyperglycaemia, and diabetes. Antioxidant research has generally drawn attention due to its major contribution to the fight against numerous chronic illnesses, such as cancer and cardiovascular disorders. Several techniques were used to measure the enzymatic antioxidants (glutathione reductase, catalase, peroxidase, ascorbate oxidase, guaiacol peroxidase, superoxide dismutase and ascorbate peroxidase) in addition to the nonenzymatic antioxidants such as total phenolic acids, total polyphenol, ascorbic acid, total flavonoids and anthocyanin. Artemisinin (endoperoxide 1,2,4-trioxane ring.) is the main therapeutic constituent of Artemisia species.

9.
J Ethnopharmacol ; 334: 118590, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029542

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia stechmanniana Besser, one of the most prevalent botanical medicines in Chinese, has been traditionally used for hepatitis treatment. However, the bioactive components and pharmacological mechanism on alcohol-induced liver injury remains unclear. AIM OF THE STUDY: To investigate the effect of A. stechmanniana on alcohol-induced liver damage, and further explore its mechanism. MATERIALS AND METHODS: Phytochemical isolation and structural identification were used to determine the chemical constituents of A. stechmanniana. Then, the alcohol-induced liver damage animal and cell model were established to evaluate its hepato-protective potential. Network pharmacology, molecular docking and bioinformatics were integrated to explore the mechanism and then the prediction was further supported by experiments. Moreover, both compounds were subjected to ADMET prediction through relevant databases. RESULTS: 28 compounds were isolated from the most bioactive fraction, ethyl acetate extract A. stechmanniana, in which five compounds (abietic acid, oplopanone, oplodiol, hydroxydavanone, linoleic acid) could attenuate mice livers damage caused by alcohol intragastration, reduce the degree of oxidative stress, and serum AST and ALT, respectively. Furthermore, abietic acid and hydroxydavanone exhibited best protective effect against alcohol-stimulated L-O2 cells injury among five bioactive compounds. Network pharmacology and bioinformatics analysis suggested that abietic acid and hydroxydavanone exhibiting drug likeliness characteristics, were the principal active compounds acting on liver injury treatment, primarily impacting to cell proliferation, oxidative stress and inflammation-related PI3K-AKT signaling pathways. Both of them displayed strong binding energies with five target proteins (HRAS, HSP90AA1, AKT1, CDK2, NF-κB p65) via molecular docking. Western blotting results further supported the predication with up-regulation of protein expressions of CDK2, and down-regulation of HRAS, HSP90AA1, AKT1, NF-κB p65 by abietic acid and hydroxydavanone. CONCLUSION: Alcohol-induced liver injury protection by A. stechmanniana was verified in vivo and in vitro expanded its traditional use, and its two major bioactive compounds, abietic acid and hydroxydavanone exerted hepatoprotective effect through the regulation of PI3K-AKT signaling pathway.

10.
Res Pharm Sci ; 19(3): 328-337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39035813

RESUMO

Background and purpose: Herbal components, particularly sesquiterpenes, are progressively recognized as a crucial resource for developing effective therapeutic agents for breast cancer. In this study, the effect of a sesquiterpene lactone known as 8-O-dihydroxy-11a,13-dihydroeudesma-4(15)-en-12,6a-olide (persianolide- A) was examined in breast cancer cell lines. Experimental approach: MDA-MB-231 and MCF-7 cancer cells were grown in DMEM solution with 10% FBS. Then, an MTT assay was performed to evaluate cell viability. Apoptosis was detected by annexin-PI staining. A caspase 3/7 activity assay kit was used to assess the activity of caspase-3 and caspase-7. Protein expression of Bcl-2, Bax, and p-ERK1/2 was determined by western blotting. Findings/Results: This study showed that the IC50 values of the persianolide-A for MCF-7 and MDA-MB- 468 cells are 34.76 and 54.48 µM, respectively. In addition, persianolide-A showed a significant increase in apoptosis in both MDAMB-231 and MCF-7 breast cancer cell lines. Persianolide-A significantly increased the expression of the pro-apoptotic protein Bax and decreased the expression of the anti-apoptotic protein Bcl-2. Also, presinolide-A treatment led to a substantial increase in caspase activity with a ratio of 3/7 in both MCF- 7 and MDA-MB-231 cancer cells. In addition, the study showed that persianolide-A decreased the expression of p-ERK1/2 protein. Conclusion and implications: The results of this study suggest that persianolide-A, sourced from Artemisia kopetdaghensis, induces cell apoptosis in breast cancer cell types. The molecular mechanisms could be implicated in the modulation of the ERK1/2 signaling pathway.

11.
Cureus ; 16(6): e62649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036260

RESUMO

BACKGROUND:  There is vast preclinical evidence that indicates that extracts from several Artemisia plant species have significant antidiabetic benefits. However, clinical evidence is limited to this effect. OBJECTIVE:  We sought to evaluate the effectiveness of Jena DM®  (an Artemisia annua-based poly-herbal formulation) on glycemic control (Hb A1C) and insulin metabolism (HOMA), when administered as a complementary therapy in type-2 diabetes mellitus (T2DM). This study was supported by a research grant (JRD005) from Jena Herbals (U) Ltd, which is a local herbal medicines manufacturing facility in Uganda. METHODS: We conducted a 12-week quasi-experimental study, involving 118 patients under routine follow-up at a diabetes and endocrinology clinic. Random assignment to either conventional or experimental study groups was done using a random number generator (Microsoft Excel version 16.0). Participant sociodemographic and clinical data as well as whole blood samples (3-5 mL) were obtained at scheduled clinic visits. Medication adherence was assessed using the Hill-Bone Scale, and adverse drug events (ADEs) using the Naranjo causality and the National Institute of Allergy and Infectious Diseases, Division of AIDS (DAIDS) scales. Group differences in glycemic control (HbA1C), fasting serum insulin (FSI) indices (% HOMA2-B, HOMA-IR), and other cardiometabolic parameters were assessed using independent samples t-test, and Pearson chi-square statistical tests were used. A p-value <0.05 was considered statistically significant. Ethical approvals were obtained before the study commencement. RESULTS: 12-week daily complementary therapy with Jena DM®  showed no significant effect on Hb A1C reduction (0.1 (95% CI: -0.56, 0.80) %; p=0.798); however, we observed a significant reduction in total body weight (2.0 (95% CI: 0.73, 3.28) kg; p=0.002). The overall frequency of self-reported ADEs including dizziness was significantly higher among patients that used Jena DM®  (p=0.001). Epigastric pain was the most severe ADE necessitating clinical management. There was no significant difference in the homeostatic model assessment for insulin resistance (HOMA2-IR) between study groups. CONCLUSION:  In contrast to a few studies that previously showed significant hypoglycemic effects of Artemisia-based extracts, this study did not show a statistically significant reduction on HbA1C during a 12-week complementary use of Jena DM®  in patients with T2DM. Based on the findings of this study, future research should evaluate the long-term effects of Jena DM®  on body weight, overall insulin metabolism, and the subsequent effect on glycemic control in T2DM.

12.
Arch Med Sci ; 20(3): 967-976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050164

RESUMO

Introduction: Atherosclerosis has become a worldwide medical burden. Our previous studies have shown that artemisinin (ART) had the capability to reduce atherosclerosis. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are involved in the development of atherosclerosis. However, whether lncRNAs might participate in the mechanism through which artemisinin mitigates atherosclerosis has not been reported. Material and methods: Eight-week-old apolipoprotein E deficient (APOE-/-) mice were divided into two groups, one of which was treated with artemisinin. Red oil O staining was used to measure the sizes of the atherosclerotic lesions. We conducted deep sequencing to investigate lncRNA profiles in the aorta tissue in high-fat diet fed APOE knockdown mice with and without artemisinin treatment. CeRNA network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed through bioinformatics analysis. RT-PCR was used to validate the differentially expressed lncRNAs. Results: A total of 102 lncRNAs and 4,630 mRNAs were differentially expressed (p < 0.05) between the artemisinin treatment group and atherosclerosis model group. KEGG and GO analyses indicated that the categories metabolic process, specific amino acid degradation and PI3K-Akt signaling pathway are involved in the effects of artemisinin treatment in atherosclerosis (q < 0.05). LncRNA ENSMUST00000099676.4, ENSMUST00000143673.1, ENSMUST00000070085.5 and ENSMUST00000224554 might be engaged in the treatment mechanism through which artemisinin alleviates atherosclerosis. Conclusions: These findings indicated the possible mechanism and therapeutic role of lncRNAs in artemisinin treatment of atherosclerosis and provided a theoretical basis for the future application of artemisinin in patients with atherosclerosis.

13.
Front Plant Sci ; 15: 1411839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006955

RESUMO

Herbivore-avoided plant patches are one of the initial characteristics of natural grassland degradation. These vegetation patches can intensify the spatial heterogeneity of soil nutrients within these grasslands. However, the effects of non-edible plant patches patches on the spatial heterogeneity of microorganisms have not been sufficiently studied in alpine meadows of the Qinghai-Tibetan Plateau, especially patches formed by herbaceous plants. To answer this question, soil nutrients, plant assembly, and microbial communities were measured inside, around, and outside of Artemisia smithii patches. These were 0 m (within the patch), 0-1 m (one meter from the edge of the patch), 1-2 m (two meters from the edge of the patch), 2-3 m (three meters from the edge of the patch), and >30 m (non-patch grassland more than thirty meters from the edge of the patch). Our results showed that A. smithii patches accumulated more aboveground biomass (AGB) within the patches (0 m), and formed fertile islands with the soil around the patches. Additionally, A. smithii patches increased soil bacterial diversity within (0 m) and around (0-1 m) the patches by primarily enriching copiotrophic bacteria (Actinobacteria), while the diversity of fungal communities increased mainly in the 0-1 m area but not within the patches. Bacterial community diversity was driven by pH, urease, nitrate nitrogen (NO3 --N), and microbial biomass carbon (MBC). The contents of soil water (SWC), soil organic matter (SOM), urease, NO3 --N, and MBC were the main factors influencing the diversity of the fungal community. This study elucidates the vegetation, nutrients, and microbial heterogeneity and their interrelationships, which are observed in fertile islands of herbivore-avoided plant patches in alpine meadows, and provides further insights into the spatial pattern of nutrients in patchy degraded grasslands.

14.
Front Plant Sci ; 15: 1406592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006964

RESUMO

Artemisia argyi, a perennial herb of the genus Artemisia in the family Asteraceae, holds significant importance in Chinese traditional medicine, referred to as "Aicao". Here, we report a high-quality reference genome of Artemisia argyi L. cv. beiai, with a genome size up to 4.15 Gb and a contig N50 of 508.96 Kb, produced with third-generation Nanopore sequencing technology. We predicted 147,248 protein-coding genes, with approximately 68.86% of the assembled sequences comprising repetitive elements, primarily long terminal repeat retrotransposons(LTRs). Comparative genomics analysis shows that A. argyi has the highest number of specific gene families with 5121, and much more families with four or more members than the other 6 plant species, which is consistent with its more expanded gene families and fewer contracted gene families. Furthermore, through transcriptome sequencing of A. argyi in response to exogenous MeJA treatment, we have elucidated acquired regulatory insights into MeJA's impact on the phenylpropanoid, flavonoid, and terpenoid biosynthesis pathways of A. argyi. The whole-genome information obtained in this study serves as a valuable resource for delving deeper into the cultivation and molecular breeding of A. argyi. Moreover, it holds promise for enhancing genome assemblies across other members of the Asteraceae family. The identification of key genes establishes a solid groundwork for developing new varieties of Artemisia with elevated concentrations of active compounds.

15.
Front Pharmacol ; 15: 1359890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011507

RESUMO

Malaria, transmitted through the bite of a Plasmodium-infected Anopheles mosquito, remains a significant global health concern. This review examines the complex life cycle of Plasmodium, emphasizing the role of humans and mosquitoes in its transmission and proliferation. Malarial parasites are transmitted as sporozoites to the human body by biting an infected female Anopheles mosquito. These sporozoites then invade liver cells, multiply, and release merozoites, which infect red blood cells, perpetuating the cycle. As this cycle continues, the affected person starts experiencing the clinical symptoms of the disease. The current treatments for malaria, including chloroquine, artemisinin-based combination therapy, and quinine, are discussed alongside the challenges of drug resistance and misdiagnosis. Although efforts have been made to develop a malarial vaccine, they have so far been unsuccessful. Additionally, the review explores the potential of medicinal plants as remedies for malaria, highlighting the efficacy of compounds derived from Artemisia annua, Cinchona species, and Helianthus annuus L., as well as exploration of plants and phytocompounds like cryptolepine, and isoliquiritigenin against drug-resistant Plasmodium species. Moreover, studies from Pakistan further highlight the diverse vegetal resources utilized in malaria treatment, emphasizing the need for further research into natural remedies. Despite the advantages of herbal medicines, including cost-effectiveness, and fewer side effects; their limitations must be taken into account, including variations in potency and potential drug interactions. The review concludes by advocating for a balanced approach to malaria treatment and prevention, emphasizing the importance of early detection, accurate diagnosis, and integrated efforts to combat the disease in the endemic regions.

16.
Nat Prod Res ; : 1-5, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015035

RESUMO

Artemisia judica L. is a desert aromatic herb with a characteristic fragrance and taste belonging to the family Asteraceae. This study aimed to evaluate the chemical composition of essential oil isolated from A. judaica L. using GC-MS analysis, along with an investigation of its antioxidant properties and inhibitory activity against key enzymes involved in the pathogenesis of Alzheimer's, diabetes mellitus, and skin pigmentation. GC-MS analysis of the oil revealed the identification of fourteen compounds (97.89%), predominated by piperitone (51.40%), followed by ethyl (E)-cinnamate (20.44%), (+)-2-bornanone (5.63%), and ethyl-(Z)-cinnamate (4.78%). The oil demonstrated remarkable antioxidant activities in the following order: ABTS (66.81 ± 1.49 mgTE/g)< CUPRAC (66.24 ± 0.53mgTE/g)

17.
J Toxicol Environ Health A ; : 1-19, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028276

RESUMO

Inflammatory Bowel Disease-Associated Arthritis (IBD-associated arthritis) poses a significant challenge, intertwining the complexities of both inflammatory bowel disease (IBD) and arthritis, significantly compromising patient quality of life. While existing medications offer relief, these drugs often initiate adverse effects, necessitating the requirement for safer therapeutic alternatives. Artemisia herba-alba, a traditional medicinal plant known for its anti-inflammatory properties, emerges as a potential candidate. Our computational study focused on examining 20 bioactive compounds derived from A. herba-alba for potential treatment of IBD-associated arthritis. These compounds detected in A. herba-alba include camphor, alpha-thujone, eucalyptol, cis-chrysanthenyl acetate, vicenin-2, 4,5-di-O-caffeoylquinic acid, chlorogenic acid, hispidulin, isoschaftoside, isovitexin, patuletin-3-glucoside, vanillic acid, rutin, schaftoside, lopinavir, nelfinavir, quercetin, artemisinin, gallic acid, and cinnamic acid. Following rigorous analysis encompassing pharmacokinetics, toxicity profiles, and therapeutic targets, compounds with favorable, beneficial characteristics were identified. In addition, comparative analysis with disease-gene associations demonstrated the interconnectedness of inflammatory pathways across diseases. Molecular docking studies provided mechanistic insights indicating this natural plant components potential to modulate critical inflammatory pathways. Overall, our findings indicate that A. herba-alba-derived compounds may be considered as therapeutic agents for IBD-associated arthritis, warranting further experimental validation and clinical exploration.

18.
BMC Complement Med Ther ; 24(1): 264, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992644

RESUMO

BACKGROUND: Artemisia argyi is a traditional herbal medicine belonging to the genus Artemisia that plays an important role in suppressing inflammation. However, the chemical constituents and underlying mechanisms of its therapeutic potential in neuroinflammation are still incompletely understood, and warrant further investigation. METHODS: Several column chromatography were employed to isolate and purify chemical constituents from Artemisia argyi, and modern spectroscopy techniques were used to elucidate their chemical structures. The screening of monomeric compounds with nitric oxide inhibition led to the identification of the most effective bioactive compound, which was subsequently confirmed for its anti-inflammatory capability through qRT‒PCR. Predictions of compound-target interactions were made using the PharmMapper webserver and the TargetNet database, and an integrative protein-protein interaction network was constructed by intersecting the predicted targets with neuroinflammation-related targets. Topological analysis was performed to identify core targets, and molecular docking and molecular dynamics simulations were utilized to validate the findings. The result of the molecular simulations was experimentally validated through drug affinity responsive target stability (DARTS) and Western blot experiments. RESULTS: Seventeen sesquiterpenoids, including fifteen known sesquiterpenoids and two newly discovered guaiane-type sesquiterpenoids (argyinolide S and argyinolide T) were isolated from Artemisia argyi. Bioactivity screening revealed that argyinolide S (AS) possessed the most potent anti-inflammatory activity. However, argyinolide T (AT) showed weak anti-inflammatory activity, so AS was the target compound for further study. AS may regulate neuroinflammation through its modulation of eleven core targets: protein kinase B 1 (AKT1), epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein Kinase (FYN), Janus Kinase (JAK) 1, mitogen-activated protein (MAP) Kinase 1,8 and 14, matrix metalloproteinase 9 (MMP9), ras-related C3 botulinum toxin substrate 1 (RAC1), nuclear factor kappa-B p65 (RELA), and retinoid X receptor alpha (RXRA). Molecular dynamics simulations and DARTS experiments confirmed the stable binding of AS to JAK1, and Western blot experiments demonstrated the ability of AS to inhibit the phosphorylation of downstream Signal transducer and activator of transcription 3 (STAT3) mediated by JAK1. CONCLUSIONS: The sesquiterpenoid compounds isolated from Artemisia argyi, exhibit significant inhibitory effects on inflammation in C57BL/6 murine microglia cells (BV-2). Among these compounds, AS, a newly discovered guaiane-type sesquiterpenoid in Artemisia argyi, has been demonstrated to effectively inhibit the occurrence of neuroinflammation by targeting JAK1.


Assuntos
Anti-Inflamatórios , Artemisia , Simulação de Acoplamento Molecular , Sesquiterpenos , Artemisia/química , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células RAW 264.7 , Doenças Neuroinflamatórias/tratamento farmacológico , Simulação de Dinâmica Molecular
19.
Med Oncol ; 41(8): 206, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037595

RESUMO

Cure rates for acute myeloid leukemia (AML) remain suboptimal; thus, new treatment strategies are needed for this deadly disease. Artemisia campestris leaves hold significant value in traditional medicine. Despite extensive research conducted on this plant globally, the specific anti-AML properties of the leaves have received limited investigation. This study aims to explore the potential anti-leukemic activities of the ethyl acetate extract derived from Artemisia campestris (EAEAC), using mononuclear cells from bone marrow of thirteen AML patients. To this end, cytotoxic effects were evaluated using the MTT assay, and the mechanisms of cell death were investigated through various methods, including propidium iodide staining, annexin V/propidium iodide double staining, mitochondrial depolarization, and caspase-3/7 activation assays. Results demonstrated that EAEAC induced cell apoptosis by increasing DNA fragmentation, causing mitochondrial depolarization, and activating caspases 3/7. On the other hand, we assessed EAEAC's effect on two leukemia stem cell subpopulations, with results suggesting a potential decrease in their frequencies (three/five patients).


Assuntos
Apoptose , Artemisia , Leucemia Mieloide Aguda , Extratos Vegetais , Humanos , Artemisia/química , Extratos Vegetais/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Apoptose/efeitos dos fármacos , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Caspase 3/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Folhas de Planta/química
20.
J Pharm Pharmacol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066578

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) seriously affects the daily life of people. The whole plant of Artemisia ordosica Krasch. (AOK) has been used in folk medicine. This study aimed to investigate the in vivo anti-RA effects of AOK extract (AOKE) on collagen-induced arthritis in rats. METHODS: AOKE (400, 200, or 100 mg/kg) was administered orally to animals for 30 days. Body weight, paw swelling, arthritis index, thymus, and spleen indices, and pathological changes were assessed for effects of AOKE on RA. Furthermore, the inflammatory cytokines in rat serum were detected. In addition, the expressions of STAT3, Caspase-3, Galectin-3, and S100A9 in synovial tissue were researched using immunohistochemistry. KEY FINDINGS: The AOKE significantly reduced the arthritis indices, paw swelling, spleen, and thymus indices. Meanwhile, AOKE (400 mg/kg) decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-17A, and increased the level of IL-10 in rat serum. Histopathological examination showed that AOKE reduced inflammatory cell infiltration and cartilage erosion. Then, AOKE decreased the expressions of STAT3, Galectin-3, S100A9, and increased the expression of Caspase-3. CONCLUSION: AOKE had interesting anti-RA activity in rats, which deserved further research for the development and clinical use of this medicinal resource.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...