Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924520

RESUMO

Ascorbate peroxidases (APX) are class I members of the Peroxidase-Catalase superfamily, a large group of evolutionarily related but rather divergent enzymes. Through mining in public databases, unusual subsets of APX homologs were identified, disclosing the existence of two yet uncharacterized families of peroxidases named ascorbate peroxidase-related (APX-R) and ascorbate peroxidase-like (APX-L). As APX, APX-R harbor all catalytic residues required for peroxidatic activity. Nevertheless, proteins of this family do not contain residues known to be critical for ascorbate binding and therefore cannot use it as an electron donor. On the other hand, APX-L proteins not only lack ascorbate-binding residues, but also every other residue known to be essential for peroxidase activity. Through a molecular phylogenetic analysis performed with sequences derived from basal Archaeplastida, the present study discloses the existence of hybrid proteins, which combine features of these three families. The results here presented show that the prevalence of hybrid proteins varies among distinct groups of organisms, accounting for up to 33% of total APX homologs in species of green algae. The analysis of this heterogeneous group of proteins sheds light on the origin of APX-R and APX-L and suggests the occurrence of a process characterized by the progressive deterioration of ascorbate-binding and catalytic sites towards neofunctionalization.

2.
Front Plant Sci ; 11: 538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457779

RESUMO

Preharvest applications of methyl jasmonate (MeJA) have been shown to improve post-harvest fruit quality in strawberry fruit. However, the effectiveness of consecutive field applications at different phenological stages on the reinforcement of the antioxidant capacity remains to be analyzed. To determine the best antioxidant response of strawberry (Fragaria × ananassa 'Camarosa') fruit to different numbers and timing of MeJA applications, we performed three differential preharvest treatments (M1, M2, and M3) consisted of successive field applications of 250 µmol L-1 MeJA at flowering (M3), large green (M2 and M3), and ripe fruit stages (M1, M2, and M3). Then, we analyzed their effects on fruit quality parameters [firmness, skin color, soluble solids content/titratable acidity (SSC/TA) ratio, fruit weight at harvest, and weight loss] along with anthocyanin and proanthocyanidin (PA) accumulation; the antioxidant-related enzymatic activity of catalase (CAT), guaiacol peroxidase (POX), and ascorbate peroxidase (APX); the total flavonoid and phenolic contents, antioxidant capacity, and ascorbic acid content (AAC) during post-harvest storage (0, 24, 48, and 72 h). We also evaluated the effect on lignin, total carbon and nitrogen (%C and N), lipid peroxidation, and C and N isotopes signatures on fruits. Remarkably, the results indicated that MeJA treatment increases anthocyanin and PA contents as well as CAT activity in post-harvest storage, depending on the number of preharvest MeJA applications. Also, M3 fruit showed a higher AAC compared to control at 48 and 72 h. Noticeably, the anthocyanin content and CAT activity were more elevated in M3 treatment comparing with control at all post-harvest times. In turn, APX activity was found higher on all MeJA-treated fruit independent of the number of applications. Unlike, MeJA applications did not generate variations on fruit firmness and weight, lignin contents,% C and N, and in lipid peroxidation and water/nitrogen use efficiency according to C and N isotope discrimination. Finally, we concluded that an increasing number of MeJA applications (M3 treatment) improve anthocyanin, PA, AAC, and CAT activity that could play an essential role against reactive oxygen species, which cause stress that affects fruits during post-harvest storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA