Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Alcohol Clin Exp Res (Hoboken) ; 48(7): 1250-1260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710650

RESUMO

BACKGROUND: Current research on ethanol-induced cardiovascular anomalies has focused on left ventricular (LV) function and blood pressure. To extend this area of research, we sought to determine whether ethanol-induced alterations in the structure and function of the right cardiac ventricle (RV) and pulmonary artery (PA) lead to pulmonary arterial hypertension (PAH). METHODS: Two groups of male Sprague-Dawley rats received a balanced liquid diet containing 5% ethanol (w/v) or a pair-fed isocaloric liquid diet for 8 weeks. Weekly echocardiography was conducted to evaluate cardiopulmonary function, and lung and RV tissues were collected for ex vivo histological and molecular studies. RESULTS: The ethanol-treated rats exhibited: (1) Elevated mean pulmonary arterial pressure and decreased pulmonary artery acceleration time/ejection time; (2) Pulmonary vascular remodeling comprising intrapulmonary artery medial layer thickening; and (3) RV hypertrophy along with increased RV/LV + septum, RV diameter, RV cardiomyocyte cross-sectional area, and LV mass/body weight ratio. These responses were associated with increased lung and RV pro-inflammatory markers, endothelin-1 (ET-1), TNF-α, and IL-6 levels and higher ET-1, ET-1 type A/B receptor ratio, and downregulation of the cytoprotective protein, bone morphogenetic protein receptor 2 (BMPR2), in the lungs. CONCLUSION: These findings show that moderate ethanol-induced cardiopulmonary changes underlie progression to PAH via an upregulated proinflammatory ET1-TNFα-IL6 pathway and suppression of the anti-inflammatory BMPR2.

2.
FASEB J ; 38(9): e23637, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720403

RESUMO

Vascular smooth muscle cell (VSMC) plasticity is fundamental in uterine spiral artery remodeling during placentation in Eutherian mammals. Our previous work showed that the invasion of trophoblast cells into uterine myometrium coincides with a phenotypic change of VSMCs. Here, we elucidate the mechanism by which trophoblast cells confer VSMC plasticity. Analysis of genetic markers on E13.5, E16.5, and E19.5 in the rat metrial gland, the entry point of uterine arteries, revealed that trophoblast invasion is associated with downregulation of MYOCARDIN, α-smooth muscle actin, and calponin1, and concomitant upregulation of Smemb in VSMCs. Myocardin overexpression or knockdown in VSMCs led to upregulation or downregulation of contractile markers, respectively. Co-culture of trophoblast cells with VSMCs decreased MYOCARDIN expression along with compromised expression of contractile markers in VSMCs. However, co-culture of trophoblast cells with VSMCs overexpressing MYOCARDIN inhibited their change in phenotype, whereas, overexpression of transactivation domain deleted MYOCARDIN failed to elicit this response. Furthermore, the co-culture of trophoblast cells with VSMCs led to the activation of NFκß signaling. Interestingly, despite producing IL-1ß, trophoblast cells possess only the decoy receptor, whereas, VSMCs possess the IL-1ß signaling receptor. Treatment of VSMCs with exogenous IL-1ß led to a decrease in MYOCARDIN and an increase in phosphorylation of NFκß. The effect of trophoblast cells in the downregulation of MYOCARDIN in VSMCs was reversed by blocking NFκß translocation to the nucleus. Together, these data highlight that trophoblast cells direct VSMC plasticity, and trophoblast-derived IL-1ß is a key player in downregulating MYOCARDIN via the NFκß signaling pathway.


Assuntos
Interleucina-1beta , Músculo Liso Vascular , Miócitos de Músculo Liso , NF-kappa B , Proteínas Nucleares , Transdução de Sinais , Transativadores , Trofoblastos , Animais , Trofoblastos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Transativadores/metabolismo , Transativadores/genética , Ratos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , Feminino , Miócitos de Músculo Liso/metabolismo , Interleucina-1beta/metabolismo , Gravidez , Técnicas de Cocultura , Ratos Sprague-Dawley , Células Cultivadas , Plasticidade Celular/fisiologia , Calponinas
3.
Cell Mol Life Sci ; 81(1): 180, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613672

RESUMO

Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.


Assuntos
Amarelo de Eosina-(YS)/análogos & derivados , Interleucina-8 , Fosfatidiletanolaminas , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Interleucina-8/genética , Fosfatidilinositol 3-Quinases , Pré-Eclâmpsia/genética , Placenta , Artérias , Meios de Cultivo Condicionados , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
4.
Expert Rev Cardiovasc Ther ; 22(4-5): 153-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477934

RESUMO

INTRODUCTION: The Fontan procedure is the palliative procedure of choice for patients with single ventricle physiology. Pulmonary vascular disease (PVD) is an important contributor to Fontan circulatory failure. AREAS COVERED: We review the pathophysiology of PVD in patients with Fontan palliation and share our initial experience with optical coherence tomography (OCT) in supplementing standard hemodynamics in characterizing Fontan-associated PVD. In the absence of a sub-pulmonary ventricle, low pulmonary vascular resistance (PVR; ≤2 WU/m2) is required to sustain optimal pulmonary blood flow. PVD is associated with adverse pulmonary artery (PA) remodeling resulting from the non-pulsatile low-shear low-flow circulation. Predisposing factors to PVD include impaired PA growth, endothelial dysfunction, hypercoagulable state, and increased ventricular end-diastolic pressure. OCT parameters that show promise in characterizing Fontan-associated PVD include the PA intima-to-media ratio and wall area ratio (i.e. difference between the whole-vessel area and the luminal area divided by the whole-vessel area). EXPERT OPINION: OCT carries potential in characterizing PVD in patients with Fontan palliation. PA remodeling is marked by intimal hyperplasia, with medial regression. Further studies are required to determine the role of OCT in informing management decisions and assessing therapeutic responses.


Assuntos
Técnica de Fontan , Cuidados Paliativos , Artéria Pulmonar , Tomografia de Coerência Óptica , Humanos , Técnica de Fontan/efeitos adversos , Técnica de Fontan/métodos , Tomografia de Coerência Óptica/métodos , Artéria Pulmonar/diagnóstico por imagem , Cuidados Paliativos/métodos , Hemodinâmica , Resistência Vascular , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Doenças Vasculares/diagnóstico por imagem , Remodelação Vascular , Circulação Pulmonar
5.
Fetal Pediatr Pathol ; 43(1): 33-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37906285

RESUMO

The placenta, the foremost and multifaceted organ in fetal and maternal biology, is pivotal in facilitating optimal intrauterine fetal development. Remarkably, despite its paramount significance, the placenta remains enigmatic, meriting greater comprehension given its central influence on the health trajectories of both the fetus and the mother. Preeclampsia (PE) and intrauterine fetal growth restriction (IUGR), prevailing disorders of pregnancy, stem from compromised placental development. PE, characterized by heightened mortality and morbidity risks, afflicts 5-7% of global pregnancies, its etiology shrouded in ambiguity. Pertinent pathogenic hallmarks of PE encompass inadequate restructuring of uteroplacental spiral arteries, placental ischemia, and elevated levels of vascular endothelial growth factor receptor-1 (VEGFR-1), also recognized as soluble FMS-like tyrosine kinase-1 (sFlt-1). During gestation, the placental derivation of sFlt-1 accentuates its role as an inhibitory receptor binding to VEGF-A and placental growth factor (PlGF), curtailing target cell accessibility. This review expounds upon the placenta's defining cellular component of the trophoblast, elucidates the intricacies of PE pathogenesis, underscores the pivotal contribution of sFlt-1 to maternal pathology and fetal safeguarding, and surveys recent therapeutic strides witnessed in the past decade.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Fator de Crescimento Placentário/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Placentação , Retardo do Crescimento Fetal
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1003764

RESUMO

ObjectiveTo observe the effects of the kidney-tonifying and blood-activating prescription on the Wnt/β-catenin signaling pathway and uterine spiral artery remodeling in a mouse model of recurrent miscarriage and to explore its underlying mechanism. MethodA mouse model of normal pregnancy was established by mating CBA/J mice with BALB/c mice. A mouse model of recurrent miscarriage was established by mating CBA/J mice with DBA/2 mice. The modeled mice of recurrent miscarriage were randomized into model, dydrogesterone, and low- and high-dose Chinese medicine groups. The mice in normal pregnancy were used as the control group. Each group consisted of 10 mice, and the drug administration lasted for 14 days. After the treatment, the embryo absorption rate of each group was recorded. Hematoxylin-eosin (HE) staining was employed to observe the pathological morphology of the uterine decidua, and the physiological transformation rate of spiral arteries (SPA) was evaluated. Real-time polymerase chain reaction (Real-time PCR) and Western blot were performed to determine the mRNA and protein levels, respectively, of matrix metalloproteinases (MMP)-2, MMP-9, vascular endothelial growth factor (VEGF), and Wnt/β-catenin signaling pathway. ResultCompared with the control group, the model group presented increased embryo absorption rate (P<0.05), decreased physiological transformation rate of uterine SPA (P<0.05), cellular swelling, degeneration, and disordered arrangement in the uterine decidua tissue, and down-regulated mRNA and protein levels of key factors involved in SPA remodeling (MMP-2, MMP-9, VEGF) and the Wnt/β-catenin signaling pathway (Wnt2, β-catenin, Cyclin D1, c-Myc) (P<0.05). Compared with the model group, both the low- and high-dose Chinese medicine reduced embryo absorption rate (P<0.05), increased SPA physiological transformation rate (P<0.05), improved uterine decidua tissue morphology, and increased decidua vessel count. Furthermore, they up-regulated the mRNA and protein levels of MMP-2, MMP-9, VEGF, and proteins in the Wnt/β-catenin signaling pathway (P<0.05). ConclusionRecurrent miscarriage is associated with impaired uterine spiral artery remodeling. The kidney-tonifying and blood-activating prescription can promote uterine spiral artery remodeling by activating the Wnt/β-catenin signaling pathway and promoting the expression of VEGF, MMP-2, and MMP-9, thus treating recurrent miscarriage.

7.
Am J Obstet Gynecol MFM ; 5(12): 101203, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871693

RESUMO

Pregnancy involves an interplay between maternal and fetal factors affecting changes to maternal anatomy and physiology to support the developing fetus and ensure the well-being of both the mother and offspring. A century of research has provided evidence of the imperative role of the placenta in the development of preeclampsia. Recently, a growing body of evidence has supported the adaptations of the maternal cardiovascular system during normal pregnancy and its maladaptation in preeclampsia. Debate surrounds the roles of the placenta vs the maternal cardiovascular system in the pathophysiology of preeclampsia. We proposed an integrated model of the maternal cardiac-placental-fetal array and the development of preeclampsia, which reconciles the disease phenotypes and their proposed origins, whether placenta-dominant or maternal cardiovascular system-dominant. These phenotypes are sufficiently diverse to define 2 distinct types: preeclampsia Type I and Type II. Type I preeclampsia may present earlier, characterized by placental dysfunction or malperfusion, shallow trophoblast invasion, inadequate spiral artery conversion, profound syncytiotrophoblast stress, elevated soluble fms-like tyrosine kinase-1 levels, reduced placental growth factor levels, high peripheral vascular resistance, and low cardiac output. Type I is more often accompanied by fetal growth restriction, and low placental growth factor levels have a measurable impact on maternal cardiac remodeling and function. Type II preeclampsia typically occurs in the later stages of pregnancy and entails an evolving maternal cardiovascular intolerance to the demands of pregnancy, with a moderately dysfunctional placenta and inadequate blood supply. The soluble fms-like tyrosine kinase-1-placental growth factor ratio may be normal or slightly disturbed, peripheral vascular resistance is low, and cardiac output is high, but these adaptations still fail to meet demand. Emergent placental dysfunction, coupled with an increasing inability to meet demand, more often appears with fetal macrosomia, multiple pregnancies, or prolonged pregnancy. Support for the notion of 2 types of preeclampsia observable on the molecular level is provided by single-cell transcriptomic survey of gene expression patterns across different cell classes. This revealed widespread dysregulation of gene expression across all cell types, and significant imbalance in fms-like tyrosine kinase-1 (FLT1) and placental growth factor, particularly marked in the syncytium of early preeclampsia cases. Classification of preeclampsia into Type I and Type II can inform future research to develop targeted screening, prevention, and treatment approaches.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/etiologia , Fator de Crescimento Placentário/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Trofoblastos
8.
J Cell Physiol ; 238(12): 2794-2811, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819170

RESUMO

Uterine spiral artery remodeling (uSAR) is a hallmark of hemochorial placentation. Compromised uSAR leads to adverse pregnancy outcomes. Salient developmental events involved in uSAR are active areas of research and include (a) trophendothelial cell invasion into the spiral arteries, selected demise of endothelial cells; (b) de-differentiation of vascular smooth muscle cells (VSMC); and (c) migration and/or death of VSMCs surrounding spiral arteries. Here we demonstrated that cellular prion (PRNP) is expressed in the rat metrial gland, the entry point of spiral arteries with the highest expression on E16.5, the day at which trophoblast invasion peaks. PRNP is expressed in VSMCs that drift away from the arterial wall. RNA interference of Prnp functionally restricted migration and invasion of rat VSMCs. Furthermore, PRNP interacted with two migration-promoting factors, focal adhesion kinase (FAK) and platelet-derived growth factor receptor-ß (PDGFR-ß), forming a ter-molecular complex in both the metrial gland and A7r5 cells. The presence of multiple putative binding site of odd skipped related-1 (OSR1) transcription factor on the Prnp promoter was observed using in silico promoter analysis. Ectopic overexpression of OSR1 increased, and knockdown of OSR1 decreased expression of PRNP in VSMCs. Coculture of VSMCs with rat primary trophoblast cells decreased the levels of OSR1 and PRNP. Interestingly, PRNP knockdown led to apoptotic death in ~9% of VSMCs and activated extrinsic apoptotic pathways. PRNP interacts with TRAIL-receptor DR4 and protects VSMCs from TRAIL-mediated apoptosis. These results highlight the biological functions of PRNP in VSMC cell-fate determination during uteroplacental development, an important determinant of healthy pregnancy outcome.


Assuntos
Músculo Liso Vascular , Príons , Animais , Feminino , Gravidez , Ratos , Movimento Celular/genética , Células Cultivadas , Células Endoteliais/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Trofoblastos/metabolismo , Artéria Uterina , Humanos , Ratos Sprague-Dawley
9.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569683

RESUMO

Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.


Assuntos
Pré-Eclâmpsia , Transdução de Sinais , Útero , Humanos , Animais , Peptídeos Natriuréticos/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Útero/metabolismo , Hipertensão Induzida pela Gravidez/genética , Placenta/metabolismo , Serina Endopeptidases
10.
Am J Reprod Immunol ; 90(3): e13755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37641369

RESUMO

The role of decidual natural killer (dNK) cells in maintaining immune tolerance at the maternal-fetal interface during pregnancy is a significant topic in reproductive health. Immune tolerance is essential for a successful pregnancy and involves a complex immune response involving various immune cells and molecules. DNK cells comprise the largest population of lymphocyte subsets found in the decidua and play important roles in maintaining immune tolerance. These cells exert multiple functions to maintain homeostasis of the decidual microenvironment, including modulation of trophoblast invasion, promotion of fetal development, regulation of endometrial decidualization and spiral artery remodeling. DNK cells can also be divided into different subsets based on their functions as NKtolerant , NKcytotoxic , and NKregulatory cells. However, the relationship between dNK cells function and pregnancy outcomes is complex and poorly understood. In this review, we will focus on the physiological role of dNK cells during pregnancy and highlight the potential role in pathological pregnancies and therapeutic approaches.


Assuntos
Artérias , Desenvolvimento Fetal , Feminino , Gravidez , Humanos , Homeostase , Células Matadoras Naturais , Decídua
11.
Mol Hum Reprod ; 29(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37369038

RESUMO

The remodeling of uterine spiral arteries is a complex process requiring the dynamic action of various cell types. During early pregnancy, extravillous trophoblast (EVT) cells differentiate and invade the vascular wall, replacing the vascular smooth muscle cells (VSMCs). Several in vitro studies have shown that EVT cells play an important role in promoting VSMC apoptosis, however, the mechanism underlying this process is not fully understood. In this study, we demonstrated that EVT-conditioned media and EVT-derived exosomes could induce VSMC apoptosis. Through data mining and experimental verification, it was demonstrated that the EVT exosome miR-143-3p induced VSMC apoptosis in both VSMCs and a chorionic plate artery (CPA) model. Furthermore, FAS ligand was also expressed on the EVT exosomes and may play a co-ordinated role in apoptosis induction. These data clearly demonstrated that VSMC apoptosis is mediated by EVT-derived exosomes and their cargo of miR-143-3p as well as their cell surface presentation of FASL. This finding increases our understanding of the molecular mechanisms underlying the regulation of VSMC apoptosis during spiral artery remodeling.


Assuntos
Exossomos , MicroRNAs , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Músculo Liso Vascular/metabolismo , Exossomos/genética , Artéria Uterina/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo
12.
Front Endocrinol (Lausanne) ; 14: 1060253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091848

RESUMO

Uterine spiral artery remodeling is necessary for fetal growth and development as well as pregnancy outcomes. During remodeling, trophoblasts invade the arteries, replace the endothelium and disrupt the vascular smooth muscle, and are strictly regulated by the local microenvironment. Elevated glucose levels at the fetal-maternal interface are associated with disorganized placental villi and poor placental blood flow. Hyperglycemia disturbs trophoblast proliferation and invasion via inhibiting the epithelial-mesenchymal transition, altering the protein expression of related proteases (MMP9, MMP2, and uPA) and angiogenic factors (VEGF, PIGF). Besides, hyperglycemia influences the cellular crosstalk between immune cells, trophoblast, and vascular cells, leading to the failure of spiral artery remodeling. This review provides insight into molecular mechanisms and signaling pathways of hyperglycemia that influence trophoblast functions and uterine spiral artery remodeling.


Assuntos
Hiperglicemia , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Placenta/fisiologia , Fator de Crescimento Placentário/metabolismo , Artérias , Hiperglicemia/complicações , Hiperglicemia/metabolismo
13.
BMC Med ; 21(1): 90, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894970

RESUMO

BACKGROUND: Pre-eclampsia (PE) is one of the leading causes of maternal and fetal morbidity/mortality during pregnancy, and alpha-2-macroglobulin (A2M) is associated with inflammatory signaling; however, the pathophysiological mechanism by which A2M is involved in PE development is not yet understood. METHODS: Human placenta samples, serum, and corresponding clinical data of the participants were collected to study the pathophysiologic mechanism underlying PE. Pregnant Sprague-Dawley rats were intravenously injected with an adenovirus vector carrying A2M via the tail vein on gestational day (GD) 8.5. Human umbilical artery smooth muscle cells (HUASMCs), human umbilical vein endothelial cells (HUVECs), and HTR-8/SVneo cells were transfected with A2M-expressing adenovirus vectors. RESULTS: In this study, we demonstrated that A2M levels were significantly increased in PE patient serum, uterine spiral arteries, and feto-placental vasculature. The A2M-overexpression rat model closely mimicked the characteristics of PE (i.e., hypertension in mid-to-late gestation, histological and ultrastructural signs of renal damage, proteinuria, and fetal growth restriction). Compared to the normal group, A2M overexpression significantly enhanced uterine artery vascular resistance and impaired uterine spiral artery remodeling in both pregnant women with early-onset PE and in pregnant rats. We found that A2M overexpression was positively associated with HUASMC proliferation and negatively correlated with cell apoptosis. In addition, the results demonstrated that transforming growth factor beta 1 (TGFß1) signaling regulated the effects of A2M on vascular muscle cell proliferation described above. Meanwhile, A2M overexpression regressed rat placental vascularization and reduced the expression of angiogenesis-related genes. In addition, A2M overexpression reduced HUVEC migration, filopodia number/length, and tube formation. Furthermore, HIF-1α expression was positively related to A2M, and the secretion of sFLT-1 and PIGF of placental origin was closely related to PE during pregnancy or A2M overexpression in rats. CONCLUSIONS: Our data showed that gestational A2M overexpression can be considered a contributing factor leading to PE, causing detective uterine spiral artery remodeling and aberrant placental vascularization.


Assuntos
Placenta , Pré-Eclâmpsia , Animais , Feminino , Humanos , Gravidez , Ratos , Células Endoteliais/metabolismo , Macroglobulinas/metabolismo , Placenta/metabolismo , Fator de Crescimento Placentário/metabolismo , Ratos Sprague-Dawley , Artéria Uterina/metabolismo
14.
Cells ; 12(4)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831287

RESUMO

Estrogens, mainly 17ß-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages. However, the functional interplay between fetal and maternal vasculature remains similar in both species. In this review, we briefly describe the structural and functional characteristics, as well as the development, of mouse and human placentas. In addition, we summarize the current knowledge regarding estrogen actions during utero-placental vascular morphogenesis, which includes uterine angiogenesis, the control of trophoblast behavior, spiral artery remodeling, and hemodynamic adaptation throughout pregnancy, in both mice and humans. Finally, the estrogens that are present in abnormal placentation are also mentioned. Overall, this review highlights the importance of the actions of estrogens in the physiology and pathophysiology of placental vascular development.


Assuntos
Estrogênios , Placenta , Humanos , Gravidez , Feminino , Placenta/irrigação sanguínea , Placentação , Artérias , Morfogênese
15.
Chinese Journal of Neurology ; (12): 30-38, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-994796

RESUMO

Objective:To investigate the relationship between intracranial arterial remodeling and imaging markers in patients with cerebral small vessel disease (CSVD).Methods:One hundred and fifty-six patients with CSVD who were admitted to the Department of Neurology of the Second Affiliated Hospital of Zhengzhou University or the Public People′s Hospital of Xinzheng from January 2020 to May 2022 were selected, and their brain artery remodeling (BAR) score was calculated. The patients with BAR score≤-1 standard deviation (SD) were defined as individuals with constrictive remodeling of intracranial arteries, and the patients with BAR score≥1 SD were defined as individuals with dilated remodeling of intracranial arteries. Imaging markers of CSVD [white matter hyperintensities (WMHs), lacune, cerebral microbleeds, enlarged perivascular spaces, and cerebral atrophy] were quantified, total CSVD load was calculated and patients were divided into low load group (0-2 points, n=91) and high load group (3-4 points, n=65) according to the total CSVD load scores. The correlation between intracranial artery remodeling and various imaging markers of CSVD and total load was analyzed by using univariate analysis and binary Logistic regression analysis. A nomogram prediction model was established and a receiver operating characteristic curve (ROC) was drawn to assess the predictive value of intracranial artery remodeling on high total CSVD load. Results:Dilated intracranial arterial remodeling was an independent influence factor on severe WMHs ( OR=3.66, 95% CI 1.38-9.72, P=0.009), lacune ( OR=3.78, 95% CI 1.17-12.19, P=0.026), cerebral atrophy ( OR=3.11, 95% CI=1.10-8.81, P=0.033), and high total CSVD load ( OR=6.66, 95% CI=2.14-20.77, P=0.001). Age was an independent influencing factor for high total CSVD load ( OR=1.12, 95% CI 1.07-1.16, P<0.01). A nomogram prediction model for high total CSVD load with age and BAR score≥1 SD as dependent variables had a good effect (C-index=0.826) and calibration ( P=0.024). The best cut-off point of ROC curve was 0.50, with an area under the curve of 0.83 (95% CI 0.76-0.89, P<0.01), the sensitivity and specificity of 0.72 and 0.82. Conclusions:Patients with dilated intracranial arterial remodeling may have a heavier CSVD load. Dilated intracranial arterial remodeling may serve as a new biomarker for assessing CSVD, but the mechanism of the association needs further study.

16.
Front Cardiovasc Med ; 9: 945854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531719

RESUMO

Pulmonary hypertension (PH) is a life-threatening disease with complex pathogenesis. According to etiology, PH is divided into five major groups in clinical classification. However, pulmonary artery (PA) remodeling is their common feature, in addition to bone morphogenetic protein receptor type 2; it is elusive whether there are other novel common genes and similar underlying mechanisms. To identify novel common hub genes involved in PA remodeling at different PH groups, we analyzed mRNA-Seq data located in the general gene expression profile GSE130391 utilizing bioinformatics technology. This database contains PA samples from different PH groups of hospitalized patients with chronic thromboembolic pulmonary hypertension (CTEPH), idiopathic pulmonary artery hypertension (IPAH), and PA samples from organ donors without known pulmonary vascular diseases as control. We screened 22 hub genes that affect PA remodeling, most of which have not been reported in PH. We verified the top 10 common hub genes in hypoxia with Sugen-induced PAH rat models by qRT-PCR. The three upregulated candidate genes are WASF1, ARHGEF1 and RB1 and the seven downregulated candidate genes are IL1R1, RHOB, DAPK1, TNFAIP6, PKN1, PLOD2, and MYOF. WASF1, ARHGEF1, and RB1 were upregulated significantly in hypoxia with Sugen-induced PAH, while IL1R1, DAPK1, and TNFA1P6 were upregulated significantly in hypoxia with Sugen-induced PAH. The DEGs detected by mRNA-Seq in hospitalized patients with PH are different from those in animal models. This study will provide some novel target genes to further study PH mechanisms and treatment.

17.
Placenta ; 130: 25-33, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370492

RESUMO

INTRODUCTION: Vascular smooth muscle cells (VSMC) switched from a contractile phenotype to a synthetic phenotype during the decidual spiral artery (SPAs) remodeling process. The lncRNA plasmacytoma variant translocation 1 (PVT1) and glucose metabolism have been found to regulate the VSMC phenotype switch. This study aimed to analyze the dynamic expression of PVT1 and glycolytic key enzymes hexokinase2 (HK2) at different remodeling stages in early human pregnancy and elucidate the underlying mechanism of the PVT1/miR-145-5p/HK2 axis involved in the spiral artery remodeling. METHODS: qRT-PCR, Western blot (WB) analysis, Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) were used to detect the expression and localization of PVT1 and HK2 in decidual tissue. HA-VSMCs were transfected with specific siRNA, shRNA and plasmids to regulate corresponding genes. Extracellular lactate, cellular ATP, ROS, and intracellular NADPH levels were measured using the corresponding assay kits. Migration was measured by wound-healing and Transwell assays. Contractile phenotypic markers α-SMA, MYH11 with calponin and synthetic phenotypic markers OPN and vimentin were detected by WB. The PDC model was used to detect the degree of spiral arterial remodeling. RESULTS: PVT1 and HK2 were upregulated with gestational age (GA) increasing in decidual tissue during the early pregnancy. HK2 regulated the glycolytic activity and VSMC phenotype switch in vitro. PVT1 regulated the glycolytic activity and VSMC phenotype switch through HK2. PVT1 played a ceRNA role in regulating HK2 expression by sponging miR-145-5p. PVT1 and HK2 influenced spiral artery remodeling in the PDC model. DISCUSSION: PVT1 and HK2 were upregulated, and miR-145-5p was downregulated in decidua with the GA increasing. Meanwhile, the PVT1/miR-145-5p/HK2 axis may be involved in regulating the phenotypic switch and migratory capacity of VSMCs by affecting glycolysis in decidual SPAs remodeling.


Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Gravidez , Artérias/metabolismo , Proliferação de Células/genética , Glicólise/genética , Hibridização in Situ Fluorescente , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , RNA Longo não Codificante/genética , RNA Interferente Pequeno
18.
Front Cell Dev Biol ; 10: 995462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263015

RESUMO

It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.

19.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955565

RESUMO

Placentation is one of the most important determinants for a successful pregnancy, and this is dependent on the process of trophoblast migration and invasion. Progesterone receptors (PGR) are critical effectors of progesterone (P4) signaling that is required for trophoblast migration and invasion conducive to a successful gestation. In immune complicated pregnancies, evidence has shown that abnormal placentation occurs because of aberrant expression of PGR. Therapeutic intervention with tacrolimus (FK506) was able to restore PGR expression and improve pregnancy outcomes in immune-complicated gestations; however, the exact mode of action of tacrolimus in assisting placentation is not clear. Here, we attempt to uncover the mode of action of tacrolimus by examining its effects on trophoblast invasion and migration in the human-derived extravillous trophoblast (EVT) cell line, the HTR-8/SVneo cells. Using a variety of functional assays, we demonstrated that low-dose tacrolimus (10 ng/mL) was sufficient to significantly (p < 0.001) stimulate the migration and invasion of the HTR-8/SVneo cells, inducing their cytosolic/nuclear progesterone receptor expression and activation, and modulating their Nitric Oxide (NO) production. Moreover, tacrolimus abrogated the suppressive effect of the NOS inhibitor Nω- Nitro-L-Arginine Methyl Ester (L-NAME) on these vital processes critically involved in the establishment of human pregnancy. Collectively, our data suggest an immune-independent mode of action of tacrolimus in positively influencing placentation in complicated gestations, at least in part, through promoting the migration and invasion of the first trimester extravillous trophoblast cells by modulating their NO production and activating their cytosolic/nuclear progesterone-receptors. To our knowledge, this is the first report to show that the mode of action of tacrolimus as a monotherapy for implantation failure is plausibly PGR-dependent.


Assuntos
Tacrolimo , Trofoblastos , Movimento Celular , Feminino , Humanos , Óxido Nítrico/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Tacrolimo/farmacologia , Trofoblastos/metabolismo
20.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012712

RESUMO

A progressive increase in maternal uterine and placental blood flow must occur during pregnancy to sustain the development of the fetus. Changes in maternal vasculature enable an increased uterine blood flow, placental nutrient and oxygen exchange, and subsequent fetal development. K+ channels are important modulators of vascular function, promoting vasodilation, inducing cell proliferation, and regulating cell signaling. Different types of K+ channels, such as Ca2+-activated, ATP-sensitive, and voltage-gated, have been implicated in the adaptation of maternal vasculature during pregnancy. Conversely, K+ channel dysfunction has been associated with vascular-related complications of pregnancy, including intrauterine growth restriction and pre-eclampsia. In this article, we provide an updated and comprehensive literature review that highlights the relevance of K+ channels as regulators of uterine vascular reactivity and their potential as therapeutic targets.


Assuntos
Placenta , Canais de Potássio , Feminino , Humanos , Placenta/metabolismo , Circulação Placentária , Canais de Potássio/metabolismo , Gravidez , Útero/metabolismo , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...