Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38922376

RESUMO

PURPOSE: To identify pathogenic microorganisms and microbiological risk factors causing high morbidity and mortality in immunocompromised patients requiring invasive mechanical ventilation due to pneumonia. METHODS: A retrospective single-center study was performed at the intensive care unit (ICU) of the Department of Internal Medicine at Heidelberg University Hospital (Germany) including 246 consecutive patients with hematological malignancies requiring invasive mechanical ventilation due to pneumonia from 08/2004 to 07/2016. Microbiological and radiological data were collected and statistically analyzed for risk factors for ICU and 1-year mortality. RESULTS: ICU and 1-year mortality were 63.0% (155/246) and 81.0% (196/242), respectively. Pneumonia causing pathogens were identified in 143 (58.1%) patients, multimicrobial infections were present in 51 (20.7%) patients. Fungal, bacterial and viral pathogens were detected in 89 (36.2%), 55 (22.4%) and 41 (16.7%) patients, respectively. Human herpesviruses were concomitantly reactivated in 85 (34.6%) patients. As significant microbiological risk factors for ICU mortality probable invasive Aspergillus disease with positive serum-Galactomannan (odds ratio 3.1 (1.2-8.0), p = 0.021,) and pulmonary Cytomegalovirus reactivation at intubation (odds ratio 5.3 (1.1-26.8), p = 0.043,) were identified. 1-year mortality was not significantly associated with type of infection. Of interest, 19 patients had infections with various respiratory viruses and Aspergillus spp. superinfections and experienced high ICU and 1-year mortality of 78.9% (15/19) and 89.5% (17/19), respectively. CONCLUSIONS: Patients with hematological malignancies requiring invasive mechanical ventilation due to pneumonia showed high ICU and 1-year mortality. Pulmonary Aspergillosis and pulmonary reactivation of Cytomegalovirus at intubation were significantly associated with negative outcome.

2.
Cureus ; 16(6): e61954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855487

RESUMO

Filamentous fungal keratitis is a particularly serious eye infection that often results in ulceration, corneal perforation, and blindness. The cornea acts as a natural barrier against harmful agents due to the close connection of its epithelial cells. In addition, on its surface, there is a large number of substances with anti-inflammatory and bactericidal properties, such as secretory IgA and mucin glycoproteins, and antimicrobial peptides (AMPs), such as human ß-defensin 2 (HBD-2) and LL-37, which are especially increased in filamentous fungal keratitis. The interaction between pathogenic fungi and the host's immune mechanisms is a complex process: pathogen-associated molecular pattern (PAMP) molecules (chitin, ß-glucan, and mannan) found in the fungal cell wall are recognized by pattern recognition receptors (PRRs) (toll-like receptors {TLRs}, C-type lectin receptors {CLRs}, nucleotide-binding oligomerization domain-like receptors {NLRs}, and scavenger receptors {SR}) found in host defense cells, triggering the secretion of various types of cytokines, such as interleukins (IL), tumor necrosis factors (TNFs), and chemokines, which recruit macrophages and neutrophils to migrate to the site of infection and activate inflammatory responses. In addition, the interaction of hyphae and corneal epithelial cells can activate cluster of differentiation (CD) 4+ T cells, CD8+ T cells, and B cells and induce secretion of T-helper (Th)-type cytokines 2 (IL-4 and IL-13) and IgG.

3.
BMC Microbiol ; 24(1): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570761

RESUMO

BACKGROUND: Aspergillus species cause a variety of serious clinical conditions with increasing trend in antifungal resistance. The present study aimed at evaluating hospital epidemiology and antifungal susceptibility of all isolates recorded in our clinical database since its implementation. METHODS: Data on date of isolation, biological samples, patients' age and sex, clinical settings, and antifungal susceptibility tests for all Aspergillus spp. isolated from 2015 to 2022 were extracted from the clinical database. Score test for trend of odds, non-parametric Mann Kendall trend test and logistic regression analysis were used to analyze prevalence, incidence, and seasonality of Aspergillus spp. isolates. RESULTS: A total of 1126 Aspergillus spp. isolates were evaluated. A. fumigatus was the most prevalent (44.1%) followed by A. niger (22.3%), A. flavus (17.7%) and A. terreus (10.6%). A. niger prevalence increased over time in intensive care units (p-trend = 0.0051). Overall, 16 (1.5%) were not susceptible to one azole compound, and 108 (10.9%) to amphotericin B, with A. niger showing the highest percentage (21.9%). The risk of detecting A. fumigatus was higher in June, (OR = 2.14, 95% CI [1.16; 3.98] p = 0.016) and reduced during September (OR = 0.48, 95% CI [0.27; 0.87] p = 0.015) and October as compared to January (OR = 0.39, 95% CI [0.21; 0.70] p = 0.002. A. niger showed a reduced risk of isolation from all clinical samples in the month of June as compared to January (OR = 0.34, 95% CI [0.14; 0.79] p = 0.012). Seasonal trend for A. flavus showed a higher risk of detection in September (OR = 2.7, 95% CI [1.18; 6.18] p = 0.019), October (OR = 2.32, 95% CI [1.01; 5.35] p = 0.048) and November (OR = 2.42, 95% CI [1.01; 5.79] p = 0.047) as compared to January. CONCLUSIONS: This is the first study to analyze, at once, data regarding prevalence, time trends, seasonality, species distribution and antifungal susceptibility profiles of all Aspergillus spp. isolates over a 8-year period in a tertiary care center. Surprisingly no increase in azole resistance was observed over time.


Assuntos
Antifúngicos , Aspergilose , Humanos , Antifúngicos/farmacologia , Centros de Atenção Terciária , Aspergilose/epidemiologia , Aspergilose/microbiologia , Testes de Sensibilidade Microbiana , Aspergillus , Azóis , Farmacorresistência Fúngica
4.
Med Mycol ; 62(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490745

RESUMO

The prevalence of azole-resistant Aspergillus fumigatus is increasing worldwide and is speculated to be related to the use of azole pesticides. Aspergillus spp., the causative agent of aspergillosis, could be brought into domestic dwellings through food. However, studies on azole-resistant Aspergillus spp. in food products are limited. Therefore, we aimed to isolate Aspergillus spp. from processed foods and commercial agricultural products and performed drug susceptibility tests for azoles. Among 692 food samples, we isolated 99 strains of Aspergillus spp. from 50 food samples, including vegetables (22.9%), citrus fruits (26.3%), cereals (25.5%), and processed foods (1.8%). The isolates belonged to 18 species across eight sections: Aspergillus, Candidi, Clavati, Flavi, Fumigati, Nidulantes, Nigri, and Terrei. The most frequently isolated section was Fumigati with 39 strains, followed by Nigri with 28 strains. Aspergillus fumigatus and A. welwitschiae were the predominant species. Ten A. fumigatus and four cryptic strains, four A. niger cryptic strains, two A. flavus, and four A. terreus strains exceeded epidemiological cutoff values for azoles. Aspergillus tubingensis, A. pseudoviridinutans, A. lentulus, A. terreus, and N. hiratsukae showed low susceptibility to multi-azoles. Foods containing agricultural products were found to be contaminated with Aspergillus spp., with 65.3% of isolates having minimal inhibitory concentrations below epidemiological cutoff values. Additionally, some samples harbored azole-resistant strains of Aspergillus spp. Our study serves as a basis for elucidating the relationship between food, environment, and clinically important Aspergillus spp.

5.
Pathogens ; 13(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38535576

RESUMO

The study of pathogenicity and virulence of fungal strains, in vivo in the preclinical phase, is carried out through the use of animal models belonging to various classes of mammals (rodents, leproids, etc.). Although animals are functionally more similar to humans, these studies have some limitations in terms of ethics (animal suffering), user-friendliness, cost-effectiveness, timing (physiological response time) and logistics (need for adequately equipped laboratories). A good in vivo model must possess some optimal characteristics to be used, such as rapid growth, small size and short life cycle. For this reason, insects, such as Galleria mellonella (Lepidoptera), Drosophila melanogaster (Diptera) and Bombyx mori (Lepidoptera), have been widely used as alternative non-mammalian models. Due to their simplicity of use and low cost, the larvae of G. mellonella represent an optimal model above all to evaluate the virulence of fungal pathogens and the use of antifungal treatments (either single or in combination with biologically active compounds). A further advantage is also represented by their simple neuronal system limiting the suffering of the animal itself, their ability to survive at near-body ambient temperatures as well as the expression of proteins able to recognise combined pathogens following the three R principles (replacement, refinement and reduction). This review aims to assess the validity as well as the advantages and disadvantages of replacing mammalian classes with G. mellonella as an in vivo study model for preclinical experimentation.

6.
J Food Prot ; 87(5): 100261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461966

RESUMO

This study aimed to compare AFM1 occurrence in different cheese types produced by organic and conventional systems; and to evaluate the risk of food exposure to AFM1. A total of 176 commercial cheeses of 17 types were analyzed, 84 of organic and 92 of conventional production. Determination of AFM1 was performed by high- performance liquid chromatography (HPLC), being detected in 30.5% of samples, with 4.8% of organic cheese samples presenting quantifiable AFM1 values between 0.88 and 1.50 µg/kg. On the other hand, 4.3% of conventional cheese samples with values between 0.79 and 6.70 µg/kg. Two conventional cheese samples were above the limit of AFM1 allowed for cheeses by the Brazilian legislation. No statistical difference were found between organic and conventional cheeses regarding the occurrence (p = 0.1780) and concentration of AFM1 (p = 0.1810), according to the Chi-square and the T test, respectively. Estimated daily intake (EDI) and hazard index (HI) of dietary exposure to AFM1 were 0.26 ng/kg/day and 1.28 ng/kg/day, respectively, for conventional cheese samples, and 0.09 ng/kg/day and 0.47 ng/kg/day for organic samples, with no statistical difference for EDI (p = 0.1729) and HI (p = 0.1802) between the two production systems. Comparison between several cheese types from conventional and organic systems indicated that AFM1 is an obstacle to dairy production. Control and prevention of AFM1 contamination, as well as detoxification methods in the final products, are necessary. In the case of organic products, additional research is needed in order to determine which control and detoxification methods should be allowed in this production system.


Assuntos
Aflatoxina M1 , Queijo , Contaminação de Alimentos , Aflatoxina M1/análise , Contaminação de Alimentos/análise , Humanos , Exposição Dietética , Brasil , Cromatografia Líquida de Alta Pressão
7.
Mycoses ; 67(4): e13719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38551063

RESUMO

BACKGROUND: Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES: Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS: Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS: Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS: Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.


Assuntos
Aspergilose , Aspergillus nidulans , Humanos , Azóis/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/microbiologia , Prevalência , Estudos Prospectivos , Farmacorresistência Fúngica , Aspergillus fumigatus , Hospitais , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana
8.
Indian J Otolaryngol Head Neck Surg ; 76(1): 1066-1070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440532

RESUMO

Osteomyelitis and abscess of the clivus are rare conditions thought to arise from contiguous spread of infection from the paranasal sinuses. Clival osteomyelitis is a rare potentially life-threatening skull base infection which is generally challenging to diagnose and treat. It is typically seen in the pediatric population and is very rare in the adult population. The exact pathophysiology of osteomyelitis of the clivus is relatively uncertain. Here, we describe a case of a 32-year-old immunocompetent female with a primary complaint of headache, with no significant medical history of diabetes, hypertension or rhinosinusitis or SARS COV-2 for the past 18 months. This case report demonstrates an image-guided and endoscopic approach to surgical localization and treatment of abscesses in the clival area.

9.
Nat Prod Res ; : 1-9, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38293715

RESUMO

AIMS: In this study, five essential oils (EOs) from different species of Lavandula hybrida abrialis, for Lavandula hybrida R.C., Lavandula hybrida 'super A', Lavandula hybrida 'super Z' and Lavandula vera and its hybrids Lavender were evaluated against 26 dust-isolated fungal strains from North Africa. METHODS AND RESULTS: The composition of the different EOs was determined from volume to dry weight. The photochemical analyses were performed via gas chromatography (GC). The cytotoxic effect of five lavender EOs on human epithelial colorectal adenocarcinoma cells (Caco-2) cell line was done. A total of 26 strains of filamentous fungi including Aspergillus spp., Botrytis cinerea, Ceriporia spp., Fusarium spp. and Penicillium glabrum were isolated from sand dust samples via molecular diagnostic tool of PCR. Fungal strains with the lowest minimal lethal concentration (MLC) were Penicillium glabrum, Ceriporia spp. and a strain of Aspergillus spp. CONCLUSIONS: More studies are needed to verify the activity of this EO against more different fungal species, and determine the active ingredients.Significance and impact of study: MIC of the antifungal efficacy relating to EOs was evaluated. The EOs tests showed no cytotoxic effect at very low concentrations, ranging from 0.03% (IC50 0.9132 mg/mL) (L. hybrid Abrialis) to 0.001% (IC50 1.631 mg/mL) (L. hybrid R.C.).

10.
Braz J Vet Med ; 46: e004723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282831

RESUMO

Respiratory diseases considerably affect equine athletes, being the second most common cause of poor performance. Among these diseases, fungal pneumonia in horses, caused specifically by Aspergillus spp., is relatively rare but potentially fatal. Fungal pneumonia typically affects horses exposed to fungal elements due to environmental factors, immunosuppression, or previous debilitating illnesses. Treatment is complex, with minimal success due to late diagnosis and serious concomitant underlying diseases. The choice of medication depends on the site of infection, the fungal species involved, and financial considerations. This report describes a case of pulmonary aspergillosis diagnosed in a 10-year-old castrated Quarter Horse. Transtracheal lavage revealed fungal elements characteristic of Aspergillus fumigatus. Treatment with dexamethasone, bromhexine hydrochloride, and itraconazole led to a successful recovery. The diagnosis of equine aspergillosis is challenging because its clinical signs overlap with other respiratory diseases. Fungal infections like aspergillosis are gaining attention in the equine health scene. Early and accurate diagnosis is crucial to avoid unnecessary use of antibiotics and prevent antimicrobial resistance. Furthermore, veterinarians and horse handlers must be aware of the risks of spreading aspergillosis to humans, emphasizing preventative measures and respiratory protection.


As doenças respiratórias afetam consideravelmente os equinos atletas, sendo a segunda causa mais comum de mau desempenho. Entre essas condições, a pneumonia fúngica em cavalos, causada especificamente por Aspergillus spp., é relativamente rara, mas potencialmente fatal. Normalmente afeta cavalos expostos a elementos fúngicos devido a fatores ambientais, imunossupressão ou doenças debilitantes. O tratamento é complexo, com sucesso mínimo devido ao diagnóstico tardio e doenças subjacentes graves concomitantes. A escolha do medicamento depende do local da infecção, das espécies fúngicas envolvidas e das considerações financeiras. Este relato descreve um caso de aspergilose pulmonar diagnosticado em equino Quarto de Milha castrado, de 10 anos de idade. A lavagem transtraqueal revelou elementos fúngicos característicos de Aspergillus fumigatus. O tratamento com dexametasona, cloridrato de bromexina e itraconazol levou a uma recuperação bem-sucedida. O diagnóstico da aspergilose equina é um desafio porque seus sinais clínicos se sobrepõem a outras doenças respiratórias. Infecções fúngicas como a aspergilose estão ganhando atenção no cenário da saúde equina. O diagnóstico precoce e preciso é crucial para evitar o uso de antibióticos e prevenir a resistência antimicrobiana. Além disso, os veterinários e tratadores de cavalos devem estar cientes dos riscos de propagação da aspergilose em humanos, enfatizando medidas preventivas e de proteção respiratória.

11.
Foodborne Pathog Dis ; 21(3): 183-193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917090

RESUMO

Rice (Oryza sativa) is a major cereal crop that balances the food demand of the worldwide population. The crop quality drops daily due to their exposure to biotic and abiotic stresses, especially pathogens. It needs to be improved to maintain the consumption level to cope with increasing population demands for food. The current study was designed to analyze the comparison of the effects of green synthesis approaches on pathogens associated with rice seeds. In this study, essential oils were extracted from Cymbopogon citratus, Thymus vulgaris, and Origanum vulgaris medicinal plants and used as fungicides on fungal strains of Aspergillus spp. T. vulgaris effectively controlled the growth of Aspergillus niger, Aspergillus flavus, and Aspergillus terreus as compared with O. vulgaris and Cymbopogon. Further, silica nanoparticles (SiNPs) were synthesized from rice husk to evaluate their antifungal activities. SiNPs were characterized by ultraviolet-visible spectroscopy with a broad peak at 281.62 nm. Fourier-transform infrared spectroscopy spectrum confirms the presence of Si-H, Si-OH, and Si-O-Si bonds functional groups, and SiO4 tetrahedral coordination unit. X-ray diffraction pattern describes the crystalline structure with a sharp peak at 2θ = 22°. Scanning electron microscopy and energy-dispersive spectroscopy confirmed the spherical shape, size 70-115 nm, and elemental composition with pure silica contents. SiNPs showed no significant antifungal activity against Aspergillus strains. Moreover, Trichoderma was isolated from the rhizosphere of rice fields and showed a surprising antifungal effect against A. terreus, A. niger, and A. flavus. The current study successfully revealed environment-friendly and cost-effective green synthesizing approaches for analyzing biocontrol potential against rice seed-related Aspergillus spp. They will also help to improve pathogen control strategies in other cereals.


Assuntos
Antifúngicos , Oryza , Antifúngicos/farmacologia , Antifúngicos/química , Aspergillus flavus , Sementes , Dióxido de Silício/farmacologia
12.
J Fungi (Basel) ; 9(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37998875

RESUMO

The genus Aspergillus harbors human infection-causing pathogens and is involved in the complex one-health challenge of antifungal resistance. Here, a 6-year retrospective study was conducted with Aspergillus spp. isolated from patients with invasive, chronic, and clinically suspected aspergillosis in a tertiary teaching hospital. A total of 64 Aspergillus spp. clinical isolates were investigated regarding molecular identification, biofilm, virulence in Galleria mellonella, antifungal susceptibility, and resistance to amphotericin B and azoles. Aspergillus section Fumigati (A. fumigatus sensu stricto, 62.5%) and section Flavi (A. flavus, 20.3%; A. parasiticus, 14%; and A. tamarii, 3.1%) have been identified. Aspergillus section Flavi clinical isolates were more virulent than section Fumigati clinical isolates. Furthermore, scant evidence supports a link between biofilm formation and virulence. The susceptibility of the Aspergillus spp. clinical isolates to itraconazole, posaconazole, voriconazole, and amphotericin B was evaluated. Most Aspergillus spp. clinical isolates (67.2%) had an AMB MIC value equal to or above 2 µg/mL, warning of a higher probability of therapeutic failure in the region under study. In general, the triazoles presented MIC values above the epidemiological cutoff value. The high triazole MIC values of A. fumigatus s.s. clinical isolates were investigated by sequencing the promoter region and cyp51A locus. The Cyp51A amino acid substitutions F46Y, M172V, N248T, N248K, D255E, and E427K were globally detected in 47.5% of A. fumigatus s.s. clinical isolates, and most of them are associated with high triazole MICs. Even so, the findings support voriconazole or itraconazole as the first therapeutic choice for treating Aspergillus infections. This study emphasizes the significance of continued surveillance of Aspergillus spp. infections to help overcome the gap in knowledge of the global fungal burden of infections and antifungal resistance, supporting public health initiatives.

13.
J Food Sci ; 88(11): 4653-4663, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37799068

RESUMO

Contaminated fungi on dried salted fish of three species including Talang queenfish (TQF, Scomberroides commersonianus), Hamilton's thryssa fish (HTF, Thryssa hamiltonii), and Cobia fish (CF, Rachycentron canadum) were isolated and identified. One hundred and sixty-nine isolates were obtained from TQF and HTF, respectively, while no fungi were detected in CF. The dominant genera were Aspergillus spp. (n = 79), Penicillium spp. (n = 60), and non-sporulating fungi (n = 30). The representative groups of Aspergillus spp. (n = 6) and Penicillium spp. (n = 3) based on different morphological characteristics were selected for species identification by molecular methods involving ITS1-5.8s-ITS2 region and Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometer (MALDI-TOF MS) analysis. The nine isolates were identified to be Aspergillus versicolor (n = 2), Aspergillus montevidensis (n = 3), Penicillium citrinum (n = 3), and Aspergillus sp. (n = 1). The antifungal activity of chitooligosaccharide-gallic acid (COS-GAL) conjugate against A. versicolor F1/10M9, A. montevidensis F1/30M20, and P. citrinum F1/23M14 was examined. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were in the range of 0.625-2.5 mg/mL and 1.25-10 mg/mL, respectively. COS-GAL conjugate at the concentration of 5 mg/mL completely inhibited the spore germination of A. versicolor F1/10M9 and P. citrinum F1/23M14 after 72 h of treatment. COS-GAL conjugate at 4 × MIC mainly affected the mycelium of A. versicolor F1/10M9 and P. citrinum F1/23M14 after treatment with COS-GAL conjugate for 3 days by coating mycelium surface and reducing the size of mycelium. Therefore, COS-GAL conjugate could be used as a food additive to inhibit or prevent the growth of fungi contaminated in dried salted fish or other relevant products. PRACTICAL APPLICATION: During processing, dried salted fish can be contaminated with fungi, which may cause food poisoning and food spoilage. The contaminated fungi are capable of producing mycotoxin that is harmful to consumers. Synthetic food preservatives have long been used to inhibit fungal growth, but the side effects to consumers are of concern. Chitooligosaccharide is a nontoxic chitosan derivative produced from shrimp shell and its conjugate namely chitooligosaccharide-gallic acid conjugate showed high efficacy in inhibiting the growth of fungi including Aspergillus spp. and Penicillium spp. Therefore, it can serve as a natural alternative preservative for the prevention of fungal growth in dried salted fish.


Assuntos
Quitosana , Penicillium , Animais , Fungos , Antifúngicos/farmacologia , Quitosana/farmacologia , Peixes/microbiologia
14.
Open Life Sci ; 18(1): 20220676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711215

RESUMO

The microbiological characteristics of the grapes are made up of a wide variety of microorganisms, including filamentous fungi. Their presence in grapes is traditionally associated with deterioration in quality. The health of the grapes is very important for obtaining quality wine. The objective of this study was to investigate the diversity of mycobiota on the surface and inside of different grapevine varieties at harvest time in the temperate climate of Slovakia and to identify potentially pathogenic isolates of Aspergillus and Penicillium producing selected mycotoxins. During the 2021 grape harvest, grapes were collected from the Small Carpathians wine region. Eleven grape samples were analyzed by the plating method and plating method with surface disinfection. Emphasis was placed on Aspergillus and Penicillium species because of their importance in mycotoxin production. Of the 605 fungal strains detected, 11 genera were identified in the exogenous mycobiota. The most common and abundant genera were Alternaria and Botrytis. In the genus Aspergillus, A. section Nigri is the most abundant, while in the genus Penicillium, P. raistrickii reached the highest frequency and abundance. Of the 379 strains detected and identified from the endogenous mycobiota, the most common genera were again Alternaria and Botrytis and the most abundant genus was Botrytis. Penicillium species were detected in 17% of all fungi found, with P. raistrickii dominating. The A. section Nigri reached only 4% of the relative density of all isolates. Potentially toxigenic Aspergillus and Penicillium species were tested for toxinogenity by thin layer chromatography. The most important mycotoxin-producing species found were A. section Nigri but without ochratoxin A production.

15.
J Agric Food Chem ; 71(36): 13316-13324, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650146

RESUMO

Marine fungus-derived natural products are an important source of antimicrobial compounds against marine aquatic pathogens. Here, we describe the isolation and characterization of five new pentadepsipeptides, aspertides A-E (1-5), containing a unique p-methoxycinnamoyl amide group, from the marine fungi Aspergillus tamarii MA-21 and Aspergillus insuetus SD-512. Among them, aspertides B-E (2-5) also possessed uncommon amino acid residues, such as 3-hydroxyproline, 2,3-dihydroxyproline, or pipecolinic acid. The structures of these compounds were elucidated on the basis of NMR and mass spectroscopic analyses. The absolute configurations of them were established by chiral HPLC analyses of the acidic hydrolysates and NMR calculations with DP4+ probability analysis. In bio-activity assays, compounds 4 and 5 exhibited antibacterial activities against aquatic-pathogenic bacteria, including Edwardsiella tarda, Vibrio alginolyticus, Vibrio anguillarum, Vibrio vulnificus, and Staphylococcus aureus, with MIC values of 8-32 µg/mL.


Assuntos
Anti-Infecciosos , Aspergillus , Anti-Infecciosos/farmacologia , Amidas
16.
Front Plant Sci ; 14: 1202738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560029

RESUMO

A systematic study was carried out on 638 wheat and paddy grains (including fresh and stored samples) collected in 2021 from Shanghai, China, to identify the major mycobiota and their toxigenic abilities. A total of 349 fungi, namely, 252 Fusarium, 53 Aspergillus, and 44 Alternaria, were characterized by morphological and molecular identification. Fusarium and Aspergillus were more frequently isolated in paddy with Fusarium sambucinum species complex and Aspergillus section flavi as the predominant species, respectively. The genus Alternaria was the most frequently isolated fungal species in wheat. The toxin-producing potentials of the identified fungi were further evaluated in vitro. Deoxynevalenol (DON) was produced by 34.5% of Fusarium isolates and zearalenone (ZEN) was produced by 47.6% of them, and one isolate also processed the abilities for fumonisin B1 (FB1), B2 (FB2), and B3 (FB3) productions. Aflatoxin B1 (AFB1), B2 (AFB2), and G1 (AFG1) were only generated by Aspergillus section flavi, with the production rate of 65.5%, 27.6%, and 13.8%, respectively. Alternariol (AOH) was the most prevalent Alternaria toxin, which could be produced by 95.5% of the isolates, followed by alternariol monomethyl ether (AME) (72.7%), altenuene (ALT) (52.3%), tenuazonic acid (TeA) (45.5%), tentoxin (TEN) (29.5%), and altenusin (ALS) (4.5%). A combinational analysis of mycobiota and toxigenic ability allowed us to provide comprehensive information about the production mechanisms of mycotoxins in wheat and paddy in a specific geographic area, and will be helpful for developing efficient prevention and control programs.

17.
Braz J Infect Dis ; 27(4): 102793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37507102

RESUMO

COVID-19-Associated Pulmonary Aspergillosis (CAPA) is a relatively common complication in patients with severe forms of the disease caused by the SARS-CoV-2 virus. Diagnosing and confirming CAPA is challenging. In this study, Aspergillus spp. isolation in respiratory specimens from patients with COVID-19 was evaluated for identifying cases of CAPA. In 2020‒2021, 17 Aspergillus spp. were isolated from 15 COVID-19 patients admitted to a university hospital in Brazil. Patient records were retrospectively reviewed to obtain clinical-epidemiological data and other markers of Aspergillus spp. infection and then compared with the ECMM/ISHAM criteria for defining CAPA. Probable CAPA was defined in 5/10 patients, who had Aspergillus spp. isolated from Bronchoalveolar Lavage (BAL) or a positive galactomannan blood test. Additionally, anti-Aspergillus antibodies were detected in two of these patients, during active or follow-up phases of CAPA. In another seven patients with Aspergillus spp. isolated from tracheobronchial aspirate or sputum, CAPA was presumed, mainly due to deterioration of clinical conditions and new lung imaging suggestive of fungal infection. Antifungal agents to control CAPA, particularly voriconazole, were used in 9/15 cases. In cases of probable CAPA and remaining patients, clinical conditions and comorbidities were similar, with lethality being high, at 60% and 71%, respectively. The number of CAPA cases defined by scientific criteria was lower than that assumed in the clinical context. This was largely due to the lack of BAL collection for fungal culture and the non-intensive use of other markers of invasive aspergillosis. The isolation of Aspergillus spp. in different respiratory specimens should alert clinicians to the diagnosis of CAPA.


Assuntos
Aspergilose , COVID-19 , Aspergilose Pulmonar , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Aspergillus , Aspergilose Pulmonar/diagnóstico , Dimercaprol
18.
Toxins (Basel) ; 15(6)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37368702

RESUMO

Aspergillus flavus is a major aflatoxin B1, posing significant health concerns to humans, crops, and producer fungi. Due to the undesirable consequences of the usage of synthetic fungicides, biological control using yeasts has gained more attention. In this study, eight isolates of epiphytic yeasts belonging to Moesziomyces sp., Meyerozyma sp. and Metschnikowia sp., which have been identified as antagonists, were isolated from different plants, including grapes, blueberries, hawthorns, hoskiran, beans and grape leaf. While volatile organic compounds (VOCs) produced by Moesziomyces bullatus DN-FY, Metschnikowia aff. pulcherrima DN-MP and Metschnikowia aff. pulcherrima 32-AMM reduced in vitro A. flavus mycelial growth and sporulation, only VOCs produced by Metschnikowia aff. fructicola 1-UDM were found to be effective at reducing in vitro AFB1 production. All yeasts reduced the mycelial growth of A. flavus by 76-91%, while AFB1 production reduced to 1.26-10.15 ng/g and the control plates' growth was 1773 ng/g. The most effective yeast, Metschnikowia aff. Pulcherrima DN-HS, reduced Aspergillus flavus growth and aflatoxin B1 production on hazelnuts. The AFB1 content on hazelnuts reduced to 333.01 ng/g from 536.74 ng/g. To our knowledge, this is the first report of yeasts isolated from plants being tested as potential biological control agents to reduce AFB1 production on hazelnuts.


Assuntos
Metschnikowia , Vitis , Humanos , Aflatoxina B1/toxicidade , Leveduras , Aspergillus , Fungos , Aspergillus flavus , Vitis/microbiologia
19.
Folia Microbiol (Praha) ; 68(6): 951-959, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37294497

RESUMO

Among the co-infectious agents in COVID-19 patients, Aspergillus species cause invasive pulmonary aspergillosis (IPA). IPA is difficult to diagnose and is associated with high morbidity and mortality. This study is aimed at identifying Aspergillus spp. from sputum and tracheal aspirate (TA) samples of COVID-19 patients and at determining their antifungal susceptibility profiles. A total of 50 patients with COVID-19 hospitalized in their intensive care units (ICU) were included in the study. Identification of Aspergillus isolates was performed by phenotypic and molecular methods. ECMM/ISHAM consensus criteria were used for IPA case definitions. The antifungal susceptibility profiles of isolates were determined by the microdilution method. Aspergillus spp. was detected in 35 (70%) of the clinical samples. Among the Aspergillus spp., 20 (57.1%) A. fumigatus, six (17.1%) A. flavus, four (11.4%) A. niger, three (8.6%) A. terreus, and two (5.7%) A. welwitschiae were identified. In general, Aspergillus isolates were susceptible to the tested antifungal agents. In the study, nine patients were diagnosed with possible IPA, 11 patients were diagnosed with probable IPA, and 15 patients were diagnosed with Aspergillus colonization according to the used algorithms. Serum galactomannan antigen positivity was found in 11 of the patients diagnosed with IPA. Our results provide data on the incidence of IPA, identification of Aspergillus spp., and its susceptibility profiles in critically ill COVID-19 patients. Prospective studies are needed for a faster diagnosis or antifungal prophylaxis to manage the poor prognosis of IPA and reduce the risk of mortality.


Assuntos
COVID-19 , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , COVID-19/complicações , Aspergillus , Aspergilose Pulmonar/diagnóstico , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/complicações , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/complicações
20.
Front Cell Infect Microbiol ; 13: 1165236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180450

RESUMO

COVID-19-associated pulmonary aspergillosis (CAPA) has emerged as a frequent complication in the intensive care unit (ICU). However, little is known about this life-threatening fungal superinfection in solid organ transplant recipients (SOTRs), including whether targeted anti-mold prophylaxis might be justified in this immunosuppressed population. We performed a multicentric observational retrospective study of all consecutive ICU-admitted COVID-19 SOTRs between August 1, 2020 and December 31, 2021. SOTRs receiving antifungal prophylaxis with nebulized amphotericin-B were compared with those without prophylaxis. CAPA was defined according the ECMM/ISHAM criteria. Sixty-four SOTRs were admitted to ICU for COVID-19 during the study period. One patient received antifungal prophylaxis with isavuconazole and was excluded from the analysis. Of the remaining 63 SOTRs, nineteen (30.2%) received anti-mold prophylaxis with nebulized amphotericin-B. Ten SOTRs who did not receive prophylaxis developed pulmonary mold infections (nine CAPA and one mucormycosis) compared with one who received nebulized amphotericin-B (22.7% vs 5.3%; risk ratio 0.23; 95%CI 0.032-1.68), but with no differences in survival. No severe adverse events related to nebulized amphotericin-B were recorded. SOTRs admitted to ICU with COVID-19 are at high risk for CAPA. However, nebulized amphotericin-B is safe and might reduce the incidence of CAPA in this high-risk population. A randomized clinical trial to confirm these findings is warranted.


Assuntos
COVID-19 , Transplante de Órgãos , Humanos , Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...