Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Front Immunol ; 15: 1396446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799456

RESUMO

Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.


Assuntos
Ascaríase , Ascaris suum , Células Th1 , Células Th2 , Animais , Ascaris suum/imunologia , Ascaríase/imunologia , Ascaríase/parasitologia , Células Th2/imunologia , Suínos , Células Th1/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/parasitologia , Pulmão/imunologia , Pulmão/parasitologia , Larva/imunologia , Citocinas/metabolismo
2.
BMC Vet Res ; 20(1): 139, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582856

RESUMO

BACKGROUND: Parasitic infestations have a substantial economic impact on pig production. This study aimed to investigate the gastrointestinal (GI) helminths in pigs and to molecularly characterise two important nematodes, Ascaris and Trichuris species. MATERIALS AND METHODS: A total of 500 pig faecal samples were collected from small holder backyard pig farms in five townships within Nay Pyi Taw, Myanmar. Microscopic examination was conducted to estimate the prevalence of GI helminth infestation in the pigs. DNA extraction and PCR were performed on faecal samples that were morphologically positive for Ascaris and Trichuris eggs. Molecular analysis was then conducted to characterise A. suum and T. suis, the most common and zoonotic helminths. RESULTS: According to microscopic examination, 69.2% (346/500) were positive for GI helminth eggs. The GI helminth species observed were A. suum, Strongyle, Strongyloides spp., T. suis, Metastrongylus spp., Hyostrongylus spp., Fasciolopsis spp., Paragonimus spp., and Schistosoma spp., with occurrences of 34.8%, 29.6%, 21.4%, 20.0%, 4.0%, 1.6%, 1.0%, 1.0%, and 0.4%, respectively. Mixed infections of GI helminths were noted in 31.0% of the samples. Overall, sampled pigs excreted mostly low levels (< 100 EPG) or moderate levels (> 100-500 EPG) of GI helminth eggs. The highest mean EPG for each parasite species was noted in A. suum. The presence of A. suum and T. suis was confirmed molecularly. The sequences of the internal transcribed spacer 1 (ITS1) region of A. suum showed high similarity with previously reported sequences. Likewise, the sequences of T. suis exhibited high similarity with the sequences reported from humans and pigs. Age was noted as an associated factor (P < 0.05) for GI helminth infection status. CONCLUSIONS: In this report, A. suum and T. suis were molecularly identified for the first time in Myanmar. It is important to extend the information among the farmers to be aware of the necessity of preventing zoonotic parasites by practicing regular deworming, proper use of anthelmintics and maintaining hygienic conditions in their pig farms.


Assuntos
Ascaris suum , Helmintos , Doenças dos Suínos , Humanos , Animais , Suínos , Trichuris/genética , Mianmar , Óvulo , Fezes/parasitologia , Doenças dos Suínos/prevenção & controle
3.
Animals (Basel) ; 14(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540030

RESUMO

Ascaris suum and Macracanthorhynchus hirudinaceus cause a large loss of yield in farm animals as well as in free-living and captive wild boar herds, thereby causing economic damage. This study compared A. suum and M. hirudinaceus infections in free-ranging and captive wild boars (Sus scrofa) in Hungary. The authors measured the A. suum and M. hirudinaceus infections of a 248-hectare wild boar garden and an 11,893-hectare free-living wild boar herd in the sample area. In all cases, samples were collected from shot wild boars. In total, 216 wild boars were examined from June 2015 to June 2023 in Hungary. Of the 173 dissected wild boars from the wild, 57 (32.9%) were infected with A. suum, while 30 (69.8%) of the 43 individuals from the captive area were infected. The prevalence of M. hirudinaceus in the free-living area population was 9.25% (16 wild boars), while that of the captive population was 34.89% (15 wild boars). In the case of the examined helminths, the captive herd was 36.9% more infected than the herd living in the open area.

4.
Animals (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338050

RESUMO

The aim of this study was to compare the species composition of gastrointestinal parasites in wild boar feeding in the city of Szczecin with those in its suburban area, as well as to determine the prevalence and intensity of this parasite infection. The intestines and stomachs of 57 wild boars were supplied by a municipal hunter from the city of Szczecin. Both analysed groups of animals were infected with the following parasites: Eimeria debliecki, E. suis, E. polita, E. scabra, Isospora suis, Ascaris suum and Oesophagostomum dentatum. Wild boar from the city were characterised as having a significantly higher prevalence of total Eimeria (p = 0.04) and a lower prevalence of noted species of nematodes (p = 0.15) compared to those from the suburban area. Since the wild boars were mainly infected with Eimeria, it should be assumed that they may pose a real health threat to farm pigs and other farm animals for which Eimeria is a pathogenic parasite. The occurrence of coccidiosis leads to serious health problems and economic losses for breeders. Although the prevalence of A. suum was low, it should be taken into account that this nematode is able to both infect and complete their life cycle in humans.

5.
Acta Parasitol ; 69(1): 785-790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424402

RESUMO

PURPOSE: Ascariasis caused by the helminth Ascaris suum is the most common parasitosis of swine worldwide and it may involve all age categories of pigs. The present study reports an unusual localization of A. suum worms in the biliary system of a piglet slaughtered for human consumption. METHODS: The liver was subjected to ultrasound scan and pathological examination. The isolated worms were morphologically examined and the DNA was extracted for the molecular identification of the species involved. RESULTS: A total of 43 preadult nematodes were found within the gallbladder and the bile ducts. Parasites were morphologically identified as belonging to the genus Ascaris and molecularly as A. suum. At gross examination, the liver was moderately enlarged, with the bile ducts severely dilated. A chronic inflammatory infiltrate was noted, often centered around ectatic bile ducts (up to 5 mm in diameter), lined by hyperplastic epithelium and filled with sections of nematodes. The worm sections showed smooth cuticle, coelomyarian musculature, and an intestinal tract lined by columnar, uninucleated cells within a pseudocoelom. The ex vivo ultrasonographic examination of the liver allowed the visualization of several nematodes in the bile duct lumen and could be suggested for in vivo diagnosis. Unfortunately, the absence of the intestine did not allow to define the pathogenesis of the infection. CONCLUSION: Although, given the unusual nature of this finding, it is difficult to identify predisposing factors for this A. suum localization, it suggests that ascariasis should be considered in the differential diagnosis of pigs with hepatobiliary disease.


Assuntos
Ascaríase , Ascaris suum , Fígado , Doenças dos Suínos , Animais , Ascaríase/veterinária , Ascaríase/parasitologia , Ascaríase/diagnóstico , Suínos , Doenças dos Suínos/parasitologia , Ascaris suum/isolamento & purificação , Fígado/parasitologia , Fígado/patologia , Ultrassonografia , Hepatopatias Parasitárias/veterinária , Hepatopatias Parasitárias/parasitologia , Hepatopatias Parasitárias/diagnóstico , Vesícula Biliar/parasitologia , Ductos Biliares/parasitologia , Ductos Biliares/patologia
6.
Animals (Basel) ; 13(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136820

RESUMO

The aim of the study was to evaluate the potential of using five selected species of entomopathogenic fungi (Beauveria bassiana, B. brongniartii, Conidiobolus coronatus, Isaria fumosorosea, and Metarhizium robertsii) in the bioregulation of the dispersive stages of the parasitic nematode-Ascaris suum. Experimental cultures of each of the selected entomopathogenic fungi, as well as a control culture without fungi, were incubated with A. suum eggs at 26 °C for 28 days. Development of the A. suum eggs was observed using a light microscope on the 7th, 14th, 21st, and 28th days of incubation. The API-ZYM® test was used to determine, semiquantitatively, the activity of 19 hydrolytic enzymes from the entomopathogenic fungi. The cytotoxicity of the fungi was determined using tetrazole salt MTT. It was found that none of the five tested strains of entomopathogenic fungi showed an ovicidal effect, and none of them colonized the A. suum egg shells. However, ovistatic activity was observed mainly until the 14th day of incubation by I. fumosorosea, M. robertsii, and B. bassiana. In the MTT test, M. robertsii showed moderate cytotoxicity, while the other species showed low cytotoxicity. Among the strains tested, I. fumosorosea showed the highest spectrum of hydrolase production (13 out of 19 enzymes gave a positive reaction from 3 to 5; 20-40 nM or more). The absence of morphological changes in the A. suum egg shells suggests that the antagonistic effect of the studied entomopathogenic fungi may be due to their cytotoxicity, associated with the production of secondary metabolites-toxins (M. robertsii) and enzymatic activity (I. fumosorosea).

7.
Trop Parasitol ; 13(2): 100-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860613

RESUMO

Background: Ascariasis is a common disease in humans and pigs. In previous reports, it has been known that ascariasis in humans is not only caused by Ascaris lumbricoides but also by Ascaris suum which is known to originate from pigs. Aims and Objectives: This research aims to identify the species of Ascaris that infect traditional pig farmers in Bali, Indonesia. Materials and Methods: To achieve this, an observational study was conducted, in which 239 feces samples were collected from traditional pig farmers. The collected samples were then divided into two parts, with one part stored in a pot containing 10% formalin for microscopic testing, and the other part stored in 70% ethanol for molecular testing. In cases where Ascaris infection was observed during the microscopic examination, a further test was conducted using the polymerase chain reaction (PCR) method for molecular examination. The DNA derived from the PCR was then subjected to DNA sequencing. Results: The result was compared to A. suum gene data previously published in the Gene Bank. The results of the microscopic examination showed that 22 farmers were infected with Ascaris. However, PCR testing and DNA sequencing indicated that three infections were caused by A. suum. Conclusion: Therefore, it can be concluded that A. suum is a zoonosis in Bali. Thus, efforts to control ascariasis must pay attention to the presence of pigs around it. Handling of ascariasis is not only carried out in humans but also in pigs and the environment.

8.
Ann Agric Environ Med ; 30(3): 425-431, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37772518

RESUMO

INTRODUCTION AND OBJECTIVE: Natural fertilizers, sewage sludge, digestates, as well as organic fertilizers produced on their basis, can become a source of parasitological contamination of cultivated land. High concentration of invasive forms of parasites in the soil may pose a threat to human and animal health. Therefore, it is necessary to control the hygienic condition of fertilizers and fertilized soils with particular emphasis on parasites. The aim of the study was to compare the effectiveness of methods commonly used for parasitological examination of soil with own methods which were used to develop the standards. MATERIAL AND METHODS: The study was carried out using samples of sandy soil (SS), horticultural mix soil (HS) and peat-based substrate (PS). Each sample was spiked with 100 dyed Ascaris suum eggs and examined with the use of 6 methods: Vasilkova, Dada, Quinn, and 3 methods according to the Polish Standards (PN-19000, PN- 19005, PN-19006). For each variant, 8 repetitions were made. RESULTS: The largest number of A. suum eggs were found with PN-19006 (mean number of detected eggs was 21.25, 46.50, 23.00 for HS, SS, PS, respectively. Slightly lower results were obtained using PN-19005 - the mean number eggs was 21.25, 36.00, 16.75, respectively. On the other hand, the mean number of A. suum eggs found with the Dada method was about 2-3 times lower than with the PN-19006 - 15.75, 22.50, 6.50 for HS, SS, PS soil, respectively. Other methods were much less effective. CONCLUSIONS: PN-19006 method turned out to be the most effective in detecting A. suum eggs. This method can be used for parasitological examination of soils and can be the basis for developing a system of methods dedicated to testing different types of soils for the presence of nematode eggs.

9.
Parasit Vectors ; 16(1): 243, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468906

RESUMO

BACKGROUND: Helminth infections are an important public health problem in humans and have an even greater impact on domestic animal and livestock welfare. Current readouts for anthelmintic drug screening assays are stage development, migration, or motility that can be subjective, laborious, and low in throughput. The aim of this study was to apply and optimize a fluorometric technique using resazurin for evaluating changes in the metabolic activity of Ascaris suum third-stage larvae (L3), a parasite of high economic relevance in swine. METHODS: Ascaris suum L3 were mechanically hatched from 6- to 8-week embryonated and sucrose-gradient-enriched eggs. Resazurin dye and A. suum L3 were titrated in 96-well microtiter plates, and resazurin reduction activity was assessed by fluorometry after 24 h of incubation. Fluorescence microscopy was used to localize the resazurin reduction site within the larvae. Finally, we exposed A. suum L3 to various stress conditions including heat, methanol, and anthelmintics, and investigated their impact on larval metabolism through resazurin reduction activity. RESULTS: We show that the non-fluorescent dye resazurin is reduced inside vital A. suum L3 to fluorescent resorufin and released into the culture media. Optimal assay parameters are 100-1000 L3 per well, a resazurin concentration of 7.5 µg/ml, and incubation at 37 °C/5% CO2 for 24 h. An intact L2 sheath around the L3 of A. suum completely prevents the uptake of resazurin, while in unsheathed L3, the most intense fluorescence signal is observed along the larval midgut. L3 exposed to methanol or heat show a gradually decreased resazurin reduction activity. In addition, 24 h exposure to ivermectin at 0.625 µM, mebendazole at 5 µM, and thiabendazole from 10 to 100 µM significantly decreased larval metabolic activity by 55%, 73%, and 70% to 89%, respectively. CONCLUSIONS: Together, our results show that both metabolic stressors and anthelmintic drugs significantly and reproducibly reduce the resazurin reduction activity of A. suum L3, making the proposed assay a sensitive and easy-to-use method to evaluate metabolic activity of A. suum L3 in vitro.


Assuntos
Anti-Helmínticos , Ascaríase , Ascaris suum , Humanos , Animais , Suínos , Metanol/farmacologia , Metanol/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Xantenos/farmacologia , Xantenos/uso terapêutico , Ascaríase/parasitologia , Larva
10.
Protein Sci ; 32(9): e4743, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515423

RESUMO

l-Malate is a key flavor enhancer and acidulant in the food and beverage industry, particularly winemaking. Enzyme-based amperometric biosensors offer convenience for monitoring its concentration. However, only a small number of off-the-shelf malate-oxidizing enzymes have been used in previous devices. These typically have linear ranges poorly suited for the l-malate concentrations found in fruit processing and winemaking, making it necessary to use precisely diluted samples. Here, we describe a pipeline of database-mining, gene synthesis, recombinant expression, and spectrophotometric assays to characterize previously untested enzymes for their suitability in biosensors. The pipeline yielded a bespoke biocatalyst-the Ascaris suum malic enzyme carrying mutation R181Q [AsME(R181Q)]. Our first prototype with AsME(R181Q) had an ultra-wide linear range of 50-200 mM l-malate, corresponding to concentrations found in undiluted fruit juices (including grape). Changing the dication from Mg2+ to Mn2+ increased sensitivity five-fold and adding citrate (100 mM) increased it another six-fold, albeit decreasing the linear range to 1-10 mM. To our knowledge, this is the first time an l-malate biosensor with a tuneable combination of sensitivity and linear range has been described. The sensor response was also tested in the presence of various molecules abundant in juices and wines, with ascorbate shown to be a potent interferent. Interference was mitigated by the addition of ascorbate oxidase, allowing for differential measurements on an undiluted, untreated wine sample that corresponded well with commercial l-malate testing kits. Overall, this work demonstrates the power of an enzyme-centric approach for designing electrochemical biosensors with improved operational parameters and novel functionality.


Assuntos
Técnicas Biossensoriais , Vinho , Malatos/análise , Malatos/química , Malatos/metabolismo , Vinho/análise
11.
J Nutr Biochem ; 116: 109316, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36940885

RESUMO

Polyphenols are a class of bioactive plant compounds with health-promoting properties, however, the interactions between polyphenols and pathogen infection and their cumulative impact on inflammation and metabolic health are not well understood. Here, we investigated if a subclinical parasitic infection modulates the hepatic response to dietary polyphenol supplementation in a porcine model. Pigs were fed a diet with or without 1% grape proanthocyanidins (PAC) for 28 days. During the final 14 days of the experiment, half the pigs in each dietary group were inoculated with the parasitic nematode Ascaris suum. Serum biochemistry was measured and hepatic transcriptional responses were determined by RNA-sequencing coupled with gene-set enrichment analysis. A. suum infection resulted in reduced serum phosphate, potassium, sodium, and calcium, and increased serum iron concentrations. In uninfected pigs, PAC supplementation markedly changed the liver transcriptome including genes related to carbohydrate and lipid metabolism, insulin signaling, and bile acid synthesis. However, during A. suum infection, a separate set of genes were modulated by dietary PAC, indicating that the polyphenol-mediated effects were dependent on infection status. A. suum infection strongly influenced the expression of genes related to cellular metabolism, and, in contrast to the effects of PAC, these changes were mostly identical in both control-fed and PAC-fed pigs. Thus, the hepatic response to infection was mostly unaffected by concurrent polyphenol intake. We conclude that the presence of a commonly occurring parasite substantially influences the outcome of dietary polyphenol supplementation, which may have important relevance for nutritional interventions in populations where intestinal parasitism is widespread.


Assuntos
Ascaríase , Suínos , Animais , Ascaríase/parasitologia , Transcriptoma , Dieta/veterinária , Fígado , Polifenóis/farmacologia
12.
Exp Parasitol ; 248: 108493, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889503

RESUMO

Proanthocyanidins (PAs) are a class of plant specialized metabolites with well-documented bioactivities such as antiparasitic effects. However, little is known about how the modification of PAs influences their bioactivity. The objective of this study was to investigate a wide range of PA-containing plant samples to determine if extracts containing PAs modified by oxidation had altered antiparasitic activities, compared to the original extracts that had not been modified in alkaline conditions. We extracted and analyzed samples from 61 proanthocyanidin-rich plants. The extracts were then oxidized under alkaline conditions. We used these non-oxidized and oxidized proanthocyanidin-rich extracts to conduct a detailed analysis of direct antiparasitic effects against the intestinal parasite Ascaris suum in vitro. These tests showed that the proanthocyanidin-rich extracts had antiparasitic activity. Modification of these extracts significantly increased the antiparasitic activity for the majority the extracts, suggesting that the oxidation procedure enhanced the bioactivity of the samples. Some samples that showed no antiparasitic activity before oxidation showed very high activity after the oxidation. High levels of other polyphenols in the extracts, such as flavonoids, was found to be associated with increased antiparasitic activity following oxidation. Thus, our in vitro screening opens up the opportunity for future research to better understand the mechanism of action how alkaline treatment of PA-rich plant extracts increases their biological activity and potential as novel anthelmintics.


Assuntos
Proantocianidinas , Proantocianidinas/farmacologia , Antiparasitários/farmacologia , Flavonoides/farmacologia , Extratos Vegetais/farmacologia
13.
Vet Parasitol Reg Stud Reports ; 37: 100828, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623900

RESUMO

Ascaris suum is one of the most important parasites of pigs. Apart from liver condemnation due to lesions caused by migrating larvae ("milk spots"), A. suum infections can compromise weight gain, feed conversion efficacy, as well as meat quality. The true prevalence of infection depends on the diagnostic test used and is often underestimated. We compared liver inspection at slaughter with serology, based on the recognition of a purified A. suum haemoglobin or complete homogenate of the 3rd stage larvae isolated from lungs, in nine pig farms in northern Italy. Liver lesions were found on all farms with prevalence ranging from 3.8% to 98.3%. All farms were also positive for circulating antibodies against As-Hb and As-Lung-L3, with prevalence among pigs on each farm ranging from 36.4-100% and 54.5-100%, respectively. Seroprevalence was consistently higher when compared to the prevalence of milk spots at slaughter. The higher sensitivity of the ELISA tests combined with their ease of use makes them an interesting tool to evaluate A. suum infection levels.


Assuntos
Ascaríase , Ascaris suum , Doenças dos Suínos , Animais , Ascaríase/epidemiologia , Ascaríase/veterinária , Ascaríase/parasitologia , Prevalência , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/parasitologia
14.
Rev. bras. parasitol. vet ; 32(3): e005623, 2023. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1515084

RESUMO

The aim of the present study was to assess morphologic and genetic data on ascariasis in swine (Sus scrofa domesticus) and humans in low-resource rural and periurban communities in the state of Piauí, Brazil. Our cross-sectional survey included 100 fecal samples obtained from swine and 682 samples from humans. Fifteen pigs were necropsied. Human and porcine fecal samples were examined to identify Ascaris eggs. Parasites obtained in the swine necropsies were studied using scanning electron microscopy (SEM), and the mitochondrial gene encoding the cytochrome oxidase 1 (cox1) enzyme was partially amplified and sequenced for molecular taxonomy and phylogenetic analyses. The overall prevalence of Ascaris eggs in the swine fecal samples was 16/100 (16%). No Ascaris eggs were identified in the human fecal samples. SEM of six worms recovered from pigs demonstrated morphological characteristics of A. suum. Cox1 sequences were compatible with A. suum reference sequences. Original and reference (GenBank) nucleotide sequences were organized into clusters that did not segregate the parasites by host species or and region. The largest haplogroups were dominated by haplotypes H01, H02 and H31. In the communities studied, there was no epidemiological evidence of the zoonotic transmission of ascariasis at the human-swine interface.(AU)


O presente estudo teve como objetivo acessar dados morfológicos e genéticos sobre a ascaridíase em suínos (Sus scrofa domesticus) e humanos, em comunidades rurais e periurbanas no estado do Piauí. O estudo transversal incluiu 100 amostras fecais de suínos e 682 amostras obtidas de humanos. Quinze suínos foram necropsiados. Amostras fecais suínas e humanas foram examinadas para detecção de ovos de Ascaris. Os parasitas adultos, obtidos nas necropsias, foram estudados através de microscopia eletrônica de varredura (MEV), e o gene mitocondrial codificante da enzima citocromo oxidase 1 (cox1) foi parcialmente amplificado e sequenciado para análises filogenéticas e de taxonomia molecular. A prevalência de Ascaris em amostras fecais de suínos foi 16/100 (16%), não sendo identificado nenhum caso de infecção por este parasita em humanos. A análise por MEV de parasitas recuperados de suínos demonstrou características morfológicas de Ascaris suum. As sequências nucleotídicas de cox1 foram compatíveis com A. suum. As sequências originais e de referência (obtidas no GeneBank) foram organizadas em clusters que não segregaram os parasitas por hospedeiro ou região geográfica. Os maiores haplogrupos foram dominados pelos haplótipos H01, H02 e H31. Nas comunidades estudadas, não foi evidenciada transmissão zoonótica de A. suum na interface suíno-humana.(AU)


Assuntos
Humanos , Animais , Ascaridíase/diagnóstico , Suínos/genética , Ascaris suum/genética , Filogenia , Brasil , Complexo IV da Cadeia de Transporte de Elétrons/análise
15.
Front Vet Sci ; 9: 1014198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387396

RESUMO

Ascariasis is the most prevalent helminthic disease affecting both humans and pigs and is caused by the roundworms Ascaris lumbricoides and Ascaris suum. While preventive chemotherapy continues to be the most common control method, recent reports of anthelminthic resistance highlight the need for development of a vaccine against ascariasis. The aim of this study was to use a reverse vaccinology approach to identify potential vaccine candidates for Ascaris. Three Ascaris proteomes predicted from whole-genome sequences were analyzed. Candidate proteins were identified using open-access bioinformatic tools (e.g., Vacceed, VaxiJen, Bepipred 2.0) which test for different characteristics such as sub-cellular location, T-cell and B-cell molecular binding, antigenicity, allergenicity and phylogenetic relationship with other nematode proteins. From over 100,000 protein sequences analyzed, four transmembrane proteins were predicted to be non-allergen antigens and potential vaccine candidates. The four proteins are a Piezo protein, two voltage-dependent calcium channels and a protocadherin-like protein, are all expressed in either the muscle or ovaries of both Ascaris species, and all contained high affinity epitopes for T-cells and B-cells. The use of a reverse vaccinology approach allowed the prediction of four new potential vaccination targets against ascariasis in humans and pigs. These targets can now be further tested in in vitro and in vivo assays to prove efficacy in both pigs and humans.

16.
Front Immunol ; 13: 1012717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439124

RESUMO

Helminths produce excretory/secretory products (E/S) which can modulate the immune responses of their hosts. Dendritic cells (DC) are essential for initiating the host T cell response and are thus potential targets for modulation by helminth E/S. Here we study immunomodulation of porcine peripheral blood DC subsets following ex vivo stimulation with E/S from Ascaris suum, a common helminth of pigs with considerable public health and economic importance. Our data showed that the relative frequencies of DC subsets in porcine blood differ, with plasmacytoid DC (pDC) being the most prominent in healthy 6-month-old pigs. pDC are an important cytokine source, and we found that A. suum E/S suppressed production of the type 1 cytokines IL-12p40 and TNF-α by this subset following toll-like receptor (TLR) ligation. In contrast, conventional DC (cDC) are more efficient antigen presenters, and the expression of CD80/86, costimulatory molecules essential for efficient antigen presentation, were modulated differentially by A. suum E/S between cDC subsets. CD80/86 expression by type 1 cDC (cDC1) following TLR ligation was greatly suppressed by the addition of A. suum E/S, while CD80/86 expression by type 2 cDC (cDC2) was upregulated by A. suum E/S. Further, we found that IFN-γ production by natural killer (NK) cells following IL-12 and IL-18 stimulation was suppressed by A. suum E/S. Finally, in the presence of E/S, IFN-γ production by CD4+ T cells co-cultured with autologous blood-derived DC was significantly impaired. Together, these data provide a coherent picture regarding the regulation of type 1 responses by A. suum E/S. Responsiveness of pDC and cDC1 to microbial ligands is reduced in the presence of E/S, effector functions of Th1 cells are impaired, and cytokine-driven IFN-γ release by NK cells is limited.


Assuntos
Ascaris suum , Suínos , Animais , Células Dendríticas , Interleucina-12/metabolismo , Citocinas/metabolismo , Receptores Toll-Like/metabolismo , Células Matadoras Naturais/metabolismo
17.
Pathogens ; 11(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145391

RESUMO

The effects of nematodes and bacteria on intestinal health are of primary importance in modern swine production. The aim of the present study was to assess the seropositivity status of Ascaris suum infection in fatteners in intensive swine farms in Greece and address possible risk factors, including Lawsonia intracellularis as a predisposing factor to swine ascariosis. In total, 360 blood serum samples from pigs in the late fattening period, from 24 Greek swine farrow-to-finish farms (15 samples/farm) were collected and tested with Svanovir® A. suum antibody ELISA and Ileitis antibody ELISA. The results demonstrated 34.4% seropositive samples for A. suum and 42.2% for L. intracellularis. The analysis of predisposing risk factors suggested that the frequency of application of anthelminthic treatment to sows more than two times per year was significantly associated with the lower likelihood of A. suum infection, whereas a greater likelihood of A. suum infection was observed in pigs with concurrent L. intracellularis exposure. The results highlight the importance of proper anthelminthic metaphylaxis of the breeding stock, as well as the likely outcome of concurrent exposure to two intestinal pathogens in pigs, implying a possible association between intestinal nematodes and bacteria in swine.

18.
Pathogens ; 11(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145497

RESUMO

Ascaris suum is present in traditionally managed indoor pig herds and in industrialized farms, especially in older fatteners and sows. The increasing resistance to common antihelminthic drugs redirected research towards alternative and traditional therapies, which also include medicinal plants. This study comparatively evaluated the in vitro antiparasitic effects of Allium sativum L., Artemisia absinthium L., Cucurbita pepo L., Coriandrum sativum L., Satureja hortensis L. and Calendula officinalis L. against A. suum egg hatching and larval development. A. suum eggs were sampled from randomized fecal specimens collected from traditionally raised swine. The egg suspension (ES, 12 × 103/mL) was divided into two controls (C) (1C-1 mL ES + 1 mL distilled water, 2C-five plates of 1 mL ES + 1 mL ethanol of 70%, 35%, 17.5%, 8.75%, and 4.375%, respectively) and six experimental groups, and placed in 3 mL cell plates. The experimental groups (EG, 1-6) included ES + each alcoholic plant extract (10%, 5%, 2.5%, 1.25%, 0.625%). Both C and EG were performed in quintuplicate. All variants were incubated at 27 °C for a total of 21 days. A. suum eggs were examined after 2, 14 (L1), and 21 (L2/L3) days of incubation. The efficacy of all tested plant extracts increased with concentration. Anti-embryogenic effects on A. suum eggs were expressed by all plants. A superior influence was observed in A. sativum L., A. absinthium L., C. pepo L. and S. hortensis L. extracts, at all concentrations tested. A. sativum L. and A. absinthium L. extracts showed the strongest antihelminthic activity, while C. sativum L. and C. officinalis L. were the weakest ascaricids. Future in-depth phytochemical studies are required to identify the compounds responsible for the anthelminthic properties of these plant species.

19.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35815608

RESUMO

In nematodes, spermiogenesis is a process of sperm activation in which nonmotile spermatids are transformed into crawling spermatozoa. Sperm motility acquisition during this process is essential for successful fertilization, but the underlying mechanisms remain to be clarified. Herein, we have found that extracellular adenosine-5'-triphosphate (ATP) level regulation by MIG-23, which is a homolog of human ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), was required for major sperm protein (MSP) filament dynamics and sperm motility in the nematode Ascaris suum. During sperm activation, a large amount of ATP was produced in mitochondria and was stored in refringent granules (RGs). Some of the produced ATP was released to the extracellular space through innexin channels. MIG-23 was localized in the sperm plasma membrane and contributed to the ecto-ATPase activity of spermatozoa. Blocking MIG-23 activity resulted in a decrease in the ATP hydrolysis activity of spermatozoa and an increase in the depolymerization rate of MSP filaments in pseudopodia, which eventually affected sperm migration. Overall, our data suggest that MIG-23, which contributes to the ecto-ATPase activity of spermatozoa, regulates sperm migration by modulating extracellular ATP levels.


Assuntos
Ascaris suum , Trifosfato de Adenosina/metabolismo , Animais , Ascaris suum/metabolismo , Proteínas de Helminto/metabolismo , Humanos , Masculino , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
20.
Front Genet ; 13: 884052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711944

RESUMO

Circular RNAs (circRNAs) are a recently identified RNA species with emerging functional roles as microRNA (miRNA) and protein sponges, regulators of gene transcription and translation, and modulators of fundamental biological processes including immunoregulation. Relevant to this study, circRNAs have recently been described in the parasitic nematode, Haemonchus contortus, suggesting they may have functionally important roles in parasites. Given their involvement in regulating biological processes, a better understanding of their role in parasites could be leveraged for future control efforts. Here, we report the use of next-generation sequencing to identify 1,997 distinct circRNAs expressed in adult female stages of the gastrointestinal parasitic nematode, Ascaris suum. We describe spatial expression in the ovary-enriched and body wall muscle, and also report circRNA presence in extracellular vesicles (EVs) secreted by the parasite into the external environment. Further, we used an in-silico approach to predict that a subset of Ascaris circRNAs bind both endogenous parasite miRNAs as well as human host miRNAs, suggesting they could be functional as both endogenous and exogenous miRNA sponges to alter gene expression. There was not a strong correlation between Ascaris circRNA length and endogenous miRNA interactions, indicating Ascaris circRNAs are enriched for Ascaris miRNA binding sites, but that human miRNAs were predicted form a more thermodynamically stable bond with Ascaris circRNAs. These results suggest that secreted circRNAs could be interacting with host miRNAs at the host-parasite interface and influencing host gene transcription. Lastly, although we have previously found that therapeutically relevant concentrations of the anthelmintic drug ivermectin inhibited EV release from parasitic nematodes, we did not observe a direct effect of ivermectin treatment on Ascaris circRNAs expression or secretion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...